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Semiclassical estimates of electromagnetic Casimir self-energies of spherical
and cylindrical metallic shells
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The leading semiclassical estimates of the electromagnetic Casimir stresses on a spherical and a cylindrical
metallic shell are within 1% of the field theoretical values. The electromagnetic Casimir energy for both geometries
is given by two decoupled massless scalars that satisfy conformally covariant boundary conditions. Surface
contributions vanish for smooth metallic boundaries, and the finite electromagnetic Casimir energy in leading
semiclassical approximation is due to quadratic fluctuations about periodic rays in the interior of the cavity only.
Semiclassically, the nonvanishing Casimir energy of a metallic cylindrical shell is almost entirely due to Fresnel
diffraction.
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I. INTRODUCTION

Casimir obtained his now famous attractive force between
two neutral metallic plates [1] by considering the boundary
conditions (BCs) these impose on the electromagnetic field.
Half a century later, his prediction was verified experimentally
[2] to better than 1%.

Twenty years after Casimir’s work, Boyer calculated the
zero-point energy of an ideal conducting spherical shell [3].
Contrary to the perception from the attraction between two
parallel plates, the sphere tends to expand. Boyer’s result has
since been improved in accuracy and has been verified by a
number of field-theoretic methods [4–8]—although there may
be little hope of observing this effect experimentally in the
near future [9].

Since field-theoretic methods require explicit or implicit
knowledge of cavity frequencies, they have predominantly
been used to obtain the Casimir energies of classically
integrable systems. In addition to that of a spherical cavity, the
electromagnetic Casimir energy of dielectric slabs [10–12],
metallic parallelepipeds [13–15], and long cylinders [16–20]
has been computed in this manner.

However, most systems are not integrable. It therefore is
necessary to develop reliable methods for estimating Casimir
energies of classically nonintegrable and even chaotic sys-
tems. Balian and co-workers calculate Casimir energies by a
multiple-scattering expansion of the Green’s function [21,22].
This approach does not require knowledge of the quantum-
mechanical spectrum. In principle, the multiple scattering
expansion is exact for sufficiently smooth and ideally metallic
cavities. However, except for a few integrable systems, it
is difficult to compute more than the first terms of this
multiple-scattering expansion in practice. Also, the relative
importance of orders in this expansion is hard to assess a
priori. Reference [23] proposed a semiclassical method based
on Gutzwiller’s trace formula [24] for the response function to
estimate (finite) Casimir energies. It is suitable for estimating
Casimir energies of hyperbolic and chaotic systems [23,25,26]
with isolated classical periodic orbits.

Although in general not exact, this semiclassical approx-
imation associates the finite (Casimir) part of the vacuum
energy with optical properties of the system. It captures aspects
of Casimir energies that have been puzzling for some time

[27]. Sophisticated path-integral methods [28–32], allow one
to obtain Casimir forces to arbitrary precision by numerical
computation, but tend not to provide much qualitative insight.
Due to unresolved renormalization problems, these methods
have not yet been used to study the self-stress on cavities.
Below we use semiclassical methods for classically integrable
systems to estimate and to analyze the Casimir self-stress of a
spherical and a cylindrical shell.

The simplicity, transparency, and surprising accuracy of
this approximation is first demonstrated on Boyer’s problem
[3–6,8], the electromagnetic Casimir energy of a spherical
cavity with an (ideal) metallic boundary. The semiclassical
analysis of this problem is an order of magnitude simpler than
any given previously, and the positive sign of the Casimir
energy is related to caustic surfaces of second order. In
Sec. IV, the semiclassical estimate for the electromagnetic
Casimir self-energy of a perfectly conducting cylindrical shell
is reexamined by converting the sum of WKB estimates for
the eigenfrequencies to the dual sum over periodic orbits. It
was previously [33,34] found that the Casimir self-energy of
a cylindrical metallic shell vanishes to leading semiclassical
order. It vanishes only when the upper bound of a particular
Fresnel integral is ignored. Requiring this physical bound
in the longitudinal momentum fraction, the semiclassical
estimate also is rather accurate for the self-stress of a metallic
cylindrical shell. It is within 0.25% of the field-theoretic
value [16]. The sign of the self-stress again is determined by the
presence of caustics and their associated Maslov-Keller indices
[35,36]. However, contrary to the spherical case, the self-stress
of a cylindrical cavity is semiclassically primarily due to
Fresnel diffraction. A discussion of the results with a critical
assessment of difficulties that remain for a semiclassical inter-
pretation of some Casimir self-energies concludes this paper.

II. THE DUAL PICTURE: ELECTROMAGNETIC CASIMIR
ENERGIES OF INTEGRABLE SYSTEMS AND

PERIODIC RAYS

Integrable systems may be semiclassically quantized in
terms of periodic paths on invariant tori [37]—in much the
same manner as Bohr first quantized the hydrogen atom.
Although generally not an exact transformation, classical
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periodic orbits on the invariant tori are dual to the mode
frequencies in a semiclassical sense. Applying the Poisson
resummation formula, the semiclassical Casimir energy (SCE)
due to a massless scalar may be written in terms of classical
periodic orbits [24,27,38,39],

Ec = 1

2

∑
n

h̄ωn − (UV subtractions)

∼ 1

2h̄d

∑
m

′
e(−iπ/2)βm

∫
sp

dI H (I)e2πim·I/h̄. (1)

The components of the d-dimensional vector I in Eq. (1)
are the actions of a set of properly normalized action-angle
variables that describe the integrable system. The exponent of
the integrand in Eq. (1) is the classical action (in units of h̄)
of a periodic orbit that winds mi times about the ith cycle of
the invariant torus. H (I) is the associated classical energy, and
βm is the Keller-Maslov index [35,36] of a class of periodic
orbits identified by m. The latter is a topological quantity that
does not depend on the actions I. To leading semiclassical
order, the (primed) sum extends only over sectors m with
nontrivial stationary points (the classical periodic paths of
finite action). The correspondence in Eq. (1) can only be argued
semiclassically [24,38,39], and the integrals in this expression
should be evaluated in stationary phase approximation (sp)
only.

