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Constrained quantum systems as an adiabatic problem
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We derive the effective Hamiltonian for a quantum system constrained to a submanifold (the constraint
manifold) of configuration space (the ambient space) in the asymptotic limit, where the restoring forces tend to
infinity. In contrast to earlier works, we consider, at the same time, the effects of variations in the constraining
potential and the effects of interior and exterior geometry, which appear at different energy scales and, thus,
provide a complete picture, which ranges over all interesting energy scales. We show that the leading order
contribution to the effective Hamiltonian is the adiabatic potential given by an eigenvalue of the confining
potential well known in the context of adiabatic quantum waveguides. At next to leading order, we see effects
from the variation of the normal eigenfunctions in the form of a Berry connection. We apply our results to
quantum waveguides and provide an example for the occurrence of a topological phase due to the geometry of a
quantum wave circuit (i.e., a closed quantum waveguide).
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I. INTRODUCTION

The derivation of effective Hamiltonians for constrained
quantum systems has been considered many times in the
literature with different motivations and applications in mind
[1–8]. Roughly speaking, the available results split into two
different categories, which are related to two different energy
scales. In the context of adiabatic quantum waveguides, one
considers the situation, where the strong forces that restrict the
particle to the waveguide change their form along the direction
of propagation [1–4]. The eigenvalues of the transverse
Hamiltonian, thus, also vary along this direction and produce
an effective adiabatic potential for the tangential dynamics
(i.e., for the propagation). In this case, the tangential kinetic
energy is of the same order of magnitude as the energy in
the transversal modes. The geometry of the waveguide plays
no role at this level. On the other hand, in the literature
concerned primarily with the effects of the geometry of
constraint manifolds on the effective Hamiltonian [5–8], it
is assumed that the constraining forces are constant along
the constraint manifold. This is because the geometric effects
are much smaller and would be dominated by the adiabatic
potential otherwise. It is, thus, assumed that the tangential
kinetic energy is of the same small magnitude as the geometric
effects and, thus, much smaller than the transversal energies.

In this paper, we show how these two regimes are related
and derive an effective Hamiltonian valid on all interesting
energy scales. It contains contributions from the adiabatic
potential, from a generalized Berry connection, and from the
intrinsic and extrinsic geometry of the constraint manifold. The
derivation is based on superadiabatic perturbation theory, and
a mathematically rigorous treatment of the problem is given in
Ref. [9]. We present our results first on a general and abstract
level. However, there are several concrete applications, which
have motivated us and the many preceding works, most notably
molecular dynamics (see Ref. [10]) and adiabatic quantum
waveguides (see Ref. [11]). In Sec. IV, we apply our results
to adiabatic quantum waveguides and, in particular, obtain

*jakob@ipke.de
†stefan.teufel@uni-tuebingen.de.

interesting results about global geometric effects in quantum
wave circuits (i.e., closed waveguides).

A. Qualitative discussion of the results

Although the mathematical structure of the linear
Schrödinger equation,

i∂t� = −�� + V � =: Hψ, �|t=0 ∈ L2(A,dτ ), (1)

is quite simple, in many cases, the high dimension of the
underlying configuration space A makes even a numerical
solution impossible. Therefore, it is important to identify
situations, where the dimension can be reduced by approx-
imating the solutions of the original equation Eq. (1) on the
high-dimensional configuration space A by solutions of an
effective equation,

i∂tψ = Heffψ, ψ |t=0 ∈ L2(C,dµ) ⊗ CM, (2)

on a lower-dimensional configuration space C. The factor CM

allows for the possibility of additional internal degrees of
freedom in the effective description.

A famous example for such a reduction is the time-
dependent Born-Oppenheimer approximation: Due to the
small ratio mel

mnu
of the mass mel of an electron and the mass

mnu of a typical nucleus, the molecular Schrödinger equation,

i∂tψ = − 1

mnu
�x� − 1

mel
�y� + V �,

(3)
�|t=0 ∈ L2(R3(n+m),dx dy),

on the full configuration space R3(n+m) =̂ A of electrons and
nuclei, may be approximated by an equation,

i∂tψ = − 1

mnu
�xψ + Eelψ, ψ |t=0 ∈ L2(R3n,dx),

on the lower-dimensional configuration space R3n =̂ C of the
nuclei only. In this case, the interaction V (x,y) of all particles
is replaced by an electronic energy surface Eel(x), which serves
as an effective potential for the dynamics of the nuclei. The
assumption here is that the electrons remain in an eigenstate of
the electronic Hamiltonian He(x) = − 1

mel
�y + V (x,y), which

corresponds to the eigenvalue Eel(x). This assumption is
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typically satisfied, since the light electrons move fast compared
to the heavy nuclei; and, thus, the electronic state adjusts
adiabatically to the slow motion of the nuclei. This is an
example of adiabatic decoupling, where the reduction in the
size of the effective configuration space stems from different
masses in the system.

A physically different but mathematically similar situation,
where such a dimensional reduction is possible is constrained
mechanical systems. In these systems, strong forces effectively
constrain the system to remain in the vicinity of a submanifold
C of the configuration space A.

For classical Hamiltonian systems on a Riemannian mani-
fold (A,G), there is a straightforward mathematical reduction
procedure. One just restricts the Hamilton function to C’s
cotangent bundle T ∗C by embedding T ∗C into T ∗A via the
metric G and then studies the induced dynamics on T ∗C.
For quantum systems, Dirac [12] proposed to quantize the
restricted classical Hamiltonian system on the submanifold by
following an intrinsic quantization procedure. However, for
curved submanifolds C, there is no unique quantization pro-
cedure. One natural guess would be an effective Hamiltonian
Heff in Eq. (2) of the form

Heff = −�C + V |C, (4)

where �C is the Laplace-Beltrami operator on C with respect
to the induced metric and V |C is the restriction of the potential
V : A → R to C.

To justify or to invalidate the earlier procedures from first
principles, one needs to model the constraining forces within
the dynamics Eq. (1) on the full space A. This is done by
adding a localizing part to the potential V . Then one analyzes
the behavior of solutions of Eq. (1) in the asymptotic limit,
where the constraining forces become very strong and try to
extract a limiting equation on C. This limit of strong confining
forces has been studied in classical mechanics and in quantum
mechanics many times in the literature.

The classical case was first investigated by Rubin and Ungar
[13], who found that the effective Hamiltonian for the motion
on the constrained manifold contains an extra potential that
accounts for the energy contained in the normal oscillations.
The quantum mechanical analog of this extra potential is the
adiabatic potential. The intrinsic geometry of the submanifold
only appears in the definition of the kinetic energy 1

2g(p,p);
its embedding into the ambient space A plays no role.

On the other hand, for the quantum mechanical case,
Marcus [14] and, later on, Jensen and Koppe [15] and Da
Costa [16] pointed out that the limiting quantum Hamiltonian
contains a potential term, the geometric potential, which
depends on the embedding of the submanifold C into the
ambient space A. However, these statements (such as the
more refined results by Froese-Herbst [6], Maraner [7], and
Mitchell [8]) require that the constraining potential is the same
at each point on the constraint manifold. The reason behind
this assumption is that, in the limit of strong confinement, the
adiabatic potential is much larger (by 2 orders in the adiabatic
parameter) than the geometric potential. For the geometric
potential to be of leading order, one must, thus, assume that
the tangential kinetic energy is of the same small order. Then,
one ends up in the situation, where the energy in the transversal

modes is much larger than the typical tangential energies
and where, by assumption, any transfer of energy between
transversal and tangential modes is suppressed. In conclusion,
the effective Hamiltonian obtained in this way describes the
constrained system only for very small energies and under
very restrictive assumptions on the confining potential. Note
that, in many important applications, the assumption of a
constant confining potential is violated. For example, for the
reaction paths of molecular reactions, the valleys vary in shape
depending on the configuration of the nuclei.

In this paper, we present a general result that concerns the
precise form of the limiting dynamics Eq. (2) on an arbitrary
constraint manifold C starting from Eq. (1) on the ambient
space A with a strongly confining potential V . The most
important new aspect of our result is that we allow for confining
potentials that vary in shape and for solutions with normal and
tangential energies of the same order and, at the same time, cap-
ture the effects of geometry. As a consequence, our effective
Hamiltonian on the constraint manifold has a richer structure
than earlier results and resembles, at leading order, the results
from classical mechanics. However, similar to the hierarchic
structure of the spectrum of molecules, with electronic, vibra-
tional, and rotational levels, now, different geometric effects
appear in the higher-order corrections to the effective Hamil-
tonian. We note that, in the limit of small tangential energies
and under the same restrictive assumptions on the confining
potential, we recover the limiting dynamics by Mitchell [8].

The key observation for our analysis is that the problem
is an adiabatic limit and has, at least locally, a structure
similar to the Born-Oppenheimer approximation in molecular
dynamics. In particular, we transfer ideas from adiabatic
perturbation theory, which were developed on a rigorous
level by Martinez-Sordoni-Nenciu [17–19] and Panati-Spohn-
Teufel in [20–22] and independently on a theoretical physics
level by Belov et al. in Ref. [23], to a nonflat geometry. We note
that the adiabatic nature of the problem was observed many
times before in the physics literature (e.g., in the context of
adiabatic quantum waveguides and thin films [1,2]). However,
the only work considering constraint manifolds with general
geometries in quantum mechanics from this point of view so far
is Ref. [3], where only the leading order dynamics of localized
semiclassical wave packets is analyzed and effects of geometry
or geometric phases play no role. We, thus, believe that our
effective equations have not been derived before, neither on a
mathematical nor on a theoretical physics level.

B. The scaling explained in a simple example

Before we describe the general setup, it is instructive
to first explain the scaling and the different energy scales
within the simple example of a straight quantum waveguide
in two dimensions. Let x be the coordinate in the direction
of propagation, and let y be the transversal direction. By
saying that the potential V (x,y) is (at least partially) confining
in the y direction just means, that the normal or transverse
Hamiltonian Hn(x) := −�y + V (x,y) has some eigenvalues
Ej (x) with localized eigenfunctions ϕj (x,y), the constrained
normal modes. For a sketch of such a potential, see Fig. 1(a).
Now, we would like to implement the asymptotic limit of
strong confinement in such a way, that the eigenfunctions of
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FIG. 1. (Color online) In (a), we plotted a potential for a
waveguide, which widens near x = 0. The widening lowers the
energy of normal modes and, thus, produces an attractive effective
potential for the motion in the x direction. In (b), the modulus of the
ground state wave function is sketched. Its variation in the x direction
is slower than in the y direction, but its tangential derivatives already
grow in ε. In (c), the modulus of an excited state with energy of order 1
above the ground state is sketched. Its variation in the x direction is on
the same scale as the confinement (i.e., it oscillates on a scale of order
ε). Thus, any analysis that assumes bounded tangential derivatives of
the solutions will be restricted to confining potentials with a constant
profile.

the scaled Hamiltonian Hε
n (x) become localized on a length

scale of order ε � 1. This is done by scaling the potential
V ε(x,y) := V (x,y/ε), which yields restoring forces of order
ε−1. However, localization on a scale of order ε leads to kinetic
energies of order ε−2. So, in order to see localization, one has
to increase not only the forces, but also the potential energies
to the same level by putting

Hε
n (x) := −�y + ε−2V (x,y/ε).

Then, the normal energies and eigenfunctions are just Eε
j (x) =

ε−2Ej (x), and ϕε
j (x,y) = ε−1/2ϕj (x,y/ε). The full Hamilto-

nian becomes

H̃ ε = −�x − �y + ε−2V (x,y/ε).

