
PHYSICAL REVIEW A 82, 022106 (2010)

Enhanced sensitivity to the time variation of the fine-structure constant and m p/me in diatomic
molecules: A closer examination of silicon monobromide
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Recently it was pointed out that transition frequencies in certain diatomic molecules have an enhanced
sensitivity to variations in the fine-structure constant α and the proton-to-electron mass ratio mp/me due to a near
cancellation between the fine structure and vibrational interval in a ground electronic multiplet [V. V. Flambaum
and M. G. Kozlov, Phys. Rev. Lett. 99, 150801 (2007)]. One such molecule possessing this favorable quality is
silicon monobromide. Here we take a closer examination of SiBr as a candidate for detecting variations in α and
mp/me. We analyze the rovibronic spectrum by employing the most accurate experimental data available in the
literature and perform ab initio calculations to determine the precise dependence of the spectrum on variations
in α. Furthermore, we calculate the natural linewidths of the rovibronic levels, which place a fundamental limit
on the accuracy to which variations may be determined.
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I. INTRODUCTION

Theories unifying gravity with other interactions suggest
the possibility of spatial and temporal variation of fundamental
physical constants, such as the fine-structure constant, α =
e2/h̄c, and the proton-to-electron mass ratio, µ = mp/me [1].
The search for such variation has received considerable interest
in recent years and is being conducted using a wide variety
of methods [2,3]. Some major directions of this research
include the analysis of high-resolution spectroscopy of quasar
absorption systems [4–6], frequency comparison of atomic
clocks over extended periods of time [7–9], and nuclear
methods, including the study of nucleosynthesis, α and β

decay, and the Oklo natural reactor [10–15].
Precision molecular spectroscopy is a new and promis-

ing direction of searching for variations in fundamental
constants. Molecular spectra are sensitive to both µ and
α, and by measuring close-lying levels, great enhancement
of relative variation may be observed [3,16,17]. In par-
ticular, diatomic molecules that have a near cancellation
between hyperfine structure and rotational intervals or be-
tween fine structure and vibrational intervals are of inter-
est in the context of such an enhancement. A number of
such molecules have been proposed, e.g., Cs2 [18], CaH,
MgH, CaH+ [19,20], Cl+2 , IrC, HfF+, SiBr, LaS, LuO, and
others [21].

In this paper, we conduct a detailed study of one of the
molecular candidates suggested by Flambaum and Kozlov
[21], namely, silicon monobromide. To this end, it is useful
to start by briefly recapitulating some of the main concepts
put forth by these authors. We consider a diatomic molecule
with an electronic ground state composed of a fine-structure
multiplet. Taking the vibrational energy spacing of the multi-
plet as ωe in the harmonic approximation, and the fine-structure
(spin-orbit) energy spacing between two multiplet states as ωf ,
the energy associated with a transition between the multiplet
states reads

ω = ωf − vωe,

where v represents the change in the number of vibrational
quanta for the transition.

The fine-structure and vibrational energies have different
sensitivities to variations in α and µ. In particular, ωf is
sensitive to variations in the fine-structure constant, scaling
as ωf ∼ α2, while being almost insensitive to variations in
µ. On the other hand, ωe is sensitive to variations in the
proton-to-electron mass ratio, scaling as ωe ∼ µ−1/2, while
being insensitive to variations in α. It follows that ω is sensitive
to variations in both α and µ, with a corresponding variation
for fractional variations in α and µ given by

δω = 2ωf

δα

α
+ v

2
ωe

δµ

µ
.

For a number of molecules there exist transitions having
a near cancellation between fine-structure and vibrational
energies, i.e., ωf ≈ vωe. In such cases, the fractional variation
of ω may then be written

δω

ω
≈ K

(
2
δα

α
+ 1

2

δµ

µ

)
,

where K = ωf /ω is an enhancement factor. Large values
of K are suggestive of favorable cases for experimentally
detecting a signal from variations in α or µ. As discussed
in Ref. [21], however, it is also necessary to consider the size
of the absolute shift δω and compare this to experimental
limitations on measuring ω itself; one such notable limitation
is the natural linewidth and intensity of the transition.