The semiclassical spectrum of a massless scalar is exact
for a number of manifolds without boundary [40], and the
definition of the SCE by the right-hand side of Eq. (1) coincides
with the Casimir energy of ζ -function regularization in these
cases. It is exact for massless scalar fields that satisfy periodic,
Neumann, or Dirichlet BCs on parallelepipeds [13,15,27]
as well as for some tessellations of spheres [27,41,42]. To
physically interpret the finite SCE of a system, one has
to consider the implicit subtractions in the spectral density
[22,27,43].

Semiclassical contributions to the spectral density arise
due to small fluctuations about closed classical paths. In the
dual picture, local ultraviolet (UV) divergences are associated
with fluctuations about arbitrarily short and contractible
classical paths. If all local UV divergences can be subtracted
unambiguously [27,43,44], the dependence of the remaining
finite Casimir energy on macroscopic deformations of the
system semiclassically arises from fluctuations about classical
closed paths of finite action.

In disjoint systems, the Casimir interaction at small
separations usually is dominated by fluctuations about
periodic orbits [27]. If there are no stationary classical periodic
orbits, the leading interaction typically arises from periodic
orbits of extremal—rather than stationary—finite length
[45]. These correspond to diffractive effects that lead to
relatively weak but sometimes rather interesting interactions.
Examples of systems without stationary periodic orbits include
the Casimir pendulum of Ref. [46], perpendicular plates [30],
a wedge above a plate and, most recently, a rotational ellipsoid
above a plate with a hole [47]. Diffractive contributions also
become important when the separation between two systems is
comparable to, or larger than, the smaller system. The original
Casimir-Polder interaction between two atoms [48] or between
an atom and a metallic plate [49] fall into this category.

However, periodic (stationary or extremal) orbits need not
dominate the Casimir energy when some nonperiodic closed
classical paths of finite action are much shorter than any
periodic ones. The Casimir force due to a massless scalar field,
which satisfies Dirichlet BCs on the plate of a hemispherical
Casimir piston [50], is an example.

The following dimensional argument suggests that the
local UV divergence due to scalar fields that satisfy Dirichlet
or Neumann conditions on both sides of a smooth and
infinitesimally thin even-dimensional surface vanishes in a
dimensionless regularization scheme. Barring other scales, the
local contribution from a small (d − 1)-dimensional surface
element dA to the divergence for dimensional reasons is of
the form h̄cfε(Ri/Rj ) dA/Rd , where R is the principal (local)
radius of curvature of the surface and fε is a dimensionless
function of the (dimensionless) regularization parameter ε and
of ratios of the local curvatures only. The interior and exterior
radii of curvature at the same point on the infinitesimally
thin surface are of equal magnitude but are of opposite sign.
Local divergent surface contributions from the interior and
the exterior of the infinitesimally thin surface [with the same
scaleless BCs on both of its sides] therefore cancel precisely
when d is odd. For a spherical surface, this cancellation
has been explicitly observed in Ref. [51]. In d = 3, finite
Casimir energies have also been calculated for scalar fields
and an infinitesimally thin cylindrical shell [17,52,53]. The
preceding argument suggests that surface divergences cancel
locally for any infinitesimally thin (and sufficiently smooth)
even-dimensional boundary, regardless of its shape or whether
Dirichlet or Neumann conditions are imposed.

However, with scalar fields this cancellation occurs only
for vanishingly thin even-dimensional smooth boundaries and
in a dimensionless regularization scheme. In the presence of
a physical cutoff, the previous argument implies only the ab-
sence of logarithmic divergences, and surface divergences do
occur even for ideal boundaries. They can be unambiguously
subtracted [54–57] or, equivalently, absorbed in parameters
that describe physical properties of the surface. Although these
subtractions are not ambiguous for even-dimensional ideal
interfaces, the remaining finite contribution to the Casimir
energy due to closed nonperiodic classical paths could be
significant. In this case Eq. (1) can give an inadequate estimate
of the Casimir self-stress due to scalar fields [see Refs. [39,50]
and Sec. IV for some formally subleading semiclassical
surface contributions that have been omitted in Eq. (1)].

Fortunately, the finite electromagnetic self-stress of a
smooth and infinitesimally thin perfectly conducting boundary
is predominantly due to the stationary points of the integrand
in Eq. (1). The electromagnetic Casimir self-energy of a closed
smooth and perfectly metallic shell may be decomposed into
the contributions from two massless scalar fields—one that
satisfies Dirichlet’s, and one that satisfies Neumann’s BC1