In order to understand the asymptotic limit ε → 0, it is more
convenient to rescale units of energy in such a way that the
transverse energies are of order 1 again, that is, to look at

Hε := ε2H̃ ε = −ε2�x − ε2�y + V (x,y/ε). (5)

A change in units of length in the transverse direction to ỹ =
y/ε finally leads to the form of the Hamiltonian,

Hε := ε2H̃ ε = −ε2�x − �ỹ + V (x,ỹ), (6)

for which the normal eigenfunctions ϕj are independent of ε

and the physical meaning of the asymptotic ε → 0 is most
apparent. The limit of strong confinement really corresponds
to the situation where the transversal modes are quantized with
gaps of order 1, while in the tangential direction, the behavior is
semiclassical and, in particular, the level spacing is of order ε.
Here, it is easy to guess the leading order effective Hamiltonian
for the constrained system: On the subspace of wave functions
of the form �ε(x,ỹ) = ϕj (x,ỹ)ψε(x), the Hamiltonian acts as

Hε�
ε(x,ỹ) = [−ε2�x − �ỹ + V (x,ỹ)]ϕj (x,ỹ)ψε(x)

= ϕj (x,ỹ){[−ε2�x + Ej (x)]ψε(x)}
− 2[ε∇xϕj (x,ỹ)][ε∇xψ

ε(x)]

− ε2�xϕj (x,ỹ)ψε(x). (7)

O

O

O

FIG. 2. The curves E0(x) and E1(x) are sketches of the lowest
normal eigenvalues for a waveguide potential as depicted in Fig. 1(a).
On the vertical axis, the spectrum of Hε is drawn: One expects spectral
bands, which start at the minima e0 and e1 of the effective potentials
with level spacing of order ε2. The continuum edge � is determined
by the threshold of E0. Eigenstates in the lower shaded region vary
on a

√
ε scale in the x direction as indicated in Fig. 1(b). Eigenstates

in the upper shaded region with energies of order 1 above e0 have ε

oscillations in the x direction as indicated in Fig. 1(c).

By defining the effective Hamiltonian by projecting back
onto this subspace via (Pψ)(x,ỹ) := ϕj (x,ỹ)〈ϕj |ψ〉(x) and
by integrating out ỹ, one finds

Hε
eff = [−iε∇x − iε〈ϕj (x)|∇xϕj (x)〉]2 + Ej (x)

+ ε2[〈∇xϕj (x)|∇xϕj (x)〉 − |〈ϕj (x)|∇xϕj (x)〉|2]. (8)

Here, we see how the transversal eigenvalue Ej (x) enters as
an effective potential, the adiabatic potential, at leading order.
For example, the constraining potential sketched in Fig. 1(a)
leads to an attractive effective potential sketched in Fig. 2.
The two energy scales referred to in Sec. I A now correspond
to the following situations: If one assumes small tangential
energies [i.e., 〈ψε| − ε2�xψ

ε〉 = O(ε2)], then all terms in
Eq. (8) except the term that involves the adiabatic potential
Ej (x) are of order ε2. Thus, the latter must either be constant,
or the kinetic energies will also become O(1) under the time
evolution. Since it turns out that the geometric potential in
the case of nonstraight waveguides is also of order ε2, this
explains why all authors interested in geometric effects up to
now assumed Ej (x) ≡ const.

However, the natural scaling is to allow for tangential states
ψε with kinetic energies of order 1 [i.e., 〈ψε| − ε2�xψ

ε〉 =
O(1)]. Then, all energies in the system are of the same order,
and exchange of normal and tangential energies may occur.
In particular, the tangential momentum operator −iε∇x must
be treated as being of order 1 despite the factor ε. This is the
situation we will consider in the following.

In Figs. 1 and 2, we sketch the situation for a simple
waveguide in a region, where it widens slightly. Wave functions
with tangential energies of order ε such as in Fig. 1(b)
yield the low-lying part of the spectrum. General states with
finite energy above the ground state, which include all states
propagating through the waveguide, have tangential energies
of order 1 and, thus, ε oscillations in the x direction, as
indicated in Fig. 1(c). When the confining potential depends
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on x, there are, in general, no solutions with tangential kinetic
energies of order ε2. We also mention an extensive discussion
of energy scales from a slightly different point of view in
Ref. [1].

Before we explain the general model, it is instructive to
mention two important points on the level of this simple model.
First of all, one might want to add an external potential W (x,y),
which does not contribute to the confinement and, thus, is
not scaled. We will allow for such an external potential with
W (x,y) = O(1). Note that, in the previous works that focus
on geometry [6,8], it was added on the small energy scale [i.e.,
W (x,y) = O(ε2)]. The second remark is that the different
energy scales correspond also to different time scales. The
time scale on which solutions with 〈ψε| − ε2�xψ

ε〉 = O(1)
propagate distances of order 1 are times of order ε−1. This is
because kinetic energies of order 1 for particles with mass of
order ε−2 yield velocities of order ε. The small energy solutions
with 〈ψε| − ε2�xψ

ε〉 = O(ε2) propagate even slower, so,
here, the natural time scales are times of order ε−2. The
best results we can prove hold for even longer times, namely,
for times almost up to order ε−3. To control the adiabatic
decoupling for such long times, makes the problem highly
nontrivial. Roughly speaking, for times of order 1, the problem
is just standard time-dependent perturbation theory. For times
of order ε−1, one can use the ideas that underlie the standard
proof of the adiabatic theorem of quantum mechanics, see
Sec. III A. For longer times, however, one has to use supera-
diabatic (i.e., higher-order adiabatic perturbation theory) see
Sec. III C.

II. THE ADIABATIC STRUCTURE

Here, we first discuss, in detail, the model we consider
and the assumptions involved. In Sec. II B, we introduce a
horizontal momentum operator, the geometric generalization
of −iε∇x in Sec. I, which will play a crucial role in our
results. Then, we reveal the formal similarity with the Born-
Oppenheimer approximation, before we explain the resulting
adiabatic structure of the problem in Sec. II D.

The reader interested primarily in quantum waveguides
may skip the following abstract discussion of the problem
and immediately jump to Sec. IV.

A. Description of the model

Let (A,G) be a Riemannian manifold of dimension d +
k, and let C ⊂ A be a smooth submanifold of dimension d

without boundary and equipped with the induced metric g =
G|C . We will call A the ambient manifold, and we will call C
the constraint manifold. We consider the Schrödinger equation
onAwith a potential V ε

c : A → R that localizes all states from
a certain subspace of L2(A) close to C for small ε, which will
be made precise as follows. By having in mind, for example,
a quantum waveguide C embedded into A = R3, we want to
start with fixed manifolds A and C and to assume that the
constraining potential V ε

c grows fast in the directions normal
to C (strong restoring forces), while the variation along C is of
order 1 (bounded tangential forces). This means we want to
assume that

(1) normal derivatives of V ε
c are of order ε−1,

(2) tangential derivatives of V ε
c are of order 1,

(3) all derivatives of the metric G are of order 1.
As explained in Sec. I B, localization in the normal direction
on a scale of order ε produces oscillations of order ε−1 in the
tangential directions, too.

When we introduce local coordinates x = (xi)i=1,...,d in
a neighborhood of q ∈ C and coordinates N = (Nα)α=1,...,k

for the normal directions, the assumptions made previously
correspond, by the same reasoning that leads to Eq. (5) in
Sec. I B, to the Schrödinger equation,

i∂t�
ε = −ε2�G�ε + Vc(x,N/ε)�ε + W (y,N )�ε, (9)

where �G is the Laplace-Beltrami operator associated with
(A,G) and the nonconstraining potential W may describe
external forces. Here, the upper index ε at � means that we
look at solutions with oscillations of order ε−1, and the ε2 in
front of the kinetic energy ensures that these solutions have
kinetic energies of order 1. For small ε, at least some solutions
of this equation concentrate close to the submanifold C.
Therefore, one expects that an effective Schrödinger equation
on C may be derived such that solutions ψε(t) of the effective
equation approximate the solutions �ε(t) of the full equation
in a suitable way.

The scaling of the potential described in Eq. (9) depends on
the choice of coordinates and cannot be implemented globally
so naively. It just serves as a motivation for the following. In
order to be able to implement a similar scaling globally, we
assume that the submanifold C has a tubular neighborhood B
of fixed diameter δ > 0. Within B, it makes sense to speak
of large derivatives of V ε with respect to the distance to C.
More precisely, B can now be mapped to the δ neighborhood
Bδ of the zero section in the normal bundle NC. On NC, the
scaling of the potential as in Eq. (9) can be realized due to
its linear structure. Moreover, for ε much smaller than δ, all
solutions below an arbitrary finite energy lie in Bδ/2 up to
errors bounded by any power of ε. Therefore, it is possible
to work completely on the normal bundle by constructing a
diffeomorphism � : NC → B and by choosing a metric g on
NC such that � is an isometry on Bδ/2.

To avoid all regularity problems, we make the following
assumption.

Assumption 1. The injectivity radii of A and C are strictly
positive, and all curvatures as well as their derivatives of
arbitrary order are globally bounded. Furthermore, V : NC →
R is smooth and bounded, and arbitrary derivatives of V are
also globally bounded.

In particular, this implies that C and NC may be covered
by coordinate neighborhoods such that, for some K ∈ N, not
more than K of them overlap at each point. This allows us to
perform all estimates in local coordinates.

Now, our goal is to find approximate solutions of the
Schrödinger equation,

i∂t�
ε = −ε2�g�

ε + Vc(q,N/ε)�ε + W (y,N )�ε,

on H = L2(NC,dµ), where g is the pullback of G via the
diffeomorphism � on Bδ/2, suitably extended outside, and dµ
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denotes the measure associated with g. As explained in Sec. I,
it is helpful to rescale the normal coordinates to n = N/ε.
Then, the equation reads

i∂t�
ε = −ε2(�g)ε�ε + Vc(q,n)�ε + W (y,εn)�ε =: Hε�

ε,

where (�g)ε is the accordingly rescaled Laplacian, whose
expansion in ε is calculated in Appendix Secs. 2–4.

B. The horizontal connection and the corresponding Laplacian

The basic idea for deriving an effective equation on the
submanifold C is to split the Laplace-Beltrami operator on NC
at leading order into a horizontal and a normal part relative to
C, similar to the splitting −�x − �y in the simple example of
Sec. I B. To make this precise, first, note that, by construction
at any point on the zero section of NC (which we identify
with C in the following), the tangent space splits into two
orthogonal subspaces, one tangent to C and one tangent to the
fiber. Hence, the metric tensor g and with it also the Laplace-
Beltrami operator on (NC,g) splits into a sum,

�g = �g + �N,

where �g is the Laplace-Beltrami operator on C and �N is
the Euclidean Laplacian in the fibers NqC ∼= Rk of the normal
bundle. We would also like to have a similar splitting away
from C. To obtain this, we need a suitable horizontal derivative
operator, which we now construct.

Like in the Born-Oppenheimer setting, where one thinks of
the wave functions on R3n+3m as elements of the electronic
Hilbert space L2(R3m), which depend on the nucleonic
coordinates from R3n, we will think of the functions on NC
as mappings from C to the functions on the fibers. Consider
the bundle Ef := {(q,ϕ)|q ∈ C,ϕ ∈ L2(NqC)} over C, which is
obtained when the fibers NqC of the normal bundle are replaced
with L2(NqC) and the bundle structure of NC is lifted by lifting
the action of SO(k) on the fibers to rotation of functions. We
denote the set of all smooth sections of a Hermitian bundle E
by �(E).

For ϕ ∈ �(Ef), the horizontal connection ∇h is defined by

(∇h
τ ϕ

)
(q,n) := d

ds

∣∣∣
s=0

ϕ(w(s),v(s)), (10)

where τ ∈ TqC and (w,v) ∈ C1((−1,1),NC) with

w(0) = q, ẇ(0) = τ, and v(0) = n, ∇⊥
ẇ v = 0. (11)

Furthermore, �h is the bundle Laplacian associated with ∇h,
that is, defined by∫

C

∫
NqC

ψ∗�hψdn dµ = −
∫
C

∫
NqC

gij∇h
i ψ∇h

j ψdn dµ,

where gij is the inverse of the metric tensor gij . Here, and in the
following, we use the abstract index formalism, which includes
the convention that one sums over repeated indices. Moreover,
we will consistently use latin indices i,j, . . . , which run from
1 to d for coordinates on C, greek indices α,β, . . . , which
run from d + 1 to d + k for the normal coordinates, and latin
indices a,b, . . . , which run from 1 to d + k for coordinates on
the full normal bundle.