The diatomic molecule SiBr has a 2�r electronic ground
state with fine-structure and vibrational spacing similar to
about 1 cm−1 (ωf ≈ ωe ≈ 420 cm−1). This is comparable
to the rotational constant Be, and thus ω may be reduced
further by a suitable choice of rotational levels. In this paper
we examine the rovibronic spectrum of SiBr by employing
the most accurate experimental spectroscopic data for SiBr
available in the literature, namely, that of Bosser et al. [22].
Furthermore we perform ab initio molecular calculations
with the purpose of (i) determining the precise dependence
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of the spectrum on α, and (ii) obtaining values for the
natural linewidths of the pertinent levels. As in Ref. [21],
we still conclude that dedicated measurements are required
to determine precise values of transition frequencies and find
the best transitions for the search of variation in α and µ;
the aim of this work is to entice experimental progress in this
direction.

At the risk of being overly prudent, we discuss our
convention used throughout concerning units, applicable to
the above expressions as well. We choose to work with atomic
units (h̄ = e = me = 1), and thus an expression such as δX

indicates a variation in X when expressed in atomic units
(this is not a trivial remark: for instance, when expressed in
atomic units the speed of light c = 1/α certainly varies with
a variation of α; however, by definition the speed of light
does not change if expressed in SI units). Throughout this
paper we will find it useful to express energy values in the
spectroscopically familiar units of cm−1; one should interpret
this merely as a conversion from the atomic unit of energy,
1 a.u. = 2.194 746 25 × 105 cm−1. In the end we will only
be concerned with variations of dimensionless quantities [1],
such as the ratio of two frequencies, and for these expressions
ambiguity surrounding units is nonexistent.

II. ROVIBRONIC ENERGY LEVELS IN HUND’S
CASE a DIATOMICS

We consider an electronic multiplet of a diatomic molecule
described by Hund’s case a [23]. In Hund’s case a, the
electronic orbital angular momentum L is strongly coupled to
the internuclear axis (chosen to be the z axis in a molecule-fixed
frame), which is to say that �, the eigenvalue of Lz, remains
a good quantum number. Furthermore, the spin angular
momentum S is strongly coupled to the internuclear axis by
way of the spin-orbit interaction, and thus �, the eigenvalue
of Sz, also remains a good quantum number.

Initially we neglect the spin-orbit interaction, in which case
we may write the vibronic energies Tev of a given electronic
multiplet in terms of conventional spectroscopic constants,

Tev = Te + ωe

(
v + 1

2

)
− ωexe

(
v + 1

2

)2

, (1)

where v is the vibrational quantum number, and terms
beyond second order in (v + 1

2 ) are omitted. The constant
Te is the energy relative to the ground-state multiplet; as
we will only be concerned with the ground-state multiplet,
we may set Te = 0. Constants ωe and ωexe represent the
harmonic vibrational energy and the first correction due to
anharmonicity, respectively.

Next we consider the effective spin-orbit interaction. As L
is strongly coupled to the internuclear (z) axis, the spin-orbit
interaction takes the simple form [24]

Hso = AvLzSz. (2)

The spin-orbit factor Av here depends on the vibrational state
and to the first order in (v + 1

2 ) may be written as

Av = Ae − αAe

(
v + 1

2

)
. (3)

Finally, we consider the energy associated with rotation,
taking the effective rotational Hamiltonian for the Hund’s
intermediate case a − b as in Ref. [24],

Hrot = BvN
2, (4)

where N = J − S, and J being the total angular momentum
excluding nuclear spin. We now introduce the operators J± =
Jx ± iJy , and similar for S±, where x and y correspond to
the molecule-fixed axes perpendicular to the internuclear axis.
With these operators we expand N2 as

N2 = J 2 + S2 − 2J · S

= J 2 + S2 − 2S2
z − 2LzSz − (J+S− + J−S+), (5)

where we have used Jz − Lz − Sz = 0 with the physical
reasoning that the molecule rotates about an axis perpendicular
to the internuclear axis. In the expressions to follow, we neglect
the small v dependence of Bv and use Bv = Be. For the Hund’s
case a limit, where � is assumed to be a good quantum number,
the term in parentheses in Eq. (5) may be dropped as it involves
the raising and lowering operators S±.

