
PHYSICAL REVIEW A 82, 022107 (2010)

Geometric derivation of the quantum speed limit

Philip J. Jones and Pieter Kok*

Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, United Kingdom
(Received 25 March 2010; published 16 August 2010)

The Mandelstam-Tamm and Margolus-Levitin inequalities play an important role in the study of quantum-
mechanical processes in nature since they provide general limits on the speed of dynamical evolution. However,
to date there has been only one derivation of the Margolus-Levitin inequality. In this paper, alternative geometric
derivations for both inequalities are obtained from the statistical distance between quantum states. The inequalities
are shown to hold for unitary evolution of pure and mixed states, and a counterexample to the inequalities is given
for evolution described by completely positive trace-preserving maps. The counterexample shows that there is
no quantum speed limit for nonunitary evolution.
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I. INTRODUCTION

In experiments, we often do not have direct access to the
parameter we want to measure, but only to certain observable
variables. We tend to formulate a model of the system that
tells us how we expect the observable variables depend on
the parameters of interest of the system. Given an estimator
function based on these observables, we can then calculate the
most likely value of the parameter based on the measurement
data [1–4]. When estimating an unknown parameter we will
always be restricted by statistical uncertainty: The more
tests we perform the greater our confidence in the result.
More quantitatively, given a large number of independent
tests N , the average error is at best �θ = σ/

√
N , where

σ 2 is the variance in each test. In quantum metrology it
is possible to beat this limit by using entanglement. The
fundamental Heisenberg limit then allows us to estimate the
parameter θ with average error �θ ∝ 1/N , where the N tests
are no longer independent of each other. To accommodate
entanglement across the N tests, the estimation procedure
must essentially boil down to a single-shot measurement.
To distinguish between two configurations in a single-shot
measurement with unit probability, the two configurations
must be described by orthogonal quantum states [5–7]. If
θ parametrizes the evolution of the initial state to the final
state, maximum sensitivity is obtained when the state of the
system evolves to an orthogonal state for the smallest possible
value of θ . This is the geometric interpretation of parameter
estimation [8–12].

The minimum value of θ needed for a quantum system to
naturally evolve to an orthogonal state is determined by the
moments of the generator K of rotations (or translations) in
θ . In particular there are two bounds on this evolution. First,
for the specific case of time evolution (θ = t) it was shown by
Mandelstam and Tamm that a lower bound could be defined
in terms of the variance in the energy of the system [13]:

t � π

2

h̄

�E
, (1)

with (�E)2 = 〈H 2〉 − 〈H 〉2, and H is the Hamiltonian of the
system. A very elegant derivation of this result was given
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by Vaidman [14] (see also the related notes by Uffink [15]
and Fleming [16]). Relatively recently, Margolus and Levitin
derived a second bound on the the minimum time of unitary
evolution, which is instead determined by the average energy
of the system [17]

t � π

2

h̄

E
, (2)

where E = 〈H 〉 and the ground-state energy is set at E0 = 0.
For the purposes of determining the so-called maximum speed
of evolution for a quantum system, having a bound defined
in terms of the average energy above the ground state of the
system is, in general, far more useful than a bound in terms
of the variance since the average energy is generally easier
to determine than the variance in the energy. For example,
the Margolus-Levitin bound was used to estimate the ultimate
limits to computation and the maximum computational power
of the universe [18,19].

In this paper, we give an alternative derivation of the
Mandelstam-Tamm and Margolus-Levitin inequalities based
on the distance of quantum states in Hilbert space. In Sec. II
we give a brief review of the concept of statistical distance, both
for classical probability distributions and for quantum states,
and we relate the statistical distance to the Fisher information,
which measures the amount of information about a parameter
obtained in a given measurement. In Sec. III we define the
speed of dynamical evolution as the rate of change of the
statistical distance, analogous to the velocity in real space, and
we use this to derive the two inequalities. Finally, we will show
by means of a counterexample that the inequalities apply to
unitary evolutions, and can be violated in general completely
positive trace-preserving maps (CP maps).