To obtain local expressions for these objects, we fix q ∈ C
and choose geodesic coordinate fields {∂xi

}i=1,...,d on an open

neighborhood � of q and an orthonormal trivializing frame
{να}α=1,...,k of N�. We define the connection coefficients
ω

γ

iα of the normal connection by ∇⊥
i να = ω

γ

iανγ . Then, the
horizontal connection is given by

∇h
i ϕ(q,n) = ∂iϕ(q,n) − ω

γ

iαnα∂γ ϕ(q,n), (12)

as was already shown by Mitchell [8], and it holds

�hϕ = µ−1
(
∂i − ωδ

iβnβ∂δ

)
µgij

(
∂j − ω

γ

jαnα∂γ

)
ϕ, (13)

with µ := det gij . The latter directly follows from the former
and the definition of �h. We note that �h = �g on functions
that are constant on the fibers by Eq. (13). To obtain the former
equation, we note that for a normal vector field v = nανα over
C, it holds

(∇⊥
i v)γ = ∂in

γ + ω
γ

iαnα. (14)

Now, let (w,v) ∈ C1((−1,1),NC) be as in Eq. (11). Then, by
definition of ∇h, we have

∇h
i ϕ(q,n) = d

ds

∣∣∣∣
s=0

ϕ(w(s),v(s))

= d

ds

∣∣∣∣
s=0

ϕ(w(s),n) + d

ds

∣∣∣∣
s=0

ϕ(q,v(s))

= ∂iϕ(q,n) + (∂in
γ )∂γ ϕ(q,n)

= ∂iϕ(q,n) − ω
γ

iαnα∂γ ϕ(q,n),

where we used Eq. (14) and the choice of the curve v in the
last step.

C. The splitting of the Laplace-Beltrami operator

We recall from Sec. II B that we wanted to generalize the
splitting of the Laplace-Beltrami operator on (NC,g), �g =
�g + �N , on C to NC. Indeed, we will see that also away from
C (i.e., globally on NC), we can approximately split �g into
a horizontal part, given by �h, and the Laplacian in the fiber
�N . The error grows linear with the distance |N | to C. Then,
the rescaling of the normal coordinates to n = N/ε yields

Hε = −ε2�h − �n + Vc(q,n) + W (q,εn) + O(ε|n|). (15)

So, the error is small for states that are constrained to an
ε neighborhood of C (i.e., localized on a length scale of
order ε). The leading order of Eq. (15) has the same form
as the Hamiltonian Eq. (3), which is the starting point for
the time-dependent Born-Oppenheimer approximation, or the
operator Eq. (6) of our simple waveguide example. This
suggests that, also in the general situation considered here,
adiabatic decoupling is the mechanism that yields effective
Hamiltonians on C.

We now explain, in more detail, how to achieve the previous
splitting of the Laplacian. An important step is to turn the
measure on NC into product form. To do so, we define

Mρ : L2(NC,dµ) → L2(NC,dNdµ),

� �→ Mρ� := ρ−1/2�,

where dN denotes the Lebesgue measure on the fibers NqC ∼=
Rk and ρ = dµ

dµdN
is the density of the original measure with

respect to the product measure on NC. It is well known that
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the unitary transformation of our Hamiltonian with Mρ leads
to the occurrence of a purely geometric extra potential:

Vρ = − 1
4gab(∂a ln ρ)∂b ln ρ + 1

2�g ln ρ.

More precisely, it holds that

M∗
ρ (−�g)Mρ = −�h − �N + Vρ(q,N ) + O(|N |), (16)

which is shown in Appendix Secs. 2–4. Therefore, after
application of the unitary transformation Mρ and a Taylor
expansion of W , the rescaled Hamiltonian Hε is of the
following form close to C:

Hε = −ε2�h − �n + Vc(q,n) + W (q,0)

+ ε2Vρ(q,εn) + O(ε|n|).
We note that −ε2�h is of order 1 on functions with oscillations
of order ε−1. So, the extra potential does not play a role for the
leading order of the horizontal dynamics, unless the tangential
kinetic energies are assumed to be small. Finally, it should be
kept in mind that the remaining error term is small only when it
is applied to functions that decay fast in the normal directions.

D. Adiabatic decoupling

Next, we explain the principle of adiabatic decoupling in
detail. Analogously with the electronic Hamiltonian He in the
Born-Oppenheimer setting, we define, for any q ∈ C, the fiber
Hamiltonian,

Hf(q) = −�n + Vc(q,n) + W (q,0),

on the Sobolev space W 2,2(NqC,dn) ⊂ L2(NqC,dn). We con-
sider a q-dependent family of eigenvalues Ef(q) of multiplicity
M , called an energy band in the following, and an associated
family of normalized eigenfunctions (ϕJ

f (q))J=1,...,M :

Hf(q)ϕJ
f (q,·) = Ef(q)ϕJ

f (q,·). (17)

Since the variation of the potential along the constraint
manifold C is small compared to the normal variation,
the normal profile of a wave function will adiabatically
adjust to the nonconstraint degrees of freedom. Therefore,
the transitions between different energy bands should be
small, at least for times of order 1. This means that the
subspace,

P0 := {
ϕJ

f (q,n)ψJ (q)|ψJ ∈ L2(C,g)
} ⊂ L2(NC)

is approximately invariant under the dynamics e−itHε for times
of order 1. This is due to the fact that the associated projector
P0 defined by P0(q) := (|ϕJ

f 〉〈ϕJ
f |)(q) is a spectral projection

of Hf , and so we know that [Hf,P0] = 0, [Ef,P0] = 0, and
HfP0 = EfP0. Hence,

[Hε,P0] = [−ε2�h,P0] + O(ε) = O(ε), (18)

because, by definition of Hf , it holds that Hε = Hf − ε2�h +
O(ε) on states that decay fast enough. More precisely, the
solution of the full Schrödinger equation with initial value
�ε|t=0 = ψε

J ϕJ
f satisfies

�ε(t,q) = ϕJ
f (q,n)ψε

J (t,q) + O(ε|t |),

where ψε
J (t,q) solves the following effective Schrödinger

equation on C:

i∂tψ
ε
J (t,q) = −ε2�gψ

ε
J (t,q) + Ef(q)ψε

J (t,q). (19)

It is well known that an equation of the form of Eq. (19)
does show interesting behavior only on the semiclassical time
scale s = t/ε. The adiabatic principle, however, suggests that
P0 may be expected to be invariant for such and even much
longer times, if the energy band (Ef)q is separated by a gap
from the rest of the spectrum. Therefore, we also assume the
following.

Assumption 2. For all q ∈ C, the fiber Hamiltonian Hf(q)
has an eigenvalue Ef(q) of multiplicity M such that

inf
q∈C

dist{Ef(q),spec[Hf(q) \ Ef(q)]} � cgap > 0.

In addition, there is a family of normalized eigenfunctions
(ϕJ

f (q))J=1,...,M , which is globally smooth in q (in particular,
the corresponding eigenspace bundle is trivializable) and
satisfies

supq∈C
∥∥e�0〈n〉ϕJ

f

∥∥ < ∞
for 〈n〉 :=

√
1 + |n|2, some �0 > 0, and all J.

An assumption about the decay is necessary because the
error in the splitting −�g = −ε2�h − �n + O(ε) is only
small when applied to functions that decay fast enough, as was
explained earlier. However, in many cases, the decay is implied
by the gap condition, in particular, for Ef below the continuous
spectrum of Hf . The assumption about triviality is necessary
to get an effective equation on L2(C,dµ) ⊗ CM . If we dropped
it, we would end up with an equation on a nontrivial rank-M
bundle over L2(C,dµ), which would complicate things quite
a bit.

III. MAIN RESULTS

By having revealed the adiabatic structure of the constrain-
ing Hamiltonian Hε in Sec. II, we have two different techniques
at hand in order to deduce results about effective dynamics.

On one hand, it is possible to derive an analog of the
standard adiabatic theorem of quantum mechanics in order
to show that the subspace P0 is invariant under Hε for times
of order ε−1 up to errors of order ε. This is analogous
to the approach used in Ref. [24] in the context of the
Born-Oppenheimer approximation and will be carried out in
the first part of this section. It leads to the occurrence of a
Berry connection that will be investigated in Sec. III B.

In order to get a better approximation of the spectrum
and/or to go to longer time scales for the dynamics, the usual
adiabatic technique, which relies on cancellation of errors due
to oscillations is no longer practicable. However, the general
machinery of adiabatic perturbation theory, developed by
Martinez-Sordoni-Nenciu in Refs. [17–19] and Panati-Spohn-
Teufel in Refs. [20,21] and reviewed in Ref. [22], allows to
construct superadiabatic subspaces that are invariant for times
of order ε−n1 up to errors of order εn2 for arbitrary n1,n2 ∈ N.
More precisely, it allows to construct a projector Pε, which
projects to a subspace Pε close to P0 and satisfies (Hε,Pε) =
O(εm) for any m > 1. Adiabatic perturbation theory was
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adapted to constrained quantum systems in Ref. [9]. For
technical reasons, it could be made rigorous only for m � 3.
The case m = 3 seems enough for all applications though.
Before we discuss the resulting effective Hamiltonian and
the approximation of bound states in Secs. III E and IIIF, we
explain the construction of Pε in Sec. III C.

A. Effective dynamics for times of order ε−1

In order to relate wave functions from P0 to elements of
L2(C,dµ) ⊗ CM , we use an identification operator U0 : P0 →
L2(C,dµ) ⊗ CM given by

U ∗
0 : L2(C,dµ) ⊗ CM → P0, ψε(q) �→ ϕJ

f (q,n)ψε
J (q).

This defines a partial unitary operator, that is,

U ∗
0 U0 = P0, U0U

∗
0 = 1.

Since P0 is approximately invariant under Hε, we expect that
P0HεP0 is a good approximation to Hε on P0. On L2(C,dµ) ⊗
CM , the former operator corresponds to

H
(1)
eff := U0P0HεP0U

∗
0 .

We may also use U0 to compare the unitary group generated by
H

(1)
eff with the one generated by Hε. To verify our expectation,

we have to show that (e−iHεt − U ∗
0 e−iH

(1)
eff tU0)P0 is small. The

analog of the adiabatic theorem, which achieves this for times
of order ε−1, reads as follows:

Theorem 1. Fix Emax < ∞, and denote the characteristic
function of (−∞,Emax] by χ . Let the energy band Ef and
the family of normalized eigenfunctions (ϕJ

f )J=1,...,M be as in
Assumption 2.

Then there is a C < ∞ such that for all ε small enough:∥∥(
e−iHεt − U ∗

0 e−iH
(1)
eff tU0

)
P0χ (Hε)

∥∥ < Cε(1 + ε|t |). (20)

Up to terms of order ε2 the first-order effective Hamiltonian
H

(1)
eff is given by

〈
ψε|H (1)

eff ψε
〉
C =

∫
C

(
g

ijIJ

eff pIK
effiψ

ε
KpJL

effjψ
ε
L + V IJ

eff ψε
I ψε

J

)
dµ,

with

pJL
effj = −iεδJL∂j − ε

〈
ϕJ

f

∣∣i∇h
j ϕ

L
f

〉
,

g
ijIJ

eff = gij δIJ + ε2IIijα
〈
ϕI

f

∣∣nαϕJ
f

〉
,

V IJ
eff = Efδ

IJ + ε(∂αW )n=0
〈
ϕI

f

∣∣nαϕJ
f

〉
,

where II is the second fundamental form (see Appendix
Sec. 1 for the definition), 〈·|·〉C is the scalar product on
L2(C,dµ), and 〈·|·〉 is the scalar product on L2(Rk,dN ).

Via the operator U ∗
0 it is, hence, possible to obtain

approximate solutions of the original equation from the
solutions of the effective equation. We point out that P0χ (Hε)
both cuts off high energies and produces initial states in
P0. However, the cutoff energy Emax is arbitrary and, in
particular, independent of ε. It is only needed in order to get
a uniform error bound, since for larger tangential energies,
the adiabatic decoupling becomes worse. Physically, this is
expected, since large tangential energies correspond to large

tangential velocities, and the separation of time scales for the
normal and the tangential motions, which adiabatic decoupling
is based on, breaks down for large velocities.