1For a spherical shell, the usual Robin and Dirichlet conditions on
solutions B�(x) of the spherical Bessel equation are dictated [58] by
the conformal covariance of free electromagnetic fields. They may be
thought of as simple Neumann and Dirichlet BCs for radial functions
φ�(x) = xB�(x) of vanishing conformal dimension that are solutions
of [∂2

x + 1 − �(� + 1)/x2]φ�(x) = 0.
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on the surface [22]. Semiclassically, these BCs are enforced
by a phase lag of 0(π ) for the Neumann (Dirichlet) scalar
at each specular reflection of the classical path. Since both
scalar fields satisfy the same wave equation, only fluctuations
about classical trajectories with an even number of reflections
contribute to the electromagnetic spectral density of an ideal
metallic cavity [22]. Potentially divergent contributions of
the Neumann and Dirichlet scalars that arise from closed
contractible classical paths that reflect just once off the metallic
boundary in this case cancel each other exactly. The length of
any closed classical ray with an even number of reflections off
a sufficiently smooth cavity is bounded below by geometrical
characteristics of the cavity—such as its smallest radius of
curvature. The closed classical rays of minimal length with
an even number of reflections off such cavities are periodic
and correspond to either a stationary point or an extremum
of the classical action. For the cylindrical and spherical shells
we will consider, the extremal periodic rays creep about the
exterior of the cavity a number of times. They lead to rather
small diffractive corrections [39,45,59] that will be ignored.
The stationary points of the action in Eq. (1) thus give the main
contribution to the Casimir self-stress of smooth cavities in the
electromagnetic case. They correspond to periodic trajectories
inside the cavity characterized by their winding number and
(even) number of reflections, such as those shown in Fig. 1(a).

The previous argument applies equally well to the con-
tribution of any pair of decoupled scalar fields that satisfy
Dirichlet and Neumann BCs, and it may not be apparent why
the SCE should give a particularly good approximation for the
self-stress of a metallic shell due to the electromagnetic field.
The exact field-theoretic Casimir stress caused by two massless
scalar fields that solve the same Helmholtz equation as the
transverse electromagnetic fields but satisfy Neumann (instead
of Robin) and Dirichlet BCs on the spherical shell not only
differs in sign, but also is an order of magnitude larger than the
electromagnetic one [7,17,51]: −0.220 967 · · · h̄c/R instead
of +0.046 17 · · · h̄c/R in the electromagnetic case [3,6]. The
reason for this difference is that the Neumann BC on a
spherical shell is not conformally covariant [58] for a scalar
that satisfies the Helmholtz equation, whereas the Robin BC
is.2 On an intrinsically flat boundary, such as a cylindrical
shell, the electromagnetic Casimir energy of a metallic shell
indeed decomposes into contributions from two scalar fields
that satisfy Dirichlet and Neumann BCs [17].

The classical action of a massless scalar particle is
conformally invariant, and the semiclassical approximation
indeed reproduces [27] the Casimir energy of a conformal
scalar field on curved manifolds without boundary, such
as that of a three-dimensional sphere S3. Since specular
reflection and phase lag do not depend on the curvature of a
surface, we conjecture that the SCE approximates the Casimir
energy of massless scalars that satisfy conformally covariant
Dirichlet and Neumann conditions on a smooth boundary. For
boundaries with nonvanishing curvature, the latter correspond
to Robin-like conditions.

2∂r [rφ(r)] = 0 is conformally covariant if φ has conformal mass
dimension 1.

(a) (b)

(2,1)(6,2)

(4,1)

(5,1)

(5,2)

(1,0)

FIG. 1. (Color online) Classical periodic rays of a spherical and
a cylindrical cavity. (a) The shortest primitive rays in sectors (n,w) ∈
{(2,1),(4,1),(6,2)} that contribute to the electromagnetic SCE. (b)
Closed paths in sectors (n,w) ∈ {(1,0),(5,1),(5,2)} that reflect an
odd number of times off the surface and whose contribution to the
electromagnetic SCE vanishes. Caustic surfaces are indicated as thin
circles. The dashed part of any trajectory is on one sheet, and its solid
part is on the other sheet of a two-sheeted covering space. The phase
space of the (5,2) sector is indicated by the hatched area. Note that
the caustics are of second order for a spherical cavity but are of first
order for a cylindrical one.

III. SELF-STRESS OF A SPHERICAL METALLIC SHELL

A massless particle in a spherical cavity is a classically
integrable system, but the semiclassical spectrum is only
asymptotically correct. The SCE therefore is not expected
to exactly reproduce the field theoretic Casimir energy of a
spherical cavity. It nevertheless will be surprisingly accurate.
The SCE is obtained by performing the integrals of Eq. (1)
in stationary phase and has a very transparent interpretation
in terms of periodic orbits within the cavity. The sign of the
SCE of a spherical cavity will be quite trivially established,
and the discrepancy of 1% with the field-theoretic results may
very well largely be due to the neglect of diffractive corrections
from creeping orbits that wind about the exterior of the sphere.
As argued earlier, there are no potentially divergent local
contributions to the Casimir energy of such an idealized surface
in the electromagnetic case. Its local surface tension, in fact,
vanishes [22,60]. The only subtraction in the spectral density
required for a finite Casimir energy with ideal metallic BCs is
the Weyl contribution proportional to the volume of the sphere.
This subtraction corresponds to ignoring the m = (0,0,0) term
in the sum of Eq. (1). The remaining difficulty in calculating
the SCE is a convenient choice of action-angle variables. For
a massless scalar in three dimensions that satisfies BCs with
spherical symmetry, an obvious set of actions is the magnitude
of angular momentum I2 = L, one of the components of
angular momentum I3 = Lz, and an action I1 associated with
the radial degree of freedom.