We now consider the energy levels specific to a � doublet,
such as the ground electronic state of SiBr. The appropriate ba-
sis for Hund’s case a is |JM,��〉, where M is the eigenvalue
of JZ , Z being a space-fixed axis. In this basis, the doubly
degenerate 2�1/2 state is represented by |JM,±1,∓ 1

2 〉 and the
doubly degenerate 2�3/2 state represented by |JM,±1,± 1

2 〉.
The angular-momentum quantum number J is necessarily
a half-integer, with limitations J � 1/2 and J � 3/2 for
the 2�1/2 and 2�3/2 states, respectively. In terms of the
spectroscopic constants introduced above, the energy levels
are then given by

EvJ = ±1

2
(Ae − 2Be) +

(
ωe ∓ 1

2
αAe

) (
v + 1

2

)

−ωexe

(
v + 1

2

)2

+ Be

(
J + 1

2

)2

, (6)

where the top (bottom) sign corresponds to the 2�3/2 (2�1/2)
levels. As discussed in Ref. [24], αAe may be regarded as
the difference in the harmonic vibrational energies of the
doublet levels when considered independently, i.e., αAe =
ω

(1/2)
e − ω

(3/2)
e ; this interpretation is consistent with Eq. (6).

It will be useful to separate the energy given by Eq. (6) into
J -independent and J -dependent parts,

EvJ = Gv + FJ ,

where FJ = Be(J + 1
2 )2. We will refer to these as the vibronic

and rotational energies, respectively. Note that with this
nomenclature, the energy contribution ∓Be of Eq. (6) is
associated with the vibronic energy, despite arising from the
rotational Hamiltonian, Eq. (4). We further note that with
this choice of separation, only the expression for the vibronic
part depends on the particular doublet state (2�3/2 or 2�1/2).
The total energies, EvJ , will be referred to as the rovibronic
energies.

It is briefly noted here that certain additional terms, such as
those associated with the spin-rotation interaction, lambda-
doubling, and the hyperfine interaction, have intentionally
been neglected in this section. These contributions are typically
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small, though for large J some of these terms may have a
sizable effect.

III. ROVIBRONIC ENERGY LEVELS
OF SILICON MONOBROMIDE

The ground electronic multiplet, X2�r , of SiBr falls into the
category of Hund’s case a. Accurate spectroscopic constants
for this doublet have been experimentally determined by
Bosser et al. [22] and are presented in Table I. Figure 1(a)
illustrates the potential energy curves for the 2�1/2 and 2�3/2

states near minima, based on the data for isotopic species
28Si79Br; also displayed are the lowest few vibronic energy
levels. Due to similarity in the magnitude of the Ae and ωe

constants, the G
(1/2)
v level is quasidegenerate with the G

(3/2)
v−1

level for v = 1,2, . . . . Figure 1(b) provides a magnification of
the energy separation between these quasidegenerate levels.

Before proceeding we briefly discuss the accuracy of the
experimental data in Table I. Explicit uncertainties are not
provided for the constants, but indications from Ref. [22]
suggest that the data are likely to be accurate to ∼0.1 cm−1.
For the illustrative purposes of this section, we will treat the
data as exact; for deviations on the order of ∼0.1 cm−1, the
important qualitative features of the spectrum remain, and only
minor modifications would be necessary.

As mentioned in the Introduction, we are interested in
transitions having large enhancement factors, namely, the
transitions between the quasidegenerate vibronic levels. We
define the small energy difference between quasidegenerate
vibronic levels as

�Gv ≡ G
(3/2)
v−1 − G(1/2)

v

= Ae − ωe − 2Be + v(2ωexe − αAe). (7)

(It is noted that �Gv as defined here is not related to the usual
spectroscopic �G1/2, �G3/2, . . .) For the isotope 28Si79Br this
reduces to

�Gv = (−1.86 + 0.85v) cm−1.

An interesting property of the 28Si79Br vibronic spectrum is
that �Gv is negative for v = 1,2 and positive for v � 3. This
is plainly seen in Fig. 1(b), where for the quasidegenerate

TABLE I. Spectroscopic constants for the X2�r ground dou-
blet of SiBr. Theoretical values for 28Si79Br are calculated using
the relativistic Fock space coupled cluster approach, described in
Sec. V. Experimental data for isotope 28Si79Br are from Ref. [22],
whereas data for isotope 28Si81Br are inferred using the appropriate
dependence on reduced mass per spectroscopic constant along with
the ratio of reduced masses of the two isotopic species, 1.0065044.
All values in the table are in cm−1.