II. STATISTICAL DISTANCE

To quantify the difference between two probability dis-
tributions, we can define a distance measure in the space
of probability distributions, called the statistical distance. In
general, a distance s between two points a and b in a metric
space has the following properties:

1. s(a,b) � 0;
2. s(a,b) = 0 ⇔ a = b;
3. s(a,b) = s(b,a);
4. s(a,c) � s(a,b) + s(b,c) (the triangle inequality).
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When the two points a and b are very close together (b =
a + da), we can define the infinitesimal distance between the
points in terms of a metric tensor gjk , according to

ds2 =
∑
j,k

gjkdajdak, (3)

where the daj are the components of the tangent vector to a.
We make the distinction between upper and lower indices, with
the upper indicating the tangent (contravariant) vector and the
lower index indicating the one-form (covariant vector). In the
case of Euclidean spaces the metric will be proportional to
the Kronecker delta δjk , and Eq. (3) reduces to Pythagoras’
theorem.

A. Statistical distance for classical probability distributions

In general, one can define many different distance measures
on a metric space. As a trivial example, we can multiply any
distance function by an arbitrary constant and still satisfy the
four previous properties. This corresponds to changing the
units of length for the distance function. In our case, we want to
choose a natural distance function for the space of probability
distributions that relates the statistical distance to expectation
values. The natural inner product in the space of probability
distributions is the expectation value of a random variable A

〈A〉 =
∑

j

Ajp
j , (4)

and the correlation is

〈AB〉 =
∑

j

AjBjp
j =

∑
jk

AjBkg
jk. (5)

We related the correlation to the statistical distance by
writing 〈AB〉 in terms of a metric gjk . Since the probability
distributions form the vectors in the space, the probabilities pj

are the proper tangent vectors, while the one-forms Aj and Bk

are the values of the random variables A and B. It is clear that
the correlation forms the natural quadratic form for the space
of probability distributions.

From Eq. (5), we find that the metric gjk must be
proportional to pj , together with a Kronecker delta δjk to
match the indices. However, the metric we require for the
infinitesimal form of the statistical distance in Eq. (3) has
lower indices. We therefore find that

gjk = (gjk)−1 = δjk

pj
. (6)

Consequently, the distance between two probability distribu-
tions pj and pj + dpj using this metric becomes

ds2 =
∑
j,k

gjkdp
jdpk =

∑
j

(dpj )2

pj
. (7)

This is the infinitesimal statistical distance for classical
probability distributions. The distance increases without bound
when one of the pj ’s becomes zero. This is interpreted as
follows: When we try to distinguish between two probability
distributions pA and pB and one type of event has zero
probability in pA but not in pB , then the occurrence of that
event immediately tells us with certainty that our system

is described by pB . In practical numerical applications, we
exclude the boundary of the probability simplex to avoid these
divergency issues.

At this point, we note a peculiarity in the form of the
statistical distance for classical probability distributions. If we
write the probability pj = (rj )2 in terms of (real) probability
amplitudes rj , we obtain dpj = 2rjdrj , and the statistical
distance becomes

ds2 = 4
∑

j

(drj )2. (8)

In other words, the statistical distance in the space of probabil-
ity distributions is the Euclidean distance in the space of (real)
probability amplitudes. However, probability amplitudes are
usually associated with quantum mechanics, and our entire
discussion has been classical. Note also the factor of 4 in
the statistical distance. We could remove it by rescaling
the distance units. However, our units are quite convenient
and the factor will become important in Sec. III when we
calculate the speed of dynamical evolution.

So far, we have been diligent in observing the difference
between upper and lower indices to derive the correct form
of the metric tensor. In the remainder of this paper, this is no
longer necessary, and we will use only lower indices from now
on.