Since the azimuthal angle of any classical orbit is constant,
the energy E = H (I1,I2) of a particle in a spherical cavity of
radius R does not depend on I3 = Lz. In terms of this choice
of actions, the classical energy is implicitly given by

πI1 + I2 arccos

(
cI2

ER

)
= ER

c

√
1 −

(
cI2

ER

)2

. (2)
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The branches of the square root and inverse cosine in Eq. (2)
are chosen so that I1 is positive. It is convenient to introduce
dimensionless variables,

λ = 2ER/(h̄c) and z = cI2/(ER) (3)

for the total energy [in units of h̄c/(2R)] and the angular
momentum (in units of ER/c) of an orbit. Note that z ∈ [0,1]
and that the semiclassical regime formally corresponds to
λ � 1 (i.e., to wavelengths that are much shorter than the
dimensions of the cavity). Using Eq. (2) and the definitions
in Eq. (3), the angular frequency of the radial motion is
given by ω−1 = (∂E/∂I1)−1 = R

√
1 − [cI2/(ER)]2/(πc) =

(R/πc)
√

1 − z2.
With the help of Eq. (2) and the definitions of Eq. (3), the

semiclassical expression in Eq. (1) for the Casimir energy of a
massless scalar field that satisfies Neumann or Dirichlet BCs
on a spherical surface becomes

E sph = h̄c

4πR

∑
n,w�0

′
Re

[
e−i π

2 β(n,w)
∫ ∞

0
dλ λ3

×
∫ 1

0
dz z

√
1 − z2eiλ{n[

√
1−z2−z arccos (z)]+wπz}

]
. (4)

Here, the integral over I3 has already been performed in
stationary phase approximation. Because the Hamiltonian
does not depend on I3, only periodic orbits with m3 = 0
contribute [27] significantly in stationary phase. Since −I2 �
I3 � I2, one has that

∫
dI3 = 2I2 = h̄λz. The factor 2I2

accounts for the 2(l + 1/2) degeneracy of a state with angular
momentum L = h̄(l + 1/2) = I2. By taking (four times) the
real part in Eq. (4), one can restrict the summations to
nonnegative integers and choose the principal branches of
the square root and inverse cosine functions in the exponent.
The primed sum signifies that the summand is weighted
by half if one of the integers vanishes and the n = w =
0 term is absent. The Keller-Maslov index β(n,w) of a
classical sector depends on whether Neumann or Dirichlet
BCs are satisfied on the spherical shell. It is obtained as
follows.

For positive integers w and n, the phase of the in-
tegrand in Eq. (4) is stationary at z = z̄(n,w) ∈ [0,1]
where

0 = −n arccos (z̄) + wπ

⇒ z̄(n,w) = cos (wπ/n), n � 2w > 1. (5)

Restrictions on the values of w and n arise because arccos (z̄) ∈
[0,π/2] on the chosen branch. The phase is stationary at
classically allowed points only for sectors with n � 2w > 1.
Semiclassical contributions to the integrals of other sectors
arise at the end points of the z integration only. These
diffractive corrections are of subleading order in an asymptotic
expansion of the spectral density for large λ and will be
ignored. Note that w → w + n just amounts to choosing
another branch of the inverse cosine function.

The classical action in sectors with stationary points is

Scl(n,w) = h̄λ sin (wπ/n)

= (E/c)2nR sin (wπ/n) = (E/c)L(n,w) , (6)

where L(n,w) is the total length of the classical orbit. Some of
these classical periodic orbits are shown in Fig. 1. The integer
w in Eq. (6) gives the number of times an orbit circles or
winds about the origin. The integer n > 1 gives the number
of reflections off the spherical surface (windings of the radial
motion). As indicated in Fig. 1, the envelope of the set of
classical periodic orbits in the (n,w) sector is a caustic surface,
and a double covering is required for a unique phase-space
description [35]. The two sheets are joined at the inner caustic
[indicated by a dashed circle in Fig. 1] and at the outer spherical
shell of radius R. Every orbit that reflects off the spherical
shell n times also passes through the caustic n times. The
cross section of a bundle of rays is reduced to a point at the
spherical caustic surface. Thus, the caustic is of second order
and is associated with a phase loss of π every time it is crossed.
At each specular reflection off the outer shell, Dirichlet BCs
require an additional phase loss of π , whereas there is no phase
change for Neumann BCs. Altogether, the Keller-Maslov
index of the sector (n,w) depends on n only and is given
by

β(n,w) =
{

0, for Dirichlet BC

2n, for Neumann BC
. (7)

As noted in Sec. 2, the electromagnetic field with (ideal)
metallic BCs on a spherical shell may be viewed as two
massless scalar fields of vanishing conformal dimension, one
satisfying Dirichlet BCs, and one satisfying Neumann BCs
[22]. Due to the Keller-Maslov phases of Eq. (7), only sectors
(n,w) with even n = 2k � 2w � 2 contribute [22] to the SCE
in the electromagnetic case.

The classical action vanishes for sectors with w = 0 or
n = 0, and these sectors do not contribute to the SCE in leading
approximation. The n = 0 sector corresponds to paths that do
not reflect off the shell and gives rise to volume contributions
that are subtracted. Equation (5) implies that extremal paths in
the n > 0,w = 0 sectors have maximal angular momentum
1 = z̄ = Lc/(ER). These are great circles that lie wholly
within the spherical shell. These paths are not stationary and
lead to diffractive contributions that we will ignore here.
For n > 0,w > 0, the curvature of the exponent at z̄(n,w)
is finite,

∂2

∂z2
{n[

√
1 − z2 − z arccos (z)] + wπz}

∣∣∣∣
z̄(n,w)

= n

sin
(

wπ
n

) ,

(8)

whereas it diverges in sectors with w = 0. The behavior of the
exponent for z ∼ 1 in this case is

√
1 − z2 − z arccos (z) = 2

√
2

3
(1 − z)3/2 + O[(1 − z)5/2].