28Si79Br 28Si81Br
Constant Theor. Expt. Expt.

Ae 419.54 422.61 422.61
ωe 424.35 424.14 422.77
ωexe 1.32 1.41 1.40
αAe 2.26 1.97 1.96
Be 0.1634 0.1671 0.1660

FIG. 1. (Color online) Potential energy curves and the lowest few
vibronic energy levels for the X2�r ground doublet of 28Si79Br. (a)
The lower blue and upper red curves represent the potential energy
curves for the 2�1/2 and 2�3/2 states, respectively, with the solid blue
and dashed red horizontal lines illustrating the corresponding vibronic
energy levels. (b) The energy separation between the quasidegenerate
vibronic levels is magnified by a factor of 100. All energy differences
are in cm−1.

levels described by v = 1,2, the G
(3/2)
v−1 energy (dashed red

line) is below the G
(1/2)
v energy (solid blue line), whereas the

order is inverted for v � 3. This inversion arises due to the
anharmonicity of the potentials, ωexe.

We now turn our attention to rotational energies. With
our choice of separation for “vibronic” and “rotational”
contributions to the total energy, the rotational energies
are given by the same expression for both doublet states,
i.e., F

(1/2)
J = F

(3/2)
J = Be(J + 1

2 )2. We will concern ourselves
only with single-photon transitions, from which the angular-
momentum restriction �J = 0, ± 1 follows. For �J = 0
transitions, there is no change in rotational energy, and the
corresponding measured transition lines for all J may be
blended, limiting the accuracy. For this reason, we focus
on transitions with �J = ±1. We define the difference in
rotational energy encompassing both of these cases as

�F±
J ≡ F

(3/2)
J±1 − F

(1/2)
J =

{
2Be(J + 1),

−2BeJ,
(8)

where �F+
J and �F−

J are restricted by J � 1/2 and J �
5/2, respectively. We note that �F+

J is necessarily positive,
whereas �F−

J is necessarily negative.
The experimentally observable quantity is the energy

difference between two rovibronic levels; we define the energy
difference between pertinent rovibronic levels as

�E±
vJ ≡ E

(3/2)
v−1,J±1 − E

(1/2)
vJ = �Gv + �F±

J . (9)
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FIG. 2. (Color online) Rovibronic levels of 28Si79Br associated
with the 2�1/2,v = 1 (solid blue lines) and 2�3/2,v = 0 (dashed
red lines) quasidegenerate vibronic levels. Displayed are (a) the two
vibronic levels and (b) all rovibronic levels for up to J = 9/2. All
energy differences are in cm−1.

To continue with our strategy of finding the largest enhance-
ment factors, we look for specific transitions in which

�E±
vJ = �Gv + �F±

J ≈ 0. (10)

As an example, we take the v = 1 vibronic energy difference
of 28Si79Br, �G1 = −1.01 cm−1. As �G1 is negative, we
require �F+

J in Eq. (10) and may subsequently solve for J ,

J ≈ −�G1

2Be

− 1 = 2.02,

which indicates that two appropriate choices for J are J = 3/2
and J = 5/2, with corresponding values of �E+

vJ

�E+
1,3/2 = −0.18 cm−1,

(11)
�E+

1,5/2 = +0.16 cm−1.

Figure 2 displays the rovibronic spectrum arising from
the G

(1/2)
1 (2�1/2,v = 1) and G

(3/2)
0 (2�3/2,v = 0) quaside-

generate vibronic levels for 28Si79Br. The energy differences
corresponding to �E+

1,3/2 and �E+
1,5/2 are also displayed. One

can resolve the absolute values appearing in Fig. 2 with the
signed values appearing in Eq. (11) by noting that if the
E

(3/2)
v−1,J±1 (red dashed line) is above the E

(1/2)
vJ level (solid

blue line), then the sign of �E±
vJ is positive; if the order of the

levels is opposite, the sign of �E±
vJ is negative. The particular

sign of �E±
vJ is important from the viewpoint of variations of

�E±
vJ with respect to variations of α and µ, as discussed in

the following section.