The effective Hamiltonian may be calculated by using
standard perturbation theory, which is performed in Appendix
Sec. 6. However, to verify that it yields effective dynamics
on the relevant time scale t = s/ε [i.e., to prove Eq. (20)], an
additional adiabatic argument is needed. To make this clear, we
notice that the usual perturbative argument only yields an error
of order 1 for times of order ε−1: By using that U ∗

0 U0 = P0

and U0U
∗
0 = 1, we have

(e−iHεt − U ∗
0 e−iU0P0HεP0U

∗
0 tU0)P0

= −e−iHεt

∫ t

0

d

ds
eiHεsU ∗

0 e−iU0HεU
∗
0 sU0 ds

= −e−iHεt

∫ t

0
eiHεs i (Hε,P0)∗0 e−iU0HεU

∗
0 sU0 ds, (21)

which is of order ε|t | by Eq. (18) but cannot directly be seen
to be small for times of order ε−1. However, adaptation of the
calculation in the derivation of the standard adiabatic theorem
(see, e.g., Ref. [22]) shows that the integrand is, up to errors
of order ε2, the time derivative of

eiHεs
(
RHf [Hε,P0] − [P0,Hε]RHf

)
U ∗

0 e−iU0HεU
∗
0 sU0,

where RHf = P ⊥
0 (Hf − Ef )−1P ⊥

0 is the reduced resolvent.
Therefore, the time integral of this term yields an error of
order ε independent of t , which shows that the whole error is,
indeed, only of order ε(1 + ε|t |).

For times of order ε−1, the corrections of order ε yield
relevant contributions:

(1) The corrected momentum operator pε
eff is a Berry

connection on the CM bundle over C, where the effective
wave function takes its values and, therefore, may give rise
to topological and/or geometric phases (see Sec. III B).

(2) In general, all the corrections couple the effective inter-
nal degrees of freedom. If they, however, mutually commute,
simultaneous diagonalization allows to split the effective CM

bundle into M effective bundles of rank 1 locally.
(3) If the center of mass of ϕI

f ϕJ
f (q) lies on C for all q,

then 〈ϕI
f |nαϕJ

f 〉 = 0. So, both the corrections to gε
eff and to

Veff vanish in this case. In particular, a local splitting into M

effective bundles of rank 1 is possible in this case.

B. The effective Berry connection

In this section, we take a closer look at the induced Berry
connection pIJ

eff = −iε∂xδ
IJ − ε〈ϕI

f |i∇hϕJ
f 〉 that occurs in the

effective Hamiltonian (see Theorem 1).
For M = 1 (i.e., if the energy Ef is nondegenerate), it is

simply a U(1) connection that effects the dynamics similar
to the vector potential of a magnetic field. If its curvature
(the analog of the magnetic field) is zero, one can achieve, at
least locally, peff = −iε∂x by choosing a proper gauge [i.e.,
by choosing proper eigenfunctions ϕf(x)]. However, such a
gauge might not exist globally, and effects analogous to the
Aharonov-Bohm effect may occur. In Sec. IV B, we give an
example for a closed quantum waveguide without any external
magnetic fields in which such an effect occurs purely due to
the geometry of the waveguide.
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If the curvature of peff is nonzero, it does even locally
change the dynamics at order ε. In Ref. [10], Maraner identified
the curvature as the origin of rotovibrational couplings in
simple molecular models. Moreover, further important effects
are to be expected, which are known for Berry connections
from different areas: On one hand, the anomalous velocity
term in the semiclassical model for electrons in crystalline
solids also stems from the curvature of a Berry connection,
see Refs. [25,26]. On the other hand, in the Born-Oppenheimer
approximation, the Berry connection term in the effective dy-
namics exactly cancels the effect of an external magnetic field
on the nuclei, see, for example, Ref. [24]. To neglect the Berry
term would lead to wrong physics: In the Born-Oppenheimer
approximation, a neutral molecule would suddenly react to the
Lorentz force.

To state a formula for the curvature of the Berry connection,
we fix q ∈ C and again choose normal coordinate fields
{∂i}i=1,...,d on an open neighborhood � of q. Then, it holds
that (∂i,∂j ) = 0.

Proposition 1. ∇eff := ipeff is a metric connection on the
rank-M bundle over C, where the effective wave function takes
its values. Its curvature vanishes for M = 1 and, otherwise, is
given by

R∇eff

IJ ij := (∇eff
i ∇eff

j − ∇eff
j ∇eff

i − ∇eff
(∂i ,∂j )

)
IJ

= (∇eff
i ∇eff

j − ∇eff
j ∇eff

i

)
IJ

= − ε2
〈
ϕI

f

∣∣R⊥γ

αij nα∂γ ϕJ
f

〉
(q)

+ ε2
(〈∇h

i ϕ
I
f

∣∣∇h
j ϕ

J
f

〉 − 〈∇h
j ϕ

I
f

∣∣∇h
i ϕ

J
f

〉)
(q)

+ ε2(〈ϕI
f

∣∣∇h
i ϕ

K
f

〉〈
ϕK

f

∣∣∇h
j ϕ

J
f

〉
− 〈

ϕI
f

∣∣∇h
j ϕ

K
f

〉〈
ϕK

f

∣∣∇h
i ϕ

J
f

〉)
(q),

where R⊥ is the curvature of the normal connection (defined in
Appendix Sec. 1) and 〈·|·〉 is the scalar product on L2(Rk,dN ).

This is deduced in Appendix Sec. 6. An analogous ex-
pression was derived by Mitchell in Ref. [8] in the special case
where ϕJ

f is independent of q up to twisting. It was not realized
that it always vanishes for M = 1 though.

C. Construction of the superadiabatic subspace

There are several motivations and ways for further improv-
ing the result formulated in Theorem 1. First of all, one can
aim at a better approximation (i.e., smaller error estimates).
Next, one can try to cover even longer time scales (i.e., times
of order ε−2 and beyond). These long time scales become
relevant (e.g., when considering the propagation of states with
tangential energies of order ε2 in waveguides, where the energy
band Ef is constant on all of C), (i.e., in the situation considered
in earlier papers on geometric effects on constrained systems
[6–8,10]). Last but not least, one also expects the eigenvalues
of the effective Hamiltonian to be close to those of the full
Hamiltonian and that one can recover, at least in a certain
energy range, all eigenvalues of the full Hamiltonian in this
way.

In order to achieve all three additional goals, we show
how to construct an effective Hamiltonian that is unitarily

equivalent to the full Hamiltonian on a certain subspace of
the full Hilbert space up to errors of order ε3. To this end,
we use adiabatic perturbation theory [20]. The strategy is to
first associate a so-called superadiabatic subspace Pε with any
energy band Ef that satisfies Assumption 2. The associated
projector Pε turns out to be uniquely fixed (up to terms of order
ε3) by the requirement that it projects on P0 to leading order
and that the commutator (Hε,Pε) is of order O(ε3). In a second
step, we construct a unitary Uε mapping the range of Pε to the
Hilbert space of the constrained system L2(C,dµ) ⊗ CM .

Then, on the superadiabatic subspace Hε|Pε
= PεHεPε, up

to terms of order ε3. The effective Hamiltonian on L2(C,dµ) ⊗
CM is now given by H

(2)
eff = UεPεHεPεU

∗
ε and solves all three

problems mentioned previously.
We now explain this construction in detail. For the supera-

diabatic projection, we search for a bounded operator Pε with
(i) PεPε = Pε,
(ii) Pε − P0 = O(ε),
(iii) [Hε,Pε]χ (Hε) = O(ε3).
Property (i) simply means that Pε is an orthogonal projec-

tion, property (ii) is the requirement to be close to the adiabatic
projection P0, and (iii) says that Pεχ (Hε)H is invariant under
the Hamiltonian Hε up to errors of order ε3.

Since we saw in Eq. (18) that (Hε,P0) = O(ε), it is
consistent to make the ansatz for Pε as an expansion in ε

that starts with P0:

Pε = P0 + εP1 + ε2P2 + O(ε3).

We first construct Pε in a formal way by ignoring problems
of boundedness. Afterward, we will explain how to obtain
a well-defined projector and the associated unitary Uε. We
make the ansatz P1 := T ∗

1 P0 + P0T1 with T1 : H → H to be
determined. By using the expansion of Hε = H0 + εH1 +
O(ε2) from Appendix Sec. 4 and by assuming that [P1,

− ε2�h + Ef] = O(ε), we have

[Hε,Pε]/ε = [H0/ε + H1,P0 + εP1] + O(ε)

= [H0/ε + H1,P0] + [H0,P1] + O(ε)

= [−ε�h + H1,P0] + [Hf − Ef,P1] + O(ε)

= (−ε�h + H1)P0 − P0(−ε�h + H1)

+ (Hf − Ef)T
∗

1 P0 − P0T1(Hf − Ef) + O(ε).

We have to choose T1 such that the first term is canceled. By
observing that the right-hand side is off diagonal with respect to
P0, we may multiply with P0 from the right and P ⊥

0 := 1 − P0

from the left and vice versa to determine P1. This leads to

−(Hf − Ef)
−1P ⊥

0 ([−ε�h,P0] + H1)P0 = P ⊥
0 T ∗

1 P0, (22)

and

−P0([P0, − ε�h] + H1)P ⊥
0 (Hf − Ef)

−1 = P0T1P
⊥
0 , (23)

where we have used that the operator Hf − Ef is invertible on
P ⊥

0 Hf . In view of Eqs. (22) and (23), we define T1 by

T1 := −P0([P0, − ε�h] + H1)RHf

+RHf ([−ε�h,P0] + H1)P0, (24)
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with RHf = P ⊥
0 (Hf − Ef)−1P ⊥

0 . T1 is antisymmetric so that
P (1) := P0 + εP1 = P0 + ε(T ∗

1 P0 + P0T1) automatically sat-
isfies condition (i) for Pε up to first order. Due to P 2

0 = P0:

P (1)P (1) = P (1) + εP0(T ∗
1 + T1)P0 + O(ε2)

= P (1) + O(ε2).

Moreover, it turns out that P1 satisfies the assumption (P1, −
ε2�h + Ef) = O(ε) made earlier, too.

In order to derive the form of the second-order correction,
we make the ansatz P2 = T ∗

1 P0T1 + T ∗
2 P0 + P0T2 with some

T2 : H → H. The antisymmetric part of T2 is determined
analogously with T1 just by calculating the commutator
[Pε,Hε] up to second order and by inverting Hf − Ef . One
ends up with

(T2 − T ∗
2 )/2 = −P0([P (1),H (2)]/ε2)RHf

+RHf ([H
(2),P (1)]/ε2)P0,

with H (2) := H0 + εH1 + ε2H2. Note that [H (2),P (1)]/ε2 =
O(1) due to the construction of P (1). The symmetric part
is again determined by the first condition for Pε. By setting
P (2) := P (1) + ε2P2, we have

P (2)P (2) = P (2) + ε2P0(T1T
∗

1 + T ∗
2 + T2)P0 + O(ε3),

which forces T ∗
2 + T2 = −T1T

∗
1 in order to satisfy condition

(i) up to second order.
We note that T1 is quadratic in the momentum (and T2

even quartic) and will, therefore, not be bounded on the full
Hilbert space and, thus, neither Pε. This is related to the well-
known fact that, for a quadratic dispersion relation, adiabatic
decoupling breaks down for momenta that tend to infinity.
The problem can be circumvented by cutting off high energies
in the right place, which was carried out by Sordoni for the
Born-Oppenheimer setting in Ref. [18] and by Tenuta and
Teufel for a model of nonrelativistic QED in Ref. [27].

To do so, we fix Emax < ∞. Since Hε is bounded from
below, E− := inf σ (Hε) is finite. We choose χ̃ ∈ C∞

0 [R,(0,1)]
with χ̃ |(E−−1,E+1] ≡ 1 and suppχ̃ ⊂ (E− − 2,E + 2]. Then,
we define

P χ̃
ε := P0 + (P (2) − P0)χ̃(Hε)

+ χ̃ (Hε)(P (2) − P0)[1 − χ̃ (Hε)], (25)

with χ̃ (Hε) defined via the spectral theorem. We emphasize
that P χ̃

ε is symmetric.
It holds that P χ̃

ε − P0 = O(ε) in the sense of bounded
operators. That is why, for ε small enough, a projector is
obtained via the formula,

Pε := i

2π

∮
�

(
P χ̃

ε − z
)−1

dz, (26)

where � = {z ∈ C||z − 1| = 1/2} is the positively oriented
circle around 1 (see, e.g., Ref. [28]). By denoting the associated
subspace by Pε, we define a unitary mapping Ũε : Pε → P0

by the so-called Sz.-Nagy formula:

Ũε := [P0Pε + (1 − P0)(1 − Pε)][1 − (Pε − P0)2]−1/2.