(9)

Quadratic fluctuations about a classical orbit with w = 0 are
of vanishing width, and these sectors do not contribute in
stationary phase approximation.
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To leading semiclassical accuracy, the Casimir energy of a
spherical cavity with an ideal metallic boundary is

E sph
EM ∼ h̄c

4πR
Re

∞∑
n=1

[1n + (−1)n]
n/2∑
w=1

∫ ∞

0
dλ λ3einλ sin (wπ/n)

×
∫ 1

0
dz z

√
1−z2 einλ[z−z̄(n,w)]2/[2 sin(wπ/n)]

∼ h̄c

R

[ ∞∑
n=1

1

16πn4
+

∞∑
n=2

15
√

2

256n4

n−1∑
w=1

cos
(

wπ
2n

)
sin2

(
wπ
2n

)
]

∼ 0.046 68 · · · h̄c

R
. (10)

This semiclassical estimate is only about 1% larger than
the best numerical value [6] 0.046 17 · · · h̄c/R for the elec-
tromagnetic Casimir energy of a spherical cavity with an
infinitesimally thin metallic surface. Note that the contribution
from the (2w,w) sectors had to be considered separately in
Eq. (10), since the measure dz z vanishes at the stationary
point z̄(2w,w) = cos (π/2) = 0 of the integrand. As can be
seen in Fig. 1(a), the classical rays of (2w,w) sectors go back
and forth between antipodes of the cavity and pass through its
center—they have angular momentum L = 0.

The shortest primitive orbits give somewhat less than half
[1/(16π ) ∼ 0.02] of the total SCE of the spherical cavity—
much less than the 92% they contribute to the Casimir energy
of parallel plates. The reason is that contributions only drop off
as 1/n2 rather than 1/n4 as for parallel plates. The orbit in the
(4,1) sector [the inscribed square in Fig. 1(a)], furthermore,
is just a factor of

√
2 longer than the (2,1) orbit [which, in

turn, is a factor of 1/
√

2 shorter than the (4,2) orbit]. To
estimate the magnitude of the contribution from any particular
sector, one has to take the available “phase space” as well
as the ray’s length into account. Thus, although the length
of a (2n,1) orbit tends to 2πR for n → ∞, the associated
“phase space” (essentially the volume of the shell between the
boundary of the cavity and the inner caustic) decreases like
1/n2. This accounts for the relatively slow convergence of the
sum in Eq. (10). To achieve a numerical accuracy of 10−5,
the first 50 terms of the sum were evaluated explicitly and the
remainder estimated by the Richardson extrapolation method.
However, note that the semiclassical two-reflection coefficient
of 1/(16π ) is just 2/5 of the leading field-theoretic coefficient
for a dilute dielectric-diamagnetic spherical shell [61]. We will
encounter a similar discrepancy in the case of a cylindrical shell
and will discuss it further in Sec. V.

IV. SELF-STRESS OF A CYLINDRICAL METALLIC SHELL

The example of a spherical cavity suggests that one may
obtain electromagnetic Casimir self-energies rather accurately
by considering only small fluctuations about the classical
periodic orbits. Since the classical periodic rays of finite length
for a long cylindrical shell are the same as for a sphere, one
would expect that a semiclassical calculation of the self-stress
is just as straightforward for a cylindrical cavity.

This is not the case. The electromagnetic SCE of an ideal
metallic cylindrical shell vanishes in stationary phase approx-
imation [33,34]. The contribution from any periodic orbit to

the electromagnetic SCE vanishes in this approximation for
the same reason that it is positive for a spherical cavity—
due to optical phases. However, going beyond stationary
phase approximation and including certain Fresnel diffraction
effects, we again obtain a very good approximation to the
Casimir self-stress of a metallic cylinder from quadratic
fluctuations about classical periodic paths.

The cylinder appears particularly suited for a semiclassical
analysis in terms of massless scalars because the transverse
electric and magnetic modes satisfy Dirichlet and Neumann
BCs on the cylindrical surface. The classical system is
integrable, and we could directly employ the formalism of
Berry and Tabor [27,38] or an extended Gutzwiller approach
[33,39] to obtain the SCE in much the same way as we did
for the sphere. However, to better understand why the SCE
vanishes in this approximation and to improve upon it, we
first obtain the dual expression for the Casimir self-energy
of a cylindrical cavity directly from the semiclassical (WKB)
estimate of the eigenvalues of the scalar fields. The Casimir
energy of an infinitesimally thin metallic cylindrical shell
of radius R within a much larger cylinder of fixed radius
R> ∼ ∞ is given by the R-dependent part of the zero-point
energy,

Ecyl
EM(R) = lim

R>→∞
h̄cL

2π

∑
D,N

n

∫ ∞

0
dq

[√
q2 + κ2

n(0,R)

+
√

q2 + κ2
n(R,R>) −

√
q2 + κ2

n(0,R>)
]
D,N

,

(11)

where [κn(R<,R>)]D,N is the spectrum of wave numbers for
a scalar field that satisfies Dirichlet (D) or Neumann (N ) BCs
on a two-dimensional annulus with inner radius R< and outer
radius R>.