B. Statistical distance for density matrices

Next, we will derive the statistical distance for density
matrices ρ. We will follow the general procedure of the
previous section and derive the equivalent of the metric tensor
by identifying the natural quadratic form. Again, the natural
inner product on the space of density matrices is the Born rule
for the expectation value of a quantum mechanical observable
A, given by

〈A〉 = Tr(ρA). (9)

Similarly, we can choose the correlation as the natural
quadratic form. However, there is a subtlety: Since correla-
tions are observable, they must be represented by Hermitian
operators. On the other hand, when we consider the correlation
between two noncommuting observables the operator product
AB is not Hermitian: (AB)† = B†A† = BA �= AB. The cor-
rect correlation is therefore given by the symmetrized product
of A and B:

1
2 〈AB + BA〉 = 1

2 Tr[ρ{A,B}], (10)

where we used the anticommutator {A,B} = AB + BA. Us-
ing the cyclic property of the trace, this can be rewritten as

1
2 〈AB + BA〉 = Tr[ARρ(B)], (11)

with

Rρ(B) = 1

2
{ρ,B} = 1

2

∑
j,k

(pj + pk)Bjk|j 〉〈k|, (12)

and its inverse

Lρ(B) = R−1
ρ (B) =

∑
j,k

2Bjk

pj + pk

|j 〉〈k|. (13)
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Here we used the diagonal basis for ρ = ∑
j pj |j 〉〈j |. The

“raising” and “lowering” operators Rρ and Lρ play the role
of the metric, and the infinitesimal statistical distance between
ρ and ρ + dρ on the space of density operators can be written
as [9]

ds2
ρ = Tr[dρLρ(dρ)]. (14)

In the case of pure quantum states this distance simplifies
considerably and we obtain the Wootters distance [8]. If |ψ〉
and |φ〉 are two arbitrary pure quantum states in Hilbert space,
then the statistical distance is given by the angle between the
two states:

s(ψ,φ) = arccos |〈ψ |φ〉|. (15)

Notice how the Wootters distance is related to the fidelity
|〈ψ |φ〉|2, which is the probability of mistaking |ψ〉 for |φ〉 in
a single-shot measurement.

C. Relation to the Fisher information

The statistical distance is a measure of how close one
probability distance is to another. In other words, it can be
directly related to the number of times we need to sample
our system to tell reliably which of the two probability
distributions describes our system. Imagine that the two
probability distributions are connected by a curve that is
parametrized by a real number θ . Distinguishing between
the two distributions then reduces to the estimation of the
parameter θ . This is a well known problem, and the information
about θ in a particular measurement procedure is given by the
Fisher information F (θ ). For a discrete set of possibilities, the
Fisher information is

F (θ ) =
∑

j

1

pj (θ )

(
dpj (θ )

dθ

)2

=
(

ds

dθ

)2

, (16)

where pj (θ ) is determined by the Born rule

pj (θ ) = Tr[Ejρ(θ )], (17)

with Ej the POVM associated with measurement outcome j .
A similar expression holds when the possible events form a
continuum.

We see from Eq. (16) that the Fisher information is directly
related to the derivative of the statistical distance, as expected.
Moreover, using the expression in Eq. (14) for the quantum
mechanical statistical distance, we obtain

F (θ ) =
(

ds

dθ

)2

= Tr[ρ ′Lρ(ρ ′)], (18)

where ρ ′ is the derivative of ρ with respect to θ . If translations
in θ are generated by a Hermitian operator K , we can use the
Heisenberg equation of motion to write

dρ

dθ
= 1

ih̄
[K,ρ] = 1

ih̄
[K − 〈K〉,ρ] = 1

ih̄
[�K,ρ], (19)

where 〈K〉 = Tr(ρK) is a real number, and can therefore be
included in the commutator with impunity. Substituting this

into Eq. (18) yields [20]

F (θ ) = Tr[ρ ′Lρ(ρ ′)] = 2

h̄2

∑
j,k

(pj − pk)2

pj + pk

|�Kjk|2

� 4

h̄2 〈(�K)2〉. (20)

In other words, the amount of information about θ in any
measurement is bounded by the variance in its generator
K [20].