IV. VARIATIONS OF THE ROVIBRONIC TRANSITION
FREQUENCIES WITH RESPECT TO

VARIATIONS OF α AND µ

In this section we consider variation of the energy difference
�E±

vJ with respect to variations of α and µ. The constants

Ae and ωe are orders of magnitude larger than the other
spectroscopic constants used to describe �E±

vJ ; furthermore
Ae is only sensitive to variations in α while ωe is only sensitive
to variations in µ. Consequently, to a first approximation, we
can estimate the variation δ(�E±

vJ ) by variations of Ae and ωe,

δ(�E±
vJ ) ∼= δAe − δωe.

The spin-orbit constant Ae embodies the major relativistic
correction to the energy spectrum of the doublet and to the
lowest order scales as α2. Thus, if we assume higher-order
relativistic corrections to be negligible, we may write

δAe = 2Ae

δα

α
.

The harmonic vibrational energy ωe is insensitive to
relativistic corrections, though it is proportional to M

−1/2
red ,

where Mred is the reduced nuclear mass, and as such is
sensitive to µ. The proton and neutron masses, as well as
nuclear binding energies, are all proportional to the quantum
chromodynamics scale �QCD (see, e.g., Refs. [25,26]). It
follows that the nuclear masses and, further, the reduced
nuclear mass are also proportional to �QCD. We conclude
that δMred/Mred = δmp/mp = δµ/µ, where the last equality
holds for atomic units. The constant ωe then varies with µ as

δωe = −1

2
ωe

δµ

µ
.

Combining the above equations yields

δ(�E±
vJ ) ∼= 2Ae

δα

α
+ 1

2
ωe

δµ

µ
∼= 2Ae

(
δα

α
+ 1

4

δµ

µ

)
, (12)

where in the last expression we used the fact that Ae
∼= ωe.

Evidently the transitions �E±
vJ are sensitive to variations in the

combined constant αµ1/4 (the term in parentheses is equivalent
to the fractional variation δρ/ρ, where ρ = αµ1/4).

As discussed in the Introduction, the variation δ(�E±
vJ )

is dependent on our choice of unit system, namely, atomic
units. To remove dependence on the unit system, we consider
variations of dimensionless quantities, such as the ratio of
two transition energies. In the present setup, we may consider
the ratio of two transition energies within the same doublet
rovibronic spectrum. Equating ω1 and ω2 to two separate
transition energies �E±

vJ , the variation of the dimensionless
ratio ω1/ω2 is given by

δ(ω1/ω2)

(ω1/ω2)
= δω1

ω1
− δω2

ω2

∼=
(

1

ω1
− 1

ω2

)
2Ae

(
δα

α
+ 1

4

δµ

µ

)
.

The sensitivity to variations in αµ1/4 is maximized by selecting
transitions which have small values of ω1 and ω2 and which
additionally differ in sign.

Alternatively, one may measure the ratios (|ω1| + |ω2|)/ωr

and (|ω1| − |ω2|)/ωr , where ωr is some reference energy. This
is similar to what has been done with atomic dysprosium
(in which case ω1 and ω2 are defined by different isotopic
species) [27,28]. Noting that in the present case ω1 + ω2

is sensitive to variations in αµ1/4 whereas ω1 − ω2 is not,
it follows that whether |ω1| ± |ω2| is sensitive to variations
in αµ1/4 depends on the relative signs of ω1 and ω2. In
particular, given opposite signs of ω1 and ω2, the difference
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|ω1| − |ω2| is sensitive to variations in αµ1/4; an immediate
benefit of this choice is that systematic effects (e.g., constant
frequency shifts) can presumably be controlled or eliminated
to a large extent by taking the difference. Dependence of
the reference energy on the variation of the fundamental
constants may be neglected if there is no relative enhancement
(cancellation of different contributions) there. This is the case
for the Cs hyperfine standard and any other hyperfine transition
(calculated in Ref. [29]) and for practically any other transition
in SiBr.

The preceding expressions of this section are approximate
relations. In the remainder of this section, we present more
precise formulas. In particular, we include contributions from
variations in the additional spectroscopic constants ωexe, αAe,
and Be and, further, we use ab initio calculations to determine
the precise dependence of the variations of the constants with
variations of α. En route to calculating the variations of the
constants with respect to α, we obtain values for the constants
themselves, which are presented in Table I alongside the
experimental data. We note an impressive agreement between
our computed constants and the experimental constants. In
particular, the primary constants Ae and ωe agree to better
than 1%, and we feel that this is indicative of the accuracy
of our computed variations of the constants with respect to
α presented below. A brief discussion of the computational
method is provided in the following section.