The asymptotic heat-kernel expansion [62] implies that the
subtracted expression in Eq. (11) is finite: The potentially
logarithmic divergence proportional to the average of the
third power of the (extrinsic) curvature of the cylindrical
surface is canceled. DeRaad and Milton obtained this finite
self-energy some time ago [16]. Since they uniformly approach
the exact wave numbers sufficiently rapidly, the SCE obtained
by replacing the exact eigenvalues in Eq. (11) by their WKB
estimates also is finite. For R> ∼ ∞, all periodic orbits in
the annulus have a length of O(R>), and the only finite
contribution to the SCE from the annulus is due to (diffractive)
creeping orbits that wrap about the inner cylinder. We will
neglect this small contribution to the SCE and will consider
only radius-dependent semiclassical contributions from the
inner cylinder. In WKB approximation, the transverse wave
numbers κn�(0,R) = xn�/R of interior modes of the cylinder
are positive solutions [39,63] of,

f�(xn�) = π
(
n + 1

2 ± 1
4

)
for n = 0,1, . . . ; � = 0,1, . . . ,

(12)

where the (+) and (−) signs correspond to Dirichlet and
Neumann BCs, respectively, and

f�(x) =
√

x2 − �2 − � arccos (�/x). (13)
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This semiclassical (Debye) approximation generally gives the
zeros of Bessel functions of the first kind and their derivatives
to better than 1%. There is but one notable exception: The
zero of J ′

0(x) = J1(x) at x = 0 corresponds to a WKB value
of x00 = π/4. Note that f�(x = �) = 0, and all semiclassical
wave numbers satisfy xn� > �.

Using the approximation in Eqs. (12) and (13) for the
eigenvalues, the R-dependent contribution of interior modes
to the SCE of a conducting cylindrical shell is the finite
R-dependent part of

Ecyl
EM ∼ h̄cL

2π2R2

∞∑
n=−∞

[in + (−i)n]
∞∑

�=0

∫ ∞

0
dy

×
∫ ∞

�

dx
√

y2 + x2f ′
�(x) e2inf�(x)

∼ − h̄cL

2π2R2
Im

∞∑
�=0

∫ ∞

0
dy

∫ ∞

�

dx
√

y2 + x2

× ∂x ln {cos [2f�(x)]}. (14)

The summation over n has been performed in the last
expression. It shows the equivalence of the present ap-
proach with one based on the generalized argument prin-
ciple [64] with the function cos[2f�(x)] = 1

2 (e−if�(x) +
ieif�(x))(e−if�(x) − ieif�(x)), whose zeros are the WKB estimates
for the mode frequencies in each partial wave and a contour
that runs from x = ∞ to x = � just below the real axis and
returns to x = ∞ just above it. Although divergent because it
only includes the contribution from the interior, it is reassuring
that the expression in Eq. (14) is not logarithmically divergent.
The divergence can be subtracted unambiguously (it, in fact,
is canceled by exterior contributions we do not consider), and
a semiclassical evaluation becomes possible.

One arrives at Eq. (14) by applying the Poisson
resummation formula,

∞∑
n=−∞

δ(f − n) =
∞∑

n=−∞
e2πinf , (15)

to the dimensionless (and scaled) semiclassical spectral
densities,

ρD or N (x) =
∞∑

�=0

∞∑
n=0

δ(x − xn�) ∼
∞∑

�=0

θ (x − �)f ′
�(x)

×
∞∑

n=−∞
δ

(
f�(x) −

(
n + 1

2
± 1

4

)
π

)
. (16)

The Heaviside function θ (x − �) in Eq. (16) ensures that f�

is real. Employing the Poisson relation once more in the form

∞∑
�=0

g(�) = 1

2
g(0) +

∞∑
w=−∞

∫ ∞

0
d� e2πiw�g(�), (17)

the sum over partial waves is converted to one over the winding
number of classical paths. In terms of the dimensionless wave
number λ =

√
x2 + y2 = ER/(h̄c) and the longitudinal-

and angular-momentum fractions α = y/λ and z = �/x, one
obtains:

Ecyl
EM ∼ h̄cL

π2R2

∞∑
n=−∞

(−1)n
∞∑

w=−∞

∫ ∞

0
λ3 dλ

∫ 1

0
dα

×
∫ 1

0

√
1 − z2 e2iλ

√
1−α2[4n(

√
1−z2−z arccos z)+wπz] dz,

(18)

where we used that only even n contribute in Eq. (14). Only
the principal branch of the inverse cosine is to be considered
here, and the integrals are formal in the sense that they are to be
evaluated to leading (nonvanishing) order in stationary phase
approximation only. The integrals are finite in this restricted
sense, and their divergent part has been implicitly subtracted.
They otherwise diverge (in all sectors) due to the behavior of
the integrand at large λ near α ∼ 1 (that is for large longitudinal
momentum fractions). As explained in Sec. II, we are assured
that all surface divergences cancel for metallic BCs on a cylin-
der. We are interested only in the finite contributions that arise
from quadratic fluctuations about periodic classical trajectories
[stationary points of the integrand in the n 	= 0,w 	= 0 sectors].

The 1
2g(0) term in Eq. (17) gives a surface correction [39]

to Eq. (18). As mentioned in Sec. II, such surface contributions
cancel in the electromagnetic case. One may explicitly verify
this by subtracting the n = 0 sector and observing that

lim
ε→0+

Re
∞∑

n=1

(−1)n
∫ ∞

0
dλ λ2

∫ π/2−ε

0
dφ e4inλ cos φ

= 3ζ (3)

128
lim

ε→0+
Re

(
i

∫ π/2−ε

0

dφ

cos3 φ

)
= 0. (19)

To quadratic order, fluctuations about the stationary point
at α = 0 in Eq. (18) give rise to Fresnel-like integrals of the
type (for generic γ > 0):∫ 1

0
dα eiπγ 2

√
1−α2 ∼ eiπγ 2

∫ 1

0
dα e−iπγ 2α2/2

= eiπγ 2
[C(γ ) − iS(γ )]/γ. (20)

Extending the upper bound of the fluctuation integral in
Eq. (20) to ∞ and thereby replacing the cosine- and sine-
Fresnel integrals of Eq. (20) by their mean value of 1/2
gives a vanishing value for the SCE of a metallic cylindrical
shell [33,34]. The leading nonvanishing contribution to the
SCE arises from the finite upper bound of the fluctuation
integral in Eq. (20). The Casimir self-stress of a metallic
cylindrical shell in a semiclassical sense is almost entirely
due to Fresnel diffraction effects.