III. DYNAMICAL EVOLUTION OF QUANTUM STATES

The quantum speed limit for the dynamical evolution
of quantum states will take the form of two inequalities,
the Mandelstam-Tamm inequality and the Margolus-Levitin
inequality. Before we derive these inequalities, we will have
to define precisely what we mean by the speed of dynamical
evolution. Analogous to the instantaneous velocity of a particle
in real space, which is the time derivative of the position
function of the particle, we define the dynamical speed of
evolution for quantum states as the derivative of the statistical
distance function with respect to the parameter θ :

v(θ ) = ds

dθ
. (21)

This allows us to use the results from the previous section to
obtain bounds on v(θ ).

A. Mandelstam-Tamm inequality

The Mandelstam-Tamm inequality is almost immediate
from Eq. (20):

F (θ ) =
(

ds

dθ

)2

� 4

h̄2 〈(�K)2〉. (22)

Taking the positive roots, we can rewrite this as

ds

dθ
� 2

h̄
δK, (23)

where δK ≡ |
√

〈(�K)2〉|. Separating the variables and inte-
grating yields∫ θ

0
dθ ′ � 1

2

h̄

δK

∫ π

0
ds ⇒ θ � π

2

h̄

δK
. (24)

In the case where θ is the time parameter generated by
the Hamiltonian H , the inequality reduces to the famous
Mandelstam-Tamm inequality

t � π

2

h̄

�E
. (25)

Note that the integral over ds in Eq. (24) runs from 0 to
π instead of π/2. This is due to the factor of 4 in Eq. (8).
Alternatively, this can be seen in the Bloch sphere, were the
angle between orthogonal qubit states is π rather than π/2.
Note that the Mandelstam-Tamm inequality in Eq. (25) was
derived for unitary evolution of arbitrary mixed states. We will
see in Sec. IV that this bound can be violated by nonunitary
evolutions of density operators. For an alternative derivation
based on the statistical distance, see Uffink [21].
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B. Margolus-Levitin inequality

Instead of using the bound on the Fisher information
directly to derive the Mandelstam-Tamm inequality, we can
use the expression for the statistical distance and carry out the
differentiation with respect to θ explicitly. Remarkably, this
will yield the Margolus-Levitin inequality. We will proceed
by first deriving the inequality for pure states, followed by an
extension to mixed states via a standard purification procedure.

We again consider the evolution parameterized by θ , which
is generated by the Hermitian operator K . In this case, a
system initially described by the pure state |ψ0〉 at θ = 0 will
evolve to

|ψθ 〉 = exp

(
− i

h̄
Kθ

)
|ψ0〉. (26)

The Wootters distance between two pure states is given by the
angle between the states and the rate of change of the statistical
distance can therefore be written as

ds

dθ
= d

dθ
arccos (|〈ψ0|ψθ 〉|)

= − 1√
1 − |〈ψ0|ψθ 〉|2

d

dθ
|〈ψ0|ψθ 〉|. (27)

Since the prefactor 1/
√

(1 − x2) � 1 for all real x, we obtain
the inequality

ds

dθ
� − d

dθ
|〈ψ0|ψθ 〉|. (28)

Next, we prove that

− d

dθ
|〈ψ0|ψθ 〉| �

∣∣∣∣ d

dθ
〈ψ0|ψθ 〉

∣∣∣∣ . (29)

To this end, we rewrite the derivative on the left-hand side of
Eq. (29) as

d

dθ
|〈ψ0|ψθ 〉| = d

dθ

√
〈ψ0|ψθ 〉〈ψθ |ψ0〉, (30)

and using the generalized Schrödinger equation

ih̄
d

dθ
|ψθ 〉 = K|ψθ 〉, (31)

this becomes

d

dθ
|〈ψ0|ψθ〉| = −i〈ψ0|K|ψθ 〉〈ψθ |ψ0〉+ i〈ψ0|ψθ 〉〈ψθ |K|ψ0〉

2h̄|〈ψ0|ψθ 〉|
= Im(〈ψ0|K|ψθ 〉〈ψθ |ψ0〉)

h̄|〈ψ0|ψθ 〉|
� |〈ψ0|K|ψθ 〉〈ψθ |ψ0〉|

h̄|〈ψ0|ψθ 〉| . (32)