(27)

Then, Uε := U0Ũε yields an isometry between Pε and
L2(C,dµ) ⊗ CM . In Ref. [9], it is shown that Pε, indeed,
satisfies (i)–(iii):

Proposition 2. Fix Emax < ∞. For all ε small enough, Pε is
an orthogonal projection, and Ũε is unitary. There are constants
Ci such that

‖Pε − P0‖L(H) � C1ε,

‖[Hε,Pε]χ (Hε)‖L(H,D(Hε)) � C2ε
3, (28)

‖〈n〉lPε〈n〉j‖L(H) � C3, ∀j,l ∈ N0,

with χ as the characteristic function of (−∞,E].

The last estimate guarantees that the range of Pε consists of
states that decay faster than any polynomial, which is necessary
to use the expansion of Hε obtained in Appendix Sec. 4.

D. Effective dynamics for times of order ε−2

By combining the results of Sec. III C with the stan-
dard perturbation theory, we can conclude that, for H

(2)
eff :=

UεPεHεPεU
∗
ε , we have∥∥(

e−iHεt/ − U ∗
ε e−iH

(2)
eff tUε

)
Pεχ (Hε)

∥∥ < Cε3|t |.
In the superadiabatic setting, no further adiabatic averaging
is needed. This clearly improves Eq. (20) in the two ways
anticipated: We get a better approximation and longer times.
To get a simpler expression, we can approximate Pε and Uε

by P0 and U0 and find∥∥(
e−iHεt − U ∗

0 e−iH
(2)
eff tU0

)
P0χ (Hε)

∥∥ < Cε(1 + ε2|t |)
(i.e., still a good approximation for long times on the adiabatic
subspace P0). However, we cannot replace H

(2)
eff by H

(1)
eff =

U0P0HεP0U
∗
0 without losing a factor ε in front of |t | in the

error. This is because the order ε2 terms in the effective
Hamiltonian are relevant for times of order ε−2, and the
expansion of the naive adiabatic Hamiltonian H

(1)
eff yields

incorrect second-order terms.
So, we still have to provide the correct second-order expan-

sion of the effective Hamiltonian H
(2)
eff . Since the expression

becomes quite complex and since we do not want to overburden
the result, we restrict ourselves to a nondegenerate energy band
(i.e., with one-dimensional eigenspaces).

Theorem 2. In addition to Assumptions 1 and 2, assume
that Ef is nondegenerate and that arbitrary derivatives of
the corresponding family of eigenfunctions ϕf are globally
bounded.

Up to terms of order ε3, the second-order effective Hamil-
tonian H

(2)
eff is given by

〈
ψε

∣∣H (2)
eff ψε

〉
C =

∫
C

(
g

ij

effp
eff
i ψεpeff

j ψε + Veff|ψε|2

− ε2ψεU ∗
1 RHf U1ψ

ε
)
dµ,

where

g
ij

eff = gij + ε2IIijα 〈ϕf|nαϕf〉 + ε2Ri j

α β 〈ϕf|nαnβϕf〉
+ ε2W i

αlg
lmWj

βm〈ϕf|3nαnβϕf〉,
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peff
j = −iε∂j − ε

〈
ϕf

∣∣i∇h
j ϕf

〉 − ε2R γ

jα β

〈
ϕf

∣∣ 2
3nαnβi∂γ ϕf

〉
+ ε2Wji

α

〈
ϕf|2

(
nα − 〈ϕf|nαϕf〉)i∇h

i ϕf
〉
,

Veff = Ef + ε(∂αW )n=0〈ϕf|nαϕf〉
+ ε2(Vgeom + VBH + Vamb + W2),

U1 = 2gij∇h
i ϕf∂j + nαϕfW ij

α ∂2
ij − nαϕf(∂αW )n=0,

and

Vgeom = − 1
4ηαηα + 1

2R
ij

ij − 1
6

(
Rab

ab + Raj

aj + Rij

ij

)
,

VBH = gij
〈∇h

i ϕf

∣∣(1 − |ϕf〉〈ϕf|)∇h
j ϕf

〉
,

Vamb = Rγ δ

α β

〈
∂γ ϕf

∣∣ 1
3nαnβ∂δϕf

〉
,

W2 = (
∂2
αβW

)
n=0〈ϕf|nαnβϕf〉,

with W as the Weingarten mapping, η as the mean curvature
vector, and R and R as the Riemann tensors of C and A (see
Appendix Sec. 1 for the definitions).

This effective Hamiltonian is derived in Ref. [9]. One might
wonder whether the complicated form of the effective Hamilto-
nian renders the result useless for practical purposes. However,
as explained in Sec. I, the possibly much lower dimension of C
compared to that of A outweighs the more complicated form
of the Hamiltonian. Moreover, the effective Hamiltonian is
of a form that allows the use of semiclassical techniques for
a further analysis. Finally, in practical applications, typically
only some of the terms that appear in the effective Hamiltonian
are relevant. As an example, we discuss the case of a quantum
waveguide in Sec. IV. At this point, we only add some general
remarks that concern the numerous terms in H

(2)
eff and their

consequences.
(1) The off-band coupling U ∗

1 RHf U1 can easily be checked
to be gauge invariant (i.e., not by depending on the choice
of ϕf but only on P0). Due to the replacement of U0 by Uε,
it occurs and, thus, is missed when one expands the naive
adiabatic Hamiltonian H

(1)
eff = U0P0HεP0U

∗
0 . Even if one, in

addition, uses standard perturbation theory in the fibers, still
the first term in U1, which originates from (−ε2�h,P0), would
be missing.

(2) Both VBH, an analog of the so-called Born-Huang
potential, and Vamb, already found in Ref. [8], are also easily
checked to be gauge invariant, which justifies calling them
extra potentials.

(3) The occurrence of the geometric potential Vgeom has
been stressed in the literature, in particular, as the origin
of curvature-induced bound states in quantum waveguides
(reviewed by Duclos and Exner in Ref. [29]); see Sec. IV.

E. Approximation of bound states up to order ε3

The unitary equivalence of Hε and H
(2)
eff up to errors of order

ε3 allows us to deduce that the lower parts of their spectra
coincide up to errors of order ε3 when Ef is the ground-state
band. The following result, which is proved in Ref. [9], shows

how to obtain quasimodes of Hε from the bound states of H
(2)
eff

and vice versa.

Theorem 3. Let Ef be a nondegenerate constraint energy
band, and let Uε,H

(2)
eff be the operators associated with Ef in

Sec. III D.
(a) Let E ∈ R. Then, there is a C < ∞ such that for any

family (Eε) with lim supε→0 Eε < E and all ε small enough,
the following implications hold:

H
(2)
eff ψε = Eεψε =⇒ ‖(Hε − Eε)U ∗

ε ψε‖ � Cε3‖U ∗
ε ψε‖,

Hεψ
ε = Eεψ

ε =⇒ ∥∥(
H

(2)
eff − Eε

)
Uεψ

ε
∥∥ � Cε3‖ψε‖.

(b) Let Ef(q) = inf σ (Hf(q)) for some (and, thus, for all)
q ∈ C, and define E1(q) := inf[σ (Hf(q)) \ Ef(q)]. Let (ψε)
be a family with

lim sup
ε→0

〈ψε|Hfψ
ε〉 < inf

q∈C
E1. (29)

Then, there is c > 0 such that ‖Uεψ
ε‖ � c‖ψε‖ for all ε small

enough.

We recall that, for any self-adjoint operator H , the bound
‖(H − λ)ψ‖ < δ‖ψ‖ for λ ∈ R implies that H has a spectrum
in the interval (λ − δ,λ + δ). So, (a), (i) entails that Hε has
an eigenvalue in an interval of length 2Cε3 around Eε, if one
knows a priori that the spectrum of Hε is discrete below the
energy E. The statement (b) ensures that (a), (ii) really yields
a quasimode for normal energies below infq∈C E1, that is, that

Hεψ
ε = Eεψ

ε =⇒ ∥∥(
H

(2)
eff − Eε

)
Uεψ

ε
∥∥ � C

c
ε3‖Uεψ

ε‖.
If the ambient manifold A is flat, then Eq. (29) follows

from:

lim sup
ε→0

〈ψε|Hεψ
ε〉 < inf

q∈C
E1 − sup

(q,n)
(Wn=0 − W ) =: E∗.

(30)

Therefore, Theorem 3, in particular, implies that at least for flat
A, there is a one-to-one correspondence between the spectra
of Hε and H

(2)
eff below E∗. In the example of Sec. I B depicted

in Fig. 2, this implies that all eigenvalues of Hε in the interval
[e0,e1) and the corresponding eigenfunctions are determined
by the effective Hamiltonian of the ground-state band E0

modulo terms of order ε3.
The bound states of H

(2)
eff can be approximated by the

standard WKB construction. In the simplest case, one obtains:

Corollary 1. Assume that A is flat and that Ef is a
nondegenerate constraint energy band with inf Ef < E∗ and
Ef (q) = inf σ (Hf(q)) for all q ∈ C. Let there be q0 ∈ C such
that Ef(q0) < Ef(q) for all q �= q0, and (∇2

i,jEf)(q0) is positive
definite.

Denote by E�(A) the �th eigenvalue of a semibounded
operator A, counted from the bottom of the spectrum. Then,
for any � ∈ N,

E�(Hε) = Ef(q0) + εE�(HHO) + O(ε2),

where HHO := −�Rd + 1
2 (∇2

∂xi ,∂xj
Ef)(q0)xixj is a harmonic

oscillator on Rd .
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IV. QUANTUM WAVEGUIDES

In this section, we look at the special case of a curve C
in A = R3 equipped with the Euclidean metric. Such curves
may model quantum waveguides, which have been discussed
theoretically for a long time (see, e.g., the review in Ref. [29])
but are nowadays also investigated experimentally (see, e.g.,
the review in Ref. [11]).

In the Sec. IV A, we provide the expression for our effective
Hamiltonian when applied to waveguides and make some
general remarks about trapping and splitting of wave packets.
In Sec. IV B, we explain how to produce topological phases
in closed waveguides. The effects on the spectrum of such
waveguides are discussed in Sec. IV C.

A. Trapping and splitting in quantum waveguides

We first look at spatially infinite quantum waveguides. So,
let the curve C be given as a smooth injective c : R → R3 that
is parametrized by arc length (|ċ| = 1). The mean curvature
vector of c is η = c̈, and its (exterior) curvature is |η|. By
denoting the usual scalar product in R3 by ·, we define y(n) :=
n · η/|η|, where η �= 0 and y(n) := 0 elsewhere. By the Frenet
formulas, the Weingarten mapping satisfies W(η) = |η|2 (see,
e.g., Ref. [30]) and W ≡ 0 on the orthogonal complement of
η [which is NqC if η(q) = 0].

A normalized section of the tangent bundle T C is given by
τ := ċ. We extend this to an orthonormal frame of T C × NC,
where NC is the normal bundle, in the following way: We fix
q ∈ C, choose an arbitrary orthonormal basis of NqC, and take
ν1,ν2 to be the parallel transport of this basis with respect to
the normal connection ∇⊥ (defined in Appendix Sec. 1) along
the whole curve. This yields an orthonormal frame of NC.
Together with τ , we obtain an orthonormal frame of T C × NC,
which is sometimes called the Tang frame. We denote the
coordinates with respect to τ , ν1, and ν2 by x, n1, and n2

respectively. In these coordinates, it holds ∇h = ∂x [as can be
seen from the coordinate formula of Eq. (12) and the definition
of the connection coefficients ω in Appendix Sec. 1].