From our calculations we obtain the following relations for
variations of the constants with respect to variations of α only:

δAe

Ae

= 2.019
δα

α
,

δαAe

αAe

= 1.927
δα

α
,

(13)
δωe

ωe

= −4.5 × 10−3 δα

α
,

and variations in constants ωexe and Be with respect to
variations in α give negligible contribution.

For variations with respect to µ, we make use of analytical
formulas, using the appropriate dependence of the constants on
the reduced mass. In particular, we have the following relations
for variations of the constants with respect to variations of µ

only:

δωe

ωe

= −1

2

δµ

µ
,

δαAe

αAe

= −1

2

δµ

µ
,

(14)
δ(ωexe)

ωexe

= −δµ

µ
,

δBe

Be

= −δµ

µ
,

and no variation in Ae with respect to variations in µ.
We consider as an example the two transition energies ω1 =

�E+
1,5/2 and ω2 = �E+

1,3/2 [i.e., the transitions identified in
Fig. 2(a)]. Using Eqs. (13) and (14), we find the variations in
these transition energies to be

δω1 = δω2 = (851 cm−1)

(
δα

α
+ 0.247

δµ

µ

)
.

The deviation of this expression from the less sophisticated
expression, Eq. (12), is small and on the order of the accuracy
of the computations. Note, however, that for transitions
associated with a higher vibrational quantum number v, the
deviations from Eq. (12) become more pronounced. For
example, suppose the transition ω = �E−

24,55.5 is found to

be a convenient transition to probe [with Eqs. (7)–(9), ω =
−0.01 cm−1]; for this transition, we obtain

δω = (764 cm−1)

(
δα

α
+ 0.196

δµ

µ

)
.

V. COMPUTATIONAL DETAILS OF X2�r

ROVIBRONIC SPECTRUM

Fine-structure splitting is an inherently relativistic effect;
hence, all the energy calculations employed the relativistic
four-component molecular Dirac-Coulomb Hamiltonian

HDC =
∑

i

hD(i) +
∑
i<j

1

rij

,

where

hD(i) = cαi · pi + βic
2 + Vnuc(i).

Here hD is the one-electron Dirac Hamiltonian, with Vnuc the
nuclear attraction operator for the two nuclei considered, and
takes into account the finite nucleus effect; α and β are the
four-dimensional Dirac matrices; and the term

∑
i<j 1/rij

represents the repulsive Coulomb interaction between
electrons.

As SiBr is an open-shell system with a single valence
electron outside the closed shell, we employed the Fock space
coupled cluster (FSCC) method with sectors (0,0) and (0,1) to
account for electron correlation, where the closed-shell cation
served as reference, and an electron was added in the (0,1)
sector, with the model space composed of both 2�1/2 and
2�3/2 molecular orbitals to obtain the potential energy curves
for the two states of interest.

An uncontracted aug-cc-pVTZ basis set was used for both
atoms [30,31]; 37 electrons were correlated and virtual orbitals
with energies above 35 a.u. were omitted. All the energy
calculations were performed using the DIRAC program package
[32], and the spectroscopic constants were obtained from the
potential energy curves by solving the rotational-vibrational
Schrödinger equation numerically using the program VIBROT

[33]. The results are presented and compared with the
experimental values in Table I.

To assess the dependence of the values of interest, Ae, ωe,
αAe

, ωexe, and Be, on the fine-structure constant, the calcula-
tions were carried out for different values of x ≡ (α/α0)2 − 1,
α0 being the present value of α, and the derivatives were
obtained using numerical differentiation.

VI. COMPUTED LINEWIDTHS OF ROVIBRONIC LEVELS

The natural linewidths of the rovibronic levels place a
fundamental limit on the accuracy to which a given transition
frequency can be measured, and, therefore, also on the
accuracy to which any variation in αµ1/4 may be measured. In
Ref. [21], rough estimates of the linewidths of the rovibronic
levels were obtained for � doublets; here we provide computed
values for the SiBr molecule.