The right-hand side of Eq. (29) becomes
∣∣∣∣ d

dθ
〈ψ0|ψθ 〉

∣∣∣∣ = 1

h̄
|〈ψ0|K|ψθ 〉| = |〈ψ0|K|ψθ 〉| · |〈ψ0|ψθ 〉|

h̄|〈ψ0|ψθ 〉|
� |〈ψ0|K|ψθ 〉〈ψ0|ψθ 〉|

h̄|〈ψ0|ψθ 〉| , (33)

where we again used the generalized Schrödinger equation,
and in the last line we used the Cauchy-Schwarz inequality.
Finally, we combine Eqs. (33) and (32) to obtain

d

dθ
|〈ψ0|ψθ 〉| � Im(〈ψ0|K|ψθ 〉〈ψθ |ψ0〉)

h̄|〈ψ0|ψθ 〉| �
∣∣∣∣ d

dθ
〈ψ0|ψθ 〉

∣∣∣∣ .
(34)

Since arccos (x) is a monotonically decreasing function in the
interval 0 � x � 1, the derivative of |〈ψ0|ψθ 〉〉| with respect
to θ is strictly positive and we have therefore proved Eq. (29).

Continuing the derivation of the Margolus-Levitin inequal-
ity, we use Eq. (34) in Eq. (28) and find that

ds

dθ
�

∣∣∣∣ d

dθ
〈ψ0|ψθ 〉

∣∣∣∣ � |〈ψ0|K|ψθ 〉|
h̄

� |〈ψ0|K|ψ0〉|
h̄

≡ |〈K〉|
h̄

. (35)

Separating the variables s and θ , we obtain∫ θ

0
dθ ′ � h̄

|〈K〉|
∫ π

2

0
ds, (36)

and integrating both sides gives

θ � π

2

h̄

|〈K〉| . (37)

In the case where K is the Hamiltonian and θ the time, the
inequality becomes the Margolus-Levitin inequality

t � π

2

h̄

E
, (38)

with E the average energy above the ground state of the system.
So far, we have shown that the Margolus-Levitin inequality

holds for the unitary evolution of pure states. However,
following the derivation of the Mandelstam-Tamm inequality,
we would like to extend this bound to the unitary evolution
of arbitrary mixed states. The challenge is to find the most
convenient distance measure between mixed states (i.e., a
generalization of the Wootters distance for density operators).
We choose the purification of the density matrices that
maximizes the fidelity between them. The Margolus-Levitin
inequality then applies to the purifications, which in turn can
be translated to a bound on the speed of unitary evolution of
mixed states.

The fidelity between two density matrices ρ and σ is defined
as [22]

F (ρ,σ ) ≡ [Tr(
√

ρ
1
2 σρ

1
2 )]2, (39)

which can be interpreted as the probability of mistaking ρ

for σ in a single-shot measurement. Despite its appearance,
F (ρ,σ ) is symmetric in ρ and σ . We can relate the fidelity to
a distance measure in various ways, one possibility being

s(ρ,σ ) = arccos[
√

F (ρ,σ )]. (40)

When both ρ and σ are pure states s(ρ,σ ) reduces to
the Wootters distance of Eq. (15). According to Uhlmann’s
theorem [23], the square root of the fidelity is given by√

F (ρ,σ ) = max
|χρ 〉,|χσ 〉

|〈χρ |χσ 〉|, (41)
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where |χρ〉 and |χσ 〉 are purifications of ρ and σ . In other
words, if ρ is the state of a system S, and |χρ〉 is a pure state
of a compound system S + R, then ρ = TrR(|χρ〉〈χρ |). The
system R must be described on a Hilbert space that is at least
as large as the Hilbert space of system S. A similar definition
holds for |χσ 〉. For our purposes it is sufficient to note that
there exist states |χρ〉 and |χσ 〉 for which the equality holds:
F (ρ,σ ) = |〈χρ |χσ 〉|2.