Now, let Ef and (ϕJ
f )J be as in Assumption 2. We start by

spelling out the formula for H
(1)
eff from Theorem 1. Since C is

one dimensional and contractible, the families of ϕJ
f can be

chosen such that pε
eff ≡ −iε∂x globally. Then, the first-order

effective Hamiltonian is

H (1)
qwg = −iε∂x

(
1 + ε|η|〈ϕI

f

∣∣yϕJ
f

〉)
iε∂x + Ef

+ ε(∂αW )n=0
〈
ϕI

f

∣∣nαϕJ
f

〉
, (31)

with 〈φ|ψ〉 := ∫
R2 φ∗ψdn1dn2.

For highly oscillating states ψ (i.e., with 〈ψ | − ε2∂2
xxψ〉 ∼

1), the only term of order 1 besides −ε2∂2
xx is Ef . So, if Ef is

constant, in particular, if the waveguide has a constant cross
section, the dynamics is free at leading order and, even more,
the potential terms are of order ε2. So, they only become
relevant for times of order ε−2. However, a semiclassical wave
packet ψ covers distances of order ε−1 on this time scale.
Hence, for such ψ , noteworthy trapping occurs only for very
long waveguides!

If we consider a straight waveguide (i.e., η ≡ 0), the for-
mula we end up with is the expected adiabatic approximation:

H (1)
qwg

∣∣
η≡0 = −ε2∂2

xx + Ef + ε(∂αW )n=0
〈
ϕI

f

∣∣nαϕJ
f

〉
.

We note that, although η ≡ 0, the x dependence of the
constraining potential still allows us to model interesting
situations. For example, a beam splitter may be realized by
fading a single-well into a double-well potential (see, e.g.,
Ref. [4]).

B. Topological phases in quantum wave circuits

Up to now, we have considered a spatially infinite waveg-
uide, which, of course, has the topology of a line. The only
possible nontrivial topology for a curve C is that of a circle.
We refer to a waveguide modeled over such a C as a quantum
wave circuit. In order to keep formulas simple and transparent,
we look at a so-called round circle, that is, with constant η.
Then, the Tang frame from Sec. IV A is still globally smooth.
However, because of the nontrivial topology, our choices of
the families ϕJ

f made earlier are only possible locally but, in
general, not globally. Therefore, we rewrite Eq. (31) without
those choices. For the sake of brevity, we assume that W , the
nonconstraining part of the potential, is identically zero in the
following:

H (1)
qwc = p∗

eff

(
1 + ε|η|〈ϕI

f

∣∣yϕJ
f

〉)
peff + Ef, (32)

with peff = −iε∂x + ε〈ϕI
f |i∂xϕ

J
f 〉. Although the curvature

of the connection ipeff always vanishes, it may lead to a
topological phase, which we will discuss next.

Here, and in Sec. IV C, we again restrict ourselves to the
case of a nondegenerate energy band Ef . We note that, even
for degenerate energy bands, only Abelian phases will occur
because the fundamental group of the circle is generated by
only one element. Let x be a 2π -periodic coordinate on the
circle. The eigenfunction ϕf(x) associated with Ef can be
chosen as real valued for each fixed x because Hf is real. This
associates a real line bundle with Ef . From the topological
point of view, there are exactly two real line bundles over the
circle: the trivial one and the nontrivializable Möbius band.
In the former case, the global section ϕf can be chosen real
everywhere. This implies

〈ϕf|∂xϕf〉 = 1

2
(〈ϕf|∂xϕf〉 + 〈∂xϕf|ϕf〉) = ∂x〈ϕf|ϕf〉

2
≡ 0,

which results in ipeff = ε∂x . Thus, there will be no topological
phase in this case. We will now provide an example for the
realization of the Möbius band by a suitable constraining
potential and show that, indeed, a topological phase occurs!

Let Ṽc ∈ C∞
b (R2) have two orthogonal axes of reflection

symmetry, that is, in suitable coordinates:

Ṽc(−ñ1,ñ2) = Ṽc(ñ1,ñ2) = Ṽc(ñ1, − ñ2). (33)

Then, the real ground state �0 of −�R2 + Ṽc with energy E0

is symmetric with respect to both reflections,

�0(ñ1,ñ2) = �0(−ñ1,ñ2) = �0(ñ1, − ñ2),

while the first excited state �1, also taken as real valued, with
energy E1 is typically only symmetric with respect to one
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FIG. 3. (Color online) Level set of a potential such as V x/2
c , which

describes a Möbius wave circuit.

reflection and antisymmetric with respect to the other one, for
example,

�1(ñ1,ñ2) = −�1(−ñ1,ñ2) = �1(ñ1, − ñ2). (34)

This is true, in particular, for a harmonic oscillator with
different frequencies. As the potential, which constrains to
the circle, we let Ṽc perform half a twist along the circle, that
is,

[V x/2
c (x)](n1,n2) := Ṽc[cos(x/2)n1 − sin(x/2)n2,

sin(x/2)n1 + cos(x/2)n2].

We note that due to Eq. (33), this defines a smooth V
x/2

c . (See
Fig. 3.) Then,

[ϕ̃j (x)](n1,n2) := �j [cos(x/2)n1 − sin(x/2)n2,

sin(x/2)n1 + cos(x/2)n2]

is an eigenfunction of Hf (x) := −�v + Vc(x) with eigenvalue
Ej for every x and j ∈ {0,1}. However, while ϕ̃0 is a smooth
section of the corresponding eigenspace bundle, ϕ̃1 is not. For,
by Eq. (34), it holds ϕ̃1(x) = −ϕ̃1(x + 2π ) (see Fig. 4). Still,
the complex eigenspace bundle admits a smooth nonvanishing
section. A possible choice is ϕ1(x) := eix/2ϕ̃1(x). By using
Eq. (34), we obtain that, for the first excited band, the effective
Hamiltonian Eq. (32) reduces to

Hqwc,1 = (−iε∂x + ε/2)2 + E1,

while for the ground-state band it is

Hqwc,0 = −ε2∂2
xx + E0.

FIG. 4. (Color online) First excited transverse eigenfunction in a
Möbius wave circuit: n1 and n2 are the normal elements of a global
Tang frame; and, with respect to this frame, the confining potential
V x/2

c twists by an angle of π when going around the circuit once. Due
to its symmetry, V x/2

c is still globally smooth; see Fig. 3. However,
since the first excited state �1 does not have the full symmetry of the
potential, it changes sign after a twist by π .

This shows that by depending on the symmetry of the normal
eigenfunction, the twist by an angle of π has different
effects on the effective momentum operator in the effective
Hamiltonian. With respect to the connection that appears in
Hε

qwc,1, the holonomy of a closed loop γ that winds around

the circle once is h(γ ) = ei
∫ 2π

0 1/2dx = −1. Hence, the 1/2
cannot be gauged away. Furthermore, a wave packet that
travels around the circuit once accumulates a topological phase
equal to π .

C. Effects of twisting and bending on the spectrum

At second order, in ε, the effect of the topological phase in
quantum wave circuits can also be seen in the level spacing of
Hqwc,j and, thus, with Theorem 3, also in the spectrum of Hε.
So, we add the corrections of second order from Theorem 2 to
Eq. (32). Of course, all terms that contain the inner curvature
of C and A = R3 vanish due to the flatness of C and A with
the Euclidean metric,

H (2)
qwc = p∗

eff(1 + ε|η|〈ϕf|yϕf〉 + 3ε2|η|2〈ϕf|y2ϕf〉)peff

+Ef + ε2(〈∂xϕf|∂xϕf〉 − |〈ϕf|∂xϕf〉|2)

− ε2 |η|2
4

+ ε2
(
4ε∂x〈∂xϕf|RHf ∂xϕf〉ε∂x

+ 4Re|η|ε∂x〈∂xϕf|RHf yϕf〉ε2∂2
xx

+ |η|2ε2∂2
xx〈yϕf|RHf yϕf〉ε2∂2

xx

)
, (35)

with peff given by

−iε∂x + ε〈ϕf|i∂xϕf〉 + ε2|η|〈ϕf|2(y − 〈ϕf|yϕf〉)∂xϕf〉.
If Vc does not change its shape but only twists, Ef is
constant and, thus, may be removed by redefining zero energy.
Furthermore, since the remaining potential terms are of order
ε2, the kinetic energy operator −ε2∂2

xx will also be of order ε2

at the bottom of the spectrum. So, Hε
qwc may be divided by ε2.

By keeping only the leading order terms, we arrive at

Hqwc,j = p̃∗
effp̃eff − |η|2

4
+ 〈∂xϕj |∂xϕj 〉 − |〈ϕj |∂xϕj 〉|2, (36)

with p̃eff := −i∂x + 〈ϕj |i∂xϕj 〉. A simple calculation yields

〈∂xϕj |∂xϕj 〉 − |〈ϕj |∂xϕj 〉|2

= 1

4

∫
R2

|n1∂n2�j − n2∂n1�j |2dn1dn2 =: L2(�j )/4.

We note that the integral is the expectation value of the squared
angular momentum of �f and, thus, vanishes for a rotation-
invariant �f . So, Eq. (36) shows that bending is attractive,
while twisting is repulsive.

Since |η| is constant, for � ∈ N0 the �th eigenvalue of
Hqwc,1 is

E�(Hqwc,1) = E1 + ε2

[(
� + 1

2

)2

+ L2(�1) − |η|2
4

]
+ O(ε3),

while, for Hqwc,0, we find

E�(Hqwc,0) = E0 + ε2

(
�2 + L2(�0) − |η|2

4

)
+ O(ε3).

We note that, although a constraining potential that twists along
a circle was investigated by Maraner in detail in Ref. [7] and
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by Mitchell in Ref. [8], the effect discussed previously was not
found in both treatments. The reason for this is that they only
allowed for whole rotations and not for half ones to avoid the
nonsmoothness of ϕ̃1.

There is a great amount of literature on the spectrum of a
quantum waveguide, which is arbitrarily bent and twisted (see
the review in Ref. [31] by Krejčiřı́k). In general, the twisting
assumption means that there is θ ∈ C∞

b (R) and Ṽc ∈ C∞
b (R2)

such that the constraining potential has the form
[
V θ

c (x)
]
(n1,n2) := Ṽc[n1 cos θ (x) − n2 sin θ (x),

n1 sin θ (x) + n2 cos θ (x)].

Then, the family of eigenfunctions ϕf may be chosen as

[ϕf(x)](n1,n2) := �f[n1 cos θ (x) − n2 sin θ (x),

n1 sin θ (x) + n2 cos θ (x)]

for an eigenfunction �f of −�R2 + Ṽc(x) with eigenvalue Ef .
It is easy to generalize the preceding discussion to a wave
circuit whose curvature and potential twist are nonconstant.
Then, the �th eigenvalue of Hε is given by

E�(Hε) = Ef + ε2E�

(
Hθ

twist

) + O(ε3),

where E�(Hθ
twist) is the �th eigenvalue of the following

operator:

Hθ
twist := p̃∗

effp̃eff − |η|2/4 + L2(�f)θ̇
2/4.

with p̃eff := −i∂x + 〈ϕf|i[∂x + (να∂xνβ)nα∂β]ϕf〉. This gen-
eralizes results by Bouchitté et al. [5] and by Borisov and
Cardone [32] for waveguides to wave circuits. We note that, for
the Tang frame να∂xνβ ≡ 0 but for an arbitrarily curved wave
circuit, the Tang frame is, in general, not globally smooth
anymore. Anyway, the normal bundle is still trivializable
because it inherits the orientation of R3, and every orientable
vector bundle over a curve is trivializable.

V. CONCLUSIONS

While earlier results on constrained quantum systems had
to focus either on a certain energy regime or on special
geometries, here, we have presented results, both on the
dynamics and on the spectrum, that cover all relevant energy
regimes in general geometries (recall Fig. 2).

We point out that our results on dynamics (Theorems 1 and
2) are true for all bound states and scattering energies, as long
as oscillations faster than ε−1 are excluded. The same is true
for the quasimodes of the full Hamiltonian Hε constructed
from those of the effective Hamiltonian (Theorem 3).

Furthermore, we have applied our results to quantum
waveguides and have obtained the complete second-order
effective Hamiltonian Eq. (35). In contrast to earlier theo-
retical results, it also applies to wave circuits (i.e., closed
waveguides). Here, the effect of an Abelian topological phase
is observable both in the spectrum and in the dynamics. We
believe that, as a next step, it would be interesting to apply our
results to simple examples from molecular dynamics, such as
those that were treated for small kinetic energies by Maraner
in Ref. [10]. Here, also the curvature of the effective Berry
connection, calculated in Proposition 1, should play a role.