The semiclassical evaluation of the integrals in Eq. (18)
again is facilitated by noting that one can take (four times) the
real part of the (n > 0,w > 0)-sector contributions and that the
spectral density is analytic in the first quadrant. The λ = iξ

integral in Eq. (18) may thus be performed along the positive
imaginary axis and the contour is closed in the complex λ

plane by a large quarter circle on which the integrand, or better,
a regularized version of it, vanishes sufficiently rapidly. The
integrand is real on the imaginary energy axis. For 0 < w � n,
the stationary points of the integrand in Eq. (18) are at

022113-6



SEMICLASSICAL ESTIMATES OF ELECTROMAGNETIC . . . PHYSICAL REVIEW A 82, 022113 (2010)

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

x

f
x

FIG. 2. (Color online) Integration over the longitudinal momen-
tum fraction. The upper solid curve shows the exact integral in
Eq. (22) over the longitudinal momentum fraction α; the lower
solid line is its semiclassical approximation to quadratic order in
the fluctuations. The dashed curve gives the simple exponential
approximation e−πx/4.

z = cos πw
2n

and α = 0. They correspond to planar periodic
rays of a cylindrical cavity like those in Fig. 1(a) with winding
number w and 2n vertices. Expanding to quadratic order about
these stationary points, we first integrate out fluctuations in
z. By rescaling ξ → ξ/(1 − α2/2), the remaining ξ and α

integrations may then be carried out independently.3 Note that
the analytic continuation of the integrals is possible only if
we assume an upper bound at α = 1 − ε. By starting with
the expression of Eq. (18), this procedure gives the following
semiclassical estimate of Ecyl

EM [with cnw := cos (πw
2n

) and
snw := sin (πw

2n
)]:

Ecyl
EM ∼ 4h̄cL

π2R2

∞∑
n=1

(−1)n
n∑

w=1

∫ ∞

0
ξ 3 dξ

∫ 1

0
dα

×
∫ 1

0
dz snw exp

{
−4nξsnw

[
1 + (z − cnw)2

2s2
nw

− α2

2

]}

∼ h̄cL15
√

2

R2512π

∞∑
n=1

(−1)n

n4

(
−1

2
+

n∑
w=1

s−2
nw

)

×
∫ 1

0
dα

(
1 − α2

2

)−7/2

= 7π (7π2 − 240)

276 480

h̄cL

R2
= −0.013 594 · · · h̄cL

R2
. (21)

The SCE of a conducting cylindrical shell differs by
less than 0.25% from the field-theoretic value [16] of
−0.013 5613 · · · h̄cL/R2 once a certain kind of Fresnel
diffraction is included. It was necessary to go beyond the
formally leading semiclassical approximation because the
latter vanishes. Enforcing the bound on longitudinal momenta,
the semiclassical approximation also closely reproduces the
Casimir self-stress on a metallic cylindrical shell.

3Note that the powerlike decay arises from the integration region
α ∼ 1, where the longitudinal wave number is much larger than the
transverse one. It may be regularized by imposing α < 1 − ε with
finite ε > 0.

To better understand the approximation made, compare
the following estimates to the Fresnel-like α integral in
Eq. (18):

∫ 1

0
dα e−x

√
1−a2 = π

2
[H−1(ix) − I1(x)] ∼ e−πx/4

∼
∫ 1

0
dα e−x(1−a2/2) = −ie−x

√
π

2x
erf

(
i

√
x

2

)
. (22)

The first line expresses the α integral that occurs in Eq. (18) for
values of the energy on the positive imaginary axis in terms
of Struve and Bessel functions. The function e−πx/4 gives
the best exponential fit for small x ∼ 0. The second line of
Eq. (22) is the semiclassical approximation to second order
in the fluctuations. It also is a uniform approximation to the
integral that decays exponentially for x ∼ ∞ (but as e−x/2/x).
As shown in Fig. 2, both approximations reproduce the integral
well for small values of x—where the result is sizable—but
cut down its slow decay (∼1/x2) at large x ∼ ∞. As noted
before, the powerlike decay of the original integral gives rise
to divergent contributions to the Casimir energy in every
(n,w) sector. By assuming (and heat-kernel considerations
show this is possible for an ideal metallic shell [54,62,65]) all
divergences are subtracted unambiguously, the leading non-
vanishing semiclassical approximation apparently is quite a
reasonable estimate of the finite remainder. One could improve
on the representation of the integral by including higher orders
in the expansion of

√
1 − α2 about α = 0, but this would

be inconsistent with retaining only the leading order WKB
approximation to the eigenvalues. We can assess the sensitivity
of the SCE to the precise manner in which the powerlike tail
is cut off by comparing with the exponential fit e−πx/4 for
the α integral: In this approximation, the Casimir energy for a
metallic cylinder becomes (7π2 − 240)h̄cL/(288π3

√
2R2) =

−0.013 533 · · · h̄cL/R2, which is well within the error of the
semiclassical estimate.