For pure states the Wootters distance is interpreted as the
angle between the states in Hilbert space. For mixed states,
this interpretation makes sense only when the states have the
same purity Tr(ρ2) = Tr(σ 2), and the evolution is unitary. The
speed of evolution can then be bounded using

ds

dθ
= d

dθ
arccos[

√
F (ρ0,ρθ )] = d

dθ
arccos |〈χ0|χθ 〉|, (42)

where ρ0 is the initial state, and ρθ is the evolved state. The
pure states |χ0〉 and |χθ 〉 are the respective purifications that
maximize the fidelity. Since |χ0〉 and |χθ 〉 are pure, this is
just the derivative of the standard Wootters distance in the
compound system S + R, and the same argument following
Eq. (27) holds. We therefore recover the Margolus-Levitin
inequality for the purified compound system:

θp � π

2

h̄

〈KS〉 + 〈KR〉 = π

2

h̄

〈K〉 , (43)

where 〈KS〉 is the expectation value of K on the system S, and
〈KR〉 the expectation value on R. To interpret this inequality,
let K be the Hamiltonian of the system. The expectation value
〈KS〉 + 〈KR〉 is then the average energy of the system S and the
purification system R taken together. At first glance this seems
problematic since the purification is merely a mathematical
construction and therefore unrestricted amounts of energy
may be added to the system during the process. This would
lead to arbitrarily short orthogonality times. However, it is
precisely because the purification is a mathematical construct
that this is not a problem: Any extra energy added is physically
meaningless and therefore the true bound on the evolution
occurs for 〈H 〉 = 〈HS〉. In other words, we simply have
to choose purifications made up only of degenerate ground
eigenstates (with E = 0). This means that the evolution of
mixed states is also bounded by Eq. (38). A similar line of
reasoning holds for general Hermitian operators K . It was
shown in Ref. [24] that mixed states can never attain either
equality. In addition, any state that does attain the inequalities
has the form [24,25]

|ψ〉 = 1√
2

(|ψ0〉 + eiθ |ψn〉), (44)

where the states |ψn〉 are (possibly degenerate) energy eigen-
states of the system.

IV. NONUNITARY EVOLUTION

The Mandelstam-Tamm and Margolus-Levitin inequalities
do not hold for the most general quantum evolutions, described
by completely positive, trace-preserving maps (CP maps). To
demonstrate this, we construct a counterexample. We can
always describe a nonunitary evolution of a single system
as the unitary evolution of the system and its environment

(b)(a)
1 2

3

45

N

(c)
H

HH

H H

H

(e)

H

HH

H

HH

(d)
φ

φφ

φφ

φ

( f )

Nφ

FIG. 1. Nonunitary evolution of the central qubit that violates
both the Mandelstam-Tamm and Margolus-Levitin bounds: (a) All
qubits are prepared in the state |+〉; (b) each qubit is entangled
simultaneously with the central qubit using a controlled-Z (CZ)
gate; (c) Hadamard gates are applied to the satellite qubits, which
creates a GHZ state of size N + 1; (d) phase shifts φ are applied to
the satellite qubits and (e) a second set of Hadamard gates are applied
to the satellite qubits; (f) N simultaneous CZ gates disentangle the
satellite qubits from the central qubit, leaving it with an accumulated
phase shift of Nφ.

combined. The nonunitary evolution is obtained when we trace
out the environment of the system. In our counterexample, the
system starts and ends in a separable state with respect to the
environment, which allows us to compare the states before and
after the interaction. We show that orthogonal initial and final
states can be created in arbitrary short times.