Note that it did not show up for quantum waveguides because
of the one-dimensional constraint manifold.
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APPENDIX

1. Geometry of submanifolds

Here, we recall some standard concepts from Riemannian
geometry. For further information, see, for example, Ref. [33].
As before, we use the abstract index formalism that includes
the convention that one sums over repeated indices. Moreover,
we will consistently use latin indices a,b, . . . , which run
from 1 to d + k for coordinates on a general manifold, latin
indices i,j, . . . , which run from 1 to d for coordinates on
a submanifold, and greek indices α,β, . . . , which run from
d + 1 to d + k for coordinates in the normal spaces of a
submanifold.

First, we give the definition of the Riemann tensor we use
(the order of the indices varies in the literature!).

Definition 1. Let (M,g) be a Riemannian manifold with
Levi-Civita connection ∇. Let (τa)a be a set of local coordinate
vector fields.

(i) The Christoffel symbols � of ∇ are defined by

∇aτb = �c
abτc.

(ii) The Riemann tensor R is given by

Ra
bcd := (∇c∇dτb − ∇d∇cτb)a.

As usual, by raising and lowering indices, we mean to shift
covariant to contravariant coordinates and vice versa.

Now, we turn to the basic objects related to the exterior
curvature of a submanifold of arbitrary codimension.

Definition 2. Let (A,g) be a Riemannian manifold with
Levi-Civita connection ∇. Let C ⊂ A be a submanifold
equipped with the induced metric g = g|C . Denote by NC
the normal bundle of C. Let (τi)i be a set of local coordinate
vector fields of C, and let (να)α be a local orthonormal frame
of NC.

(i) The Weingarten mapping W is given by

W i
αj := ( − ∇j να

)i
.

(ii) The second fundamental form II is defined by

IIαij := (∇j τi)
α.

(iii) The mean curvature normal η is defined by

ηα = Wj

αj .
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The relations and symmetry properties of W and II for
hypersurfaces also hold when the codimension is greater
than 1:

IIiαj = W i
αj = Wj

αi = IIjαi . (A1)

Finally, we provide the definitions of the objects that charac-
terize the geometry of the normal bundle.

Definition 3. (i) We define the normal connection ∇⊥ to be
the bundle connection on the normal bundle given via

(∇⊥
j να)a = (∇j να)a,

for a = d + 1, . . . ,d + k and (∇⊥
j να)a = 0 for a = 1, . . . ,d.

(ii) The connection coefficients ω of ∇⊥ are defined by

∇⊥
i να = ω

β

iανβ.

(iii) The normal curvature tensor R⊥ is defined by

R⊥α
βij := (∇⊥

i ∇⊥
j νβ − ∇⊥

j ∇⊥
i νβ)α.

Due to the antisymmetries of any curvature tensor, the normal
curvature tensor R⊥ is identically zero, when the dimension or
the codimension of C is smaller than 2.

When we set W a
αj = 0 for a = d + 1, . . . ,d + k, the

Weingarten equation,

(∇⊥
j να)a = (∇j να)a + W a

αj (A2)

is a direct consequence of the definitions.

2. Expansion of the metric tensor

In order to expand the Hamiltonian Hε in powers of ε, it
is crucial to expand the metric g on the normal bundle NC
around C because the Laplace-Beltrami operator depends on
it. Such expansions were carried out in almost any work on
constrained quantum systems, however, in various generalities
and up to varying orders. Here, we provide a simple derivation
for an arbitrary submanifold of a curved ambient manifold but
only up to first order. However, this is enough in order to obtain
Theorem 1.

Fix q ∈ C. Let (τi)i be a set of local coordinate vector
fields of C, and let (να)α be a local orthonormal frame of NC.
Furthermore, let φ(q) := (φ1(q), . . . ,φd+k(q)) be the local
expression for the isometric embedding of C into NC, and
let �(q,N ) be the exponential map in each fiber. Then, by
definition of the exponential map �(q,N ) = γ (1), where γ (s)
is the geodesic on NC, which starts at φ(q) with γ̇ (0) = Nανα .

Let (ya)a=1,...,d+k be Riemannian normal coordinates on
(NC,g) around φ(q), and let �a

bc be the associated Christoffel
symbols of the Levi-Civita connection. Due to the geodesic
equation γ̈ a(s) = −�a

bc(γ (s))γ̇ b(s)γ̇ c(s), a Taylor expansion
around s = 0 yields

γ a(s) = φa(q) + sNανa
α(q)

− s2

2
NαNβ�a

bc(φ(q))νb
α(q)νc

β(q) + O(s3).

By evaluating at s = 1, we obtain that

�a(q,N ) = φa(q) + Nανa
α(q)

− 1
2NαNβ�a

bc(φ(q))νb
α(q)νc

β(q) + O(|N |3).

Therefore,

∂i�
a(q,N ) = ∂iφ

a(q) + Nα∂iν
a
α(q) + O(|N |2),

∂α�a(q,N ) = [
νa

α − 1
2Nβ�a

bc(φ(·))νb
ανc

β

]
(q) + O(|N |2)

= νa
α(q) + O(|N |2),

where we used that �a
bc(φ(q)) = 0 in Riemannian normal

coordinates. The latter also implies that (∇ iνα)a[φ(q)] =
∂iν

a
α(q). Then, the Weingarten equation Eq. (A2) yields that

∂iνα(q) = ω
γ

iα(q)νγ (q) − W l
αi(q)∂lφ(q).

By using that ∂iφ and W l
αi∂lφ are tangent vectors and, thus,

orthogonal to νβ for any i and β, we obtain that

gij (q,N ) = (gab∂i�
a∂j�

b)(q,N )

= (
gab∂iφ

a∂jφ
b − gab∂iφ

aNαW l
αj ∂lφ

b

− gabN
αW l

αi∂lφ
a∂jφ

b
)
(q) + O(|N |2),

giβ (q,N ) = (gab∂i�
a∂β�b)(q,N )

= (gabN
αω

γ

iανa
γ νb

β)(q) + O(|N |2) = gβi(q,N ),

gαβ(q,N ) = (gab∂α�a∂β�b)(q,N )

= (
gabν

a
ανb

β

)
(q) + O(|N |2).

Since φ is an isometric embedding, it holds that
gab∂iφ

a∂jφ
b = gij . The orthonormality of the normal frame

yields gabν
a
ανb

β = δαβ . Thus,

gij (q,N )
(A1)= gij (q) − 2NαIIαij (q) + O(|N |2),

giβ(q,n) = Nαωiαβ(q) + O(|N |2) = gβi(q,N ),

gαβ(q,N ) = δαβ + O(|N |2).

By inverting this matrix, we end up with this proposition:

Proposition 3. The inverse metric tensor gab has the
following form for all q ∈ C:

g(q,εn) =
(

1 0
CT 1

)(
A 0
0 B

)(
1 C

0 1

)
(q,εn),

where for i,j,l,m = 1, . . . ,d and α,β,γ,δ = d + 1, . . . ,d +
k:

Aij (q,εn) = gij (q) + ε2nαIIijα (q) + O(ε2|n|2),

Bγ δ(q,εn) = δγ δ + O(ε2|n|2),

C
γ

i (q,εn) = −εnαω
γ

iα(q) + O(ε2|n|2).

Here, II is the second fundamental form, and ω are the
coefficients of the connection on the normal bundle (see
Appendix Sec. 1 for the definitions).

We note that the error is of order ε2|n|2, not only for small
|n|, but also globally, when the metric g is chosen properly
outside a tubular neighborhood ofC (see Sec. II A and Ref. [9]).
Then, the use of the expansion is justified by the fast decay of
functions from the subspaces P0 and Pε in the fibers.

3. Transformation of measures

Let σ1 be the density of the measure dµ on NC, and let
σ2 be the density of the product of the measure dµ on C and

022112-14



CONSTRAINED QUANTUM SYSTEMS AS AN ADIABATIC. . . PHYSICAL REVIEW A 82, 022112 (2010)

the Lebesgue measure dN on the fibers NqC ∼= Rk . Define
ρ := σ1

σ2
and

Mρ : L2(NC,dµ) → L2(NC,dµ ⊗ dN), � �→ ρ−1/2�.

Mρ is an isometry because, for all �,�̃ ∈ L2(NC,dµ ⊗
dN):∫

NC
Mρ�Mρ�̃dµ =

∫
NC

��̃ρ−1dµ =
∫

NC
��̃dµ ⊗ dN.

Therefore, it is clear that

M∗
ρ� = ρ1/2�.

One immediately concludes

MρM
∗
ρ = 1 = M∗

ρMρ,

and, thus, Mρ is unitary. Now, we note that (∂b,ρ
−1/2) =

− 1
2ρ−1/2∂b ln ρ. So, for �dσi

:= −σ−1
i ∂aσig

ab∂b, we have

M∗
ρ (−�dσ1 )Mρ

= −ρ1/2σ−1
1 ∂aσ1g

ab∂bρ
−1/2

= −ρ1/2σ−1
1 ∂aσ1ρ

−1/2
[
gab∂b − 1

2gab(∂b ln ρ)
]
.

On one hand,

ρ1/2σ−1
1 ∂aσ1ρ

−1/2gab∂b

= ρσ−1
1 ∂aσ1ρ

−1gab∂b + 1
2gab(∂a ln ρ)∂b

= σ−1
2 ∂aσ2g

ab∂b + 1
2gab(∂b ln ρ)∂a,

and, on the other hand,

ρ1/2σ−1
1 ∂aσ1ρ

−1/2 1
2gab∂b ln ρ

= − 1
4gab(∂a ln ρ) (∂b ln ρ)

+ 1
2

(
σ−1

1 ∂aσ1g
ab∂b ln ρ

) + 1
2gab(∂b ln ρ)∂a.

Together, we obtain

M∗
ρ (−�dσ1 )Mρ

= −σ−1
2 ∂aσ2g

ab∂b

− 1
4gab(∂a ln ρ) (∂b ln ρ) + 1

2

(
σ−1

1 ∂aσ1g
ab∂b ln ρ

)
= −�dσ2ψ − 1

4gab(∂a ln ρ) (∂b ln ρ) + 1
2 (�dσ1 ln ρ).

Because of �dσ1 = �g , we have shown that

M∗
ρ (−�g)Mρ = −�dσ2 + Vρ, (A3)

with Vρ := − 1
4gab(∂a ln ρ)(∂b ln ρ) + 1

2 (�dσ1 ln ρ). This for-
mula was established many times before, and we have provided
its derivation for the sake of completeness, as it is the origin
of the geometric potential.

4. Expansion of the Hamiltonian

In order to deduce the formula for the effective Hamiltonian,
we need that Hε = −ε2(�g)ε + Vc(q,n) + W (q,εn) can be
expanded with respect to the normal directions when operating
on functions that decay fast enough. For this purpose, we split
up the integral over NC into an integral over the fibers NqC,
isomorphic to Rk , followed by an integration over C.

The following expansion is also the justification for the
splitting of Hε in Eq. (16).

Proposition 4. If an operator A satisfies

‖A〈n〉l‖L(H) � Cl, ‖〈n〉lA‖L(D(Hε)) � Cl

for every l ∈ N, then the operators HεA and AHε can be
expanded in powers of ε on L(D(Hε),H):

HεA = (H0 + εH1)A + O(ε2),

AHε = A(H0 + εH1) + O(ε2),

where H0 and H1 are the operators associated with

〈�|H0�〉 =
∫
C

∫
Rk

gij
(
ε∇h

i �
)
ε∇h

j �dn dµ + 〈�|Hf�〉,

〈�|H1�〉 =
∫
C

∫
Rk

2nαIIijα
(
ε∇h

i �
)
ε∇h

j �

+ nα(∂αW )n=0|�|2dn dµ, (A4)

where ∇h is the horizontal connection (see Sec. II B for the
definition).

To derive this, let P with ‖〈n〉lP ‖L(D(Hε)) � Cl for l ∈ N0

be given. The similar case of a P with ‖P 〈n〉l‖L(H) � Cl for
all l ∈ N0 will be omitted.