To obtain the linewidths, we require dipole matrix elements.
We begin with the wave function 
γv(q,R) representing
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the Born-Oppenheimer molecular solutions for a nonrotating
molecule (see, e.g., Ref. [23]),


γv(q,R) = ψγ (q,R)φγv(R),

where R is the nuclear separation and q encapsulates all elec-
tronic space and spin coordinates. Here ψγ (q,R) represents
the electronic eigensolutions for a given nuclear separation R,
and φγv(R) represents the subsequent eigensolutions for the
nuclear vibrational motion. The solutions are assumed to be
orthogonal and normalized over the appropriate space, i.e.,∫

ψ∗
γ ′(q,R)ψγ (q,R) dq = δγ ′γ ,∫
φ∗

γ v′ (R)φγv(R) dR = δv′v.

We may write the dipole operator in terms of electronic and
nuclear contributions,

D(q,R) = De(q) + Dn(R).

Specifically, the electronic contribution De(q) is given by

De(q) = −
∑

i

ri ,

where ri is the position vector of the ith electron (ri ∈ q) and
the summation runs over all electrons. The nuclear contribution
Dn(R) is

Dn(R) =
(

ZB

MB

− ZA

MA

)
MredRêz,

where Mi and Zi are the mass and atomic numbers of the nuclei
i = A,B and we have assumed the coordinate origin to be at
the center of mass with the z axis aligned with the internuclear
axis. A dipole matrix element between the Born-Oppenheimer
wave functions reads

〈γ ′v′|D|γ v〉 =
∫ ∫

ψ∗
γ ′ (q,R)φ∗

γ ′v′ (R)[De(q) + Dn(R)]

×ψγ (q,R)φγv(R) dq dR

=
∫

φ∗
γ ′v′ (R)〈γ ′|D|γ 〉φγv(R) dR, (15)

where the R-dependent matrix element 〈γ ′|D|γ 〉 represents the
dipole matrix element for a given “clamped” nuclear separation
R and is given by

〈γ ′|D|γ 〉 ≡ δγ ′γ Dn(R) +
∫

ψ∗
γ ′(q,R)De(q)ψγ (q,R) dq.

We are interested in dipole matrix elements between the
vibronic states of a (Hund’s case a) electronic multiplet.
The relevant vibrational wave functions φγv(R) are largely
independent of the particular multiplet level; i.e., φγv(R) ≡
φv(R). Furthermore, the wave functions φv(R) are significant
in magnitude only within a small region about the equilibrium
nuclear separation R = Re [note that the Born-Oppenheimer
approximation is rooted in the assumption that φv(R) varies
more rapidly with R than ψγ (q,R)]. As such, we may expand
〈γ ′|D|γ 〉 in the integrand of Eq. (15) about Re; explicitly to
the first order in (R − Re) this is

〈γ ′|D|γ 〉 ∼= 〈γ ′|D|γ 〉
∣∣∣∣
Re

+ d〈γ ′|D|γ 〉
dR

∣∣∣∣
Re

(R − Re).

Subsequent evaluation of the integral gives

〈γ ′v′|D|γ v〉 ∼= δv′v〈γ ′|D|γ 〉
∣∣∣∣
Re

+ d〈γ ′|D|γ 〉
dR

∣∣∣∣
Re

×Re

√
Be

ωe

(
√

vδv′+1,v +
√

v′δv′−1,v), (16)

where we have assumed the vibrational wave functions φv(R)
to be harmonic oscillator eigenfunctions.

The contribution to the natural linewidth for a given decay
channel γ v → γ ′v′ is given by

�(γ v → γ ′v′) = 4ω3
γ v,γ ′v′

3c3
|〈γ ′v′|D|γ v〉|2, (17)

where ωγv,γ ′v′ is the energy difference between the initial and
final state, and we have summed over final rotational states.
We neglect decay channels within a given vibronic level and
between quasidegenerate vibronic levels for which the energy
difference is small.

We begin by considering vibrational decay. Using the
MOLPRO computational package [34], we calculated the diag-
onal matrix elements 〈2�1/2|D|2�1/2〉 and 〈2�3/2|D|2�3/2〉 at
multiple nuclear separation distances R within the vicinity of
Re. With numerical differentiation and taking the experimental
ratio

√
Be/ωe = 0.020, we obtain the results

|〈2�1/2,v − 1|D|2�1/2,v〉|
|〈2�3/2,v − 1|D|2�3/2,v〉|

}
= 0.12

√
v a.u. (18)

The decay channel 2�3/2,v → 2�1/2,v is forbidden