Consider a two-level system (a qubit) with an energy gap
E1 between the ground state |0〉 and the excited state |1〉. When
the qubit is prepared in the eigenstate of the Pauli X operator,
the minimum time for this system to evolve unitarily to an
orthogonal state is

t = πh̄

E1
, (45)

saturating both bounds, with �E = 〈H 〉 = E1/2. In addition,
consider N qubits of a possibly different species with energy
gap Eq . Our setup is shown in Fig. 1. We call the qubit
with energy gap E1 the “central qubit,” and the remaining
qubits are the “satellite qubits.” At time t = 0, all qubits are
prepared in the state |+〉 = (|0〉 + |1〉)/√2. To describe the
counterexample we use the stabilizer formalism, in which
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the state of a system of qubits is fully determined as the
+1 eigenvalue state of a set of operators Si , called the
stabilizer generators that generate an abelian group. For a
detailed exposition of the stabilizer formalism, see Nielsen
and Chuang [26]. The initial state of the central qubit (labelled
“0”) is then determined fully by the operator S

(a)
0 = X0. The

satellite qubit j is stabilized by S
(a)
j = Xj , with j = 1, . . . ,N .

Next, we entangle the qubits using controlled-Z (CZ) gates,
causing the stabilizer generators to evolve to

S
(a)
0 → S

(b)
0 = X0

N∏
j=1

Zj and S
(a)
j → S

(b)
j = Z0Xj . (46)

This evolution occurs in time t
(N)
CZ . The subsequent Hadamard

gate on the satellite qubits changes the stabilizer generators to

S
(c)
0 =

N∏
j=0

Xj and S
(c)
j = Z0Zj . (47)

This evolution will take a time t
(N)
H . It is straightforward to

check that the state corresponding to these stabilizer generators
is the Greenberger-Horne-Zeilinger (GHZ) state (|0, . . . ,0〉 +
|1, . . . ,1〉)/√2 on the N + 1 qubits. The phase shift φ on
the satellite qubits given by Uj (φ) = exp(iφZ/2) changes the
stabilizer generators to

S
(d)
0 = X0

N∏
j=1

Uj (φ)XjU
†
j (φ) =X0

N∏
j=1

(cos φ Xj + sin φ Yj ),

(48)

and the stabilizer generators for the satellite qubits remain
unchanged: S

(d)
j = S

(c)
j . This evolution will take a time t

(N)
φ .

After the phase evolution, we again apply Hadamard gates to
the satellite qubits, leading to the stabilizer generators

S
(e)
0 = X0

N∏
j=1

(cos φ Zj − sin φ Yj ) and S
(e)
j = Z0Xj .

(49)

Finally, the satellite qubits are disentangled from the central
qubit with another N CZ gates, leading to

S
(f )
0 = cos(Nφ) X0 + sin(Nφ) Y0 and S

(f )
j = Xj . (50)

In other words, the satellite qubits are back to their initial state
and the central qubit is in the state

|ψ (f )〉 = |0〉 + eiNφ |1〉√
2

. (51)

This is orthogonal to the initial state of the central qubit when
Nφ = π . The total time τ taken by this evolution is

τ = 2t
(N)
CZ + 2t

(N)
H + t

(N)
φ . (52)

To show that this is a counterexample to both the Mandelstam-
Tamm and Margolus-Levitin bounds, we need to show that we
can choose parameters such that τ < πh̄/E0.

The Hadamard gate evolves a state halfway to an orthogonal
state, and the speed limit for this gate can therefore be taken
as half the time given in Eq. (45), with E1 → Eq :

tH = πh̄

2Eq

. (53)

Since all Hadamard gates are applied simultaneously to
different qubits, the minimum time to apply N Hadamard gates
is the same as that for a single Hadamard gate. Therefore, we
have t

(N)
H = tH . A similar argument holds for the application

of the phase shifts on the satellite qubits, leading to t
(N)
φ = tφ .

The determination of the time it takes to apply the N CZ

gates requires a little more care since each gate involves the
central qubit. First, consider the time evolution of Sj

dSj

dt
= i

h̄
[H,Sj ]. (54)

The interaction Hamiltonian for a CZ gate between the central
qubit and the j th satellite qubit can be written as Hj =
g(I0 − Z0)(Ij − Zj ). Since [Hj,Hk] = 0 for all j and k, the
interaction Hamiltonian for the N CZ gates is H = ∑

j Hj .
Solving the Heisenberg equation in Eq. (54) gives

Sj (t) = 1

2

[
1 + cos

(
gt

h̄

)]
Xj + 1

2
sin

(
gt

h̄

)
Yj

+ 1

2

[
1 − cos

(
gt

h̄

)]
Z0Yj − 1

2
sin

(
gt

h̄

)
Z0Yj , (55)

which exhibits a periodic behavior with period T = 2πh̄/g.
After half this period, the stabilizer Sj (t) becomes S