We set �P := P�. By definition of Hε, it holds that

〈�|Hε�P 〉 = 〈�| − ε2(�g)ε�P 〉
+ 〈�|[Vc(q,n) + W (q,εn)]�P 〉. (A5)

The formula Eq. (A3) implies that

〈�| − ε2�g�P 〉
=

∫
C

∫
Rk

ε2gab∂a�∂b�P + ε2Vρ��P dNdµ

=
∫
C

∫
Rk

ε2gab∂a�∂b�P dNdµ + O(ε2).

We emphasize once again that the remaining term may be of
order 1 for a � with energy of order 1. To calculate −ε2(�g)ε,
we have to replace N by εn in the preceding formula. Then, we
may exploit ‖〈n〉2P ‖L(D(Hε)) � C2 to insert the expansion for g

from Proposition 3 into Eq. (A6). By noting that the rescaling
n = N/ε does not change ∂i and replaces ∂α by ε−1∂α , we
obtain that

〈�| − ε2(�g)ε�P 〉

=
∫
C

∫
Rk

[
ε∂i + Cα

i (q,εn)∂α

]
�Aij (q,εn)

× [
ε∂j + C

β

j (q,εn)∂β

]
�P

+ (∂α�)Bαβ(q,εn)∂β�P dn dµ + O(ε2)

=
∫
C

∫
Rk

{
ε
[
∂i − nγ ωα

iγ (q)∂α

]
�

}(
gij + ε2nαIIijα

)

× ε
[
∂i − nγ ω

β

iγ (q)∂β

]
�P

+ (∂α�)δαβ∂β�P dn dµ + O(ε2)

=
∫
C

∫
Rk

(
ε∇h

i �
)(

gij + ε2nαIIijα
)
ε∇h

j �P

+�(−�n)�P dn dµ + O(ε2), (A6)
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where we used Eq. (12) and �n = δαβ∂α∂β . Due to ‖〈n〉2P ‖ �
C2, a Taylor expansion of W (q,εn) in the fiber yields

W (q,εn)P = [W (q,0) + εnα(∂αW ) (q,0)]P + O(ε2).

By plugging this and Eq. (A6) into Eq. (A5), we obtain the
claim when we recall the definition Hf := −�n + Vc(q,n) +
W (q,0).

5. Derivation of the effective Hamiltonian

Here, we derive the formula for H
(1)
eff = U0HεU

∗
0 stated in

Theorem 1. By plugging in the expansion of Hε from Appendix
Sec. 4, we have that

H
(1)
eff = U0(H0 + εH1)U ∗

0 ψ + O(ε2)

= U0H0U
∗
0 ψ + εU0H1U

∗
0 ψ + O(ε2).

In the following, we write 〈·|·〉NC for the scalar product on
L2(NC,dNdµ). By definition of U0 in Theorem 1, we have

〈ψε|U0AU ∗
0 ψε〉C = 〈

ϕI
f ψε

I

∣∣AϕJ
f ψε

J

〉
NC (A7)

for any operator A. In view of the definition of ∇h in Sec. II B,
∇h satisfies the usual product formula for connections:

ε∇h
i ϕ

I
f ψε

I = ϕI
f ε∂iψ

ε
I + εψε

I ∇h
i ϕ

I
f . (A8)

We note that ε∇h
i ϕf is really of order ε, while ε∂iψ

ε
I is,

in general, of order 1 due to the possibly fast oscillations
of ψε. Furthermore, the exponential decay of the ϕI

f , which
implies the exponential decay of their derivatives (see Ref. [9]),
guarantees that, in the following, all the fiber integrals are
bounded in spite of the terms growing polynomially in n. The
product formula Eq. (A8) implies that
〈
ϕI

f ψε
I

∣∣H0ϕ
J
f ψε

J

〉
NC

(A4)=
∫
C

∫
Rk

gij
(
ε∇h

i ϕ
I
f ψε

I

)
ε∇h

j ϕ
J
f ψε

J dn dµ

+ 〈
ϕI

f ψε
I

∣∣Hfϕ
J
f ψε

J

〉
NC

=
∫
C

∫
Rk

gij
[(

ϕI
f ε∂iψ

ε
I

)
ϕJ

f ε∂jψ
ε
J + ε

(
ϕI

f ε∂iψ
ε
I

)
ψε

J ∇h
j ϕ

J
f

+ ε
(
ψε

I ∇h
i ϕ

I
f

)
ϕJ

f ε∂jψ
ε
J

]
dn dµ

+
∫
C
〈ϕI

f |Hfϕ
J
f 〉ψε

I ψε
J dµ + O(ε2)

=
∫
C
gij δIJ pIK

effiψ
ε
KpJL

effjψ
ε
L + Efδ

IJ ψε
I ψε

J dn dµ + O(ε2),

with

pJK
effj = −iεδJK∂j − ε

〈
ϕJ

f

∣∣i∇h
j ϕ

K
f

〉
.

Furthermore,〈
ϕI

f ψε
I

∣∣H1ϕ
J
f ψε

J

〉
NC

(A4)=
∫
C

∫
Rk

2nαIIijα
(
ε∇h

i ϕ
I
f ψε

I

)
ε∇h

j ϕ
J
f ψε

J dn dµ

+
∫
C

∫
Rk

nα(∂αW )n=0ϕ
I
f ψε

I ϕJ
f ψε

J dn dµ

=
∫
C

∫
Rk

2nαIIijα
(
ϕI

f ε∂iψ
ε
I

)
ϕJ

f ε∂jψ
ε
J dn dµ

+
∫
C
(∂αW )n=0

〈
ϕI

f

∣∣nαϕJ
f

〉
ψε

I ψε
J dµ + O(ε)

=
∫
C

2IIijα
〈
ϕI

f

∣∣nαϕJ
f

〉
pIK

eff ψε
KpJL

effjψ
ε
L

+ (∂αW )n=0
〈
ϕI

f

∣∣nαϕJ
f

〉
ψε

I ψε
J dµ + O(ε),

where we used that pJK
effj = −iεδJK∂j + O(ε). So we, indeed,

obtain that〈
ψε

∣∣H (1)
eff ψε

〉
C =

∫
C
g

ijIJ

eff pIK
effiψ

ε
KpJL

effjψ
ε
L

+ [
Efδ

IJ + ε(∂αW )n=0
〈
ϕI

f

∣∣nαϕJ
f

〉]
ψε

I ψε
J dµ,

with
g

ijIJ

eff = gij δIJ + εIIijα
〈
ϕI

f

∣∣nαϕJ
f

〉
.

6. The curvature of the Berry connection

In this section, we deduce the formula for the curvature of
the effective Berry connection provided in Proposition 1.

We will need that the connection ∇h, which the normal
connection induces on the bundle of functions over the
normal fibers, is metric (i.e., ∂j 〈ϕ1|ϕ2〉Hf = 〈∇h

j ϕ1|ϕ2〉Hf +
〈ϕ1|∇h

j ϕ2〉Hf ) and that its curvature is given by

Rh
ij := ∇h

i ∇h
j − ∇h

j ∇h
i − ∇h

(∂i ,∂j ) = R
⊥γ

αij nα∂γ . (A9)

Since the normal connection is metric, its connection coeffi-
cients ω

β

iα are antisymmetric in α and β. So, integration by
parts yields〈

ω
γ

iαnα∂γ ϕ1

∣∣ϕ2
〉
(q) + 〈

ϕ1

∣∣ωγ

iαnα∂γ ϕ2
〉
(q) = 0.

Therefore, we have

∂j 〈ϕ1|ϕ2〉 = 〈∂jϕ1|ϕ2〉 + 〈ϕ1|∂jϕ2〉
= 〈(

∂j − ω
γ

iαnα∂γ

)
ϕ1

∣∣ϕ2
〉

+ 〈
ϕ1

∣∣(∂j − ω
γ

iαnα∂γ

)
ϕ2

〉
(12)= 〈∇h

j ϕ1

∣∣ϕ2
〉 + 〈

ϕ1

∣∣∇h
j ϕ2

〉
.

To compute the curvature of ∇h, we notice that a simple
calculation yields

Rh
ij = (

∂iω
γ

jα − ∂jω
γ

iα

)
nα∂γ + (

ωδ
iαnα∂δ,ω

γ

jβnβ∂γ

)
.

By using the commutator identity,(
ωδ

iαnα∂δ,ω
γ

jβnβ∂γ

) = −(
ω

β

iαω
γ

jβ − ω
β

jαω
γ

iβ

)
nα∂γ ,

we obtain that

Rh
ij = −(

∂xi
ω

γ

jα − ∂xj
ω

γ

iα + ω
β

iαω
γ

jβ − ω
β

jαω
γ

iβ

)
nα∂nγ

= −R
⊥γ

αij nα∂γ ,

which was the claim. With this, we can compute the curvature
of the effective Berry connection. It is not difficult to verify that
∇eff is indeed a connection. Since ∇h is metric, we have that〈

ϕI
f

∣∣∇h
j ϕ

J
f

〉 + 〈
ϕJ

f |∇h
j ϕ

I
f

〉
= 〈

ϕI
f

∣∣∇h
j ϕ

J
f

〉 + 〈∇h
j ϕ

I
f

∣∣ϕJ
f

〉 = ∂j

〈
ϕI

f

∣∣ϕJ
f

〉 = 0.

022112-16



CONSTRAINED QUANTUM SYSTEMS AS AN ADIABATIC. . . PHYSICAL REVIEW A 82, 022112 (2010)

Thus, the correction in ∇eff is anti-Hermitian. Hence, for all
ψ1,ψ2 : C → CM ,

ε∂j (ψ1 · ψ2) = (ε∂jψ1) · ψ2 + ψ1 · (ε∂jψ2)

= (∇eff
j ψ1) · ψ2 + ψ1 · (∇eff

j ψ2
)
,

which means that ∇eff is metric. Furthermore, this entails that
the correction in ∇eff is purely imaginary for M = 1. Since
ϕf can be chosen real valued for every q ∈ C, which follows
from Hf being real, we may gauge away the correction in an
open neighborhood of any q. This implies that the curvature
vanishes for M = 1.

To compute the curvature of ∇eff for M > 1, we calculate

R∇eff

IJ ij = ε2
(∇eff

i ∇eff
j − ∇eff

j ∇eff
i

)
IJ

= ε2(∂i

〈
ϕI

f

∣∣∇h
j ϕ

J
f

〉 − ∂j

〈
ϕI

f

∣∣∇h
i ϕ

J
f

〉)
+ ε2(〈ϕI

f

∣∣∇h
i ϕ

K
f

〉 〈
ϕK

f

∣∣∇h
j ϕ

J
f

〉
− 〈

ϕI
f

∣∣∇h
j ϕ

K
f

〉 〈
ϕK

f

∣∣∇h
i ϕ

J
f

〉)
.

By using that ∇h is metric, we obtain

R∇eff

IJ ij = ε2
〈
ϕI

f

∣∣Rh
ij ϕ

J
f

〉

+ ε2
(〈∇h

i ϕ
I
f

∣∣∇h
j ϕ

J
f

〉 − 〈∇h
j ϕ

I
f

∣∣∇h
i ϕ

J
f

〉)

+ ε2(〈ϕI
f

∣∣∇h
i ϕ

K
f

〉 〈
ϕK

f

∣∣∇h
j ϕ

J
f

〉

− 〈
ϕI

f

∣∣∇h
j ϕ

K
f

〉 〈
ϕK

f

∣∣∇h
i ϕ

J
f

〉)
.

Then, Eq. (A9) yields

R∇eff

IJ ij = −ε2
〈
ϕI

f

∣∣R⊥γ

αij n
α∂γ ϕJ

f

〉

+ ε2
(〈∇h

i ϕ
I
f

∣∣∇h
j ϕ

J
f

〉 − 〈∇h
j ϕ

I
f

∣∣∇h
i ϕ

J
f

〉)

+ ε2
(〈
ϕI

f

∣∣∇h
i ϕ

K
f

〉 〈
ϕK

f

∣∣∇h
j ϕ

J
f

〉

− 〈
ϕI

f

∣∣∇h
j ϕ

K
f

〉 〈
ϕK

f

∣∣∇h
i ϕ

J
f

〉)
,

which was to be shown.
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