V. DISCUSSION AND CONCLUSIONS

We obtained the electromagnetic Casimir self-stress of
perfectly conducting spherical and cylindrical shells in semi-
classical approximation. This approach reproduces the field-
theoretic values [3,6] to better than 1%. The semiclassical
description by two massless scalars, in general, gives the
electromagnetic Casimir stress of a metallic spherical shell
rather than the sum of the Casimir stresses due to scalar
fields that satisfy Neumann and Dirichlet BCs. For a spherical
shell, the latter has the opposite sign and is an order of
magnitude larger [7,17,51]. The semiclassical description
is inherently conformal and best suited to describe scalar
fields that satisfy conformally covariant BCs [58]. It was
previously observed [27] that the dispersion for massless scalar
particles leads to a semiclassical description of conformally
coupled scalar fields on curved spaces such as S3. They
also appear to couple conformally to curved boundaries.
Neumann BCs are semiclassically imposed by requiring no
phase change and specular reflection. They do not change
under conformal rescaling of the boundary and, in this
sense, are conformally covariant. For spherical boundaries,
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they describe (massless) scalar fields that satisfy conformally
covariant [58] Robin conditions. This conjecture is supported
by the fact that the low-lying semiclassical eigenfrequencies
implied4 by Eq. (10) are closer to those of two scalar fields
that satisfy Dirichlet and Robin rather than Dirichlet and
Neumann conditions. Robin BCs approach Neumann BCs
at high frequencies, and both are similarly implemented in
geometrical optics (i.e., with specular reflection and no phase
loss).

On a cylindrical surface in flat space, ordinary Neumann
and Dirichlet conditions already are conformally covariant. We
estimated the electromagnetic Casimir self-stress of a metallic
cylindrical shell by explicitly summing WKB approximations
to the eigenfrequencies of the two scalars in the dual picture
using the Poisson resummation formulas. The dual of the
principal quantum number is the number of interactions with
the shell. Summing over these, one arrives at the general
argument principle [see Eq. (14)] often used [64] to evaluate
Casimir energies when the spectrum is only implicitly known.
The difference is that in semiclassical approximation the
roots of the characteristic function are WKB estimates of the
eigenfrequencies. The dual to the sum over partial waves is
the sum over windings about the origin. The stationary
points of minimal action in each sector are classical periodic
trajectories. We evaluate the integrals in each nontrivial
sector to quadratic order in the fluctuations [38,39]. For a
cylindrical shell, it is essential to enforce the upper bound on
the longitudinal momentum fraction 0 � α < 1. Ignoring it
and integrating without restriction over quadratic fluctuations
about the stationary point at α = 0, the SCE of a cylin-
drical shell would vanish [33,34]. Restricting the quadratic
fluctuations in the longitudinal momentum fraction to α < 1
essentially reproduces the field-theoretic value for the Casimir
energy of a metallic cylinder. This restriction is required by
causality: The spectral density otherwise is not analytic in
the first quadrant. This violation of causality does not occur
for any other fluctuation integral, which, to leading order, are
evaluated without restriction.

The Casimir energy of a cylindrical metallic shell in a semi-
classical sense is almost entirely due to Fresnel diffraction.

4 One can extract the semiclassical estimate of the eigenfrequen-
cies from the spectral density of Eq. (10) by reversing the procedure
used to obtain the semiclassical spectral density in Eq. (14) from the
WKB estimate of the eigenfrequencies in the case of a cylindrical
shell.

From a semiclassical point of view, the metallic cylindrical
shell therefore is a rather interesting geometry and con-
ceptually more rewarding than the spherical one. Because
a straightforward semiclassical evaluation to leading order
resulted in a vanishing Casimir stress, it was previously
believed [34] that this might explain the exact vanishing
of the Casimir stress on a dielectric-diamagnetic cylindrical
shell (with equal speed of light on either side) to first order
in the reflection coefficients [5,18,66]. The nonvanishing
Casimir energy of a metallic cylindrical shell was attributed to
subleading diffraction effects. The latter conjecture has been
verified in this investigation, but the diffractive contribution
due to classical orbits with just two reflections, the n = 1 con-
tribution5 to Eq. (21), is −0.017 4076 · · · h̄cL/R2. It does not
vanish and is the largest contribution in magnitude, larger than
the total self-stress of the metallic cylinder. We thus still lack a
semiclassical understanding of a weakly reflecting dielectric-
diamagnetic cylindrical shell, and it should be pointed out that
the self-stress of a dielectric-diamagnetic spherical shell [61]
also is underestimated by a factor of 2.5 in this approximation.

In the limit of very small reflection coefficients, it probably
is impossible to ignore contributions from the exterior. It may
be necessary to include diffractive effects from paths that creep
about the cylinder to describe weakly reflective interfaces
semiclassically. Mathematically, the exact cancellation in the
cylindrical case is an addition theorem for Bessel functions
that explicitly requires contributions from the exterior [57].
That perturbation in the reflection coefficients is quite delicate
becomes evident for dielectric cylinders [67] and spheres [68]:
To second order in the reflection coefficients, the Casimir
stress, in the dielectric case, is finite and comparable to the
situation where the speed of light is continuous across the
boundary; the total Casimir self-stress, however, diverges
logarithmically [54,65] once the speed of light in the interior
and the exterior do not match exactly.
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5 The factor (− 1
2 + ∑n
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nw ) = (4n2 − 1)/6 in Eq. (21) vanishes

for n = 1/2, but not for n = 1!
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