(b)
j , and

the gate time for a single CZ gate is therefore

tCZ = 1

2
T = πh̄

g
. (56)

In the case of N CZ gates, the evolution of the stabilizer
generator S0(t) is more complicated since it encapsulates the
interaction of the central qubit with all the satellite qubits. We
have to show that it nevertheless exhibits the same periodicity
as Sj (t). In general, we can write S0(t) in terms of the Pauli
operators on the central qubit and the j th satellite qubit, while
collecting all other Pauli operators in Q(j ):

S0(t) = αj (t)Q(j )
α X0Ij + βj (t)Q(j )

β Y0Ij

+γj (t)Q(j )
γ X0Zj + δj (t)Z0Q

(j )
δ Y0Zj , (57)

where αj (t), βj (t), γj (t), and δj (t) are the coefficients that
determine the time behavior. Their exact form is not important
for our argument. Since the operators S0(t) and Sj (t) stabilize
the evolving state at all times, and the stabilizer is an
abelian group, we require that [S0(t),Sj (t)] = 0 for all t .
The periodicity of Sj (t) then implies the periodicity of S0(t),
and moreover, they must have the same period. Since this
period is independent of N , we arrive at the conclusion that
all N CZ gates can be applied simultaneously. Notice that
although the coefficients of S0(t) will change for larger N , the
underlying periodicity cannot be affected without causing the
commutation relations [S0(t),Sj (t)] to become nonzero.

Finally, we choose tφ (and therefore φ itself) arbitrarily
small, and N arbitrarily large, such that Nφ = π and tφ ≈ 0.
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The parameter regime where the system becomes a counterex-
ample to the quantum speed limits (τ < πh̄/E0) then becomes

2πh̄

g
+ πh̄

Eq

<
πh̄

E0
. (58)

This can be recast into the following two requirements:

Eq > E0 and g >
2EqE0

Eq − E0
. (59)

Since this is a perfectly valid parameter regime in quantum
mechanics, this constitutes a proper counterexample (even
though it may be very difficult to implement in practice).
It demonstrates that the bounds are valid only for unitary
evolution. In fact, τ can be made arbitrarily small by making
Eq and g arbitrarily large, and consequently there is no general
bound that is valid for all possible (unitary and nonunitary)
quantum evolution.

The violation of the Mandelstam-Tamm and Margolus-
Levitin bounds leads to a number of open questions. First,
what are the general requirements on a system and its
interaction with the environment to violate the speed limit? The
counterexample presented here suggests that the interaction
between the system and its environment must be strong
and that the environment must be more energetic than the
system (Eq > E0). Second, can these regimes be probed with
experiments? It is not clear a priori that the strong interaction
of our counterexample can be achieved in a noiseless way. This
may prevent the practical implementation of the evolution,

even though the counterexample is perfectly valid from a
mathematical point of view. In other words, taking into account
noise may lead to another practical speed limit after all. And
third, are there general bounds on the speed of quantum
evolution based on general properties of the environment,
rather than on detailed knowledge of the dynamics of the
combined system? These questions must be addressed to fully
understand the speed of dynamical evolution of open quantum
systems.

V. CONCLUSION

The Mandelstam-Tamm and Margolus-Levitin inequalities
play an important role in the study of quantum-mechanical
processes in nature. However, to date there has been only one
derivation of the Margolus-Levitin inequality. In this paper,
we gave alternative derivations for both inequalities from the
statistical distance between quantum states. This allows for a
fully geometrical interpretation of the quantum speed limit.
The inequalities were shown to hold for unitary evolution of
pure and mixed states, and a counterexample to the inequalities
is given for evolution described by completely positive trace-
preserving maps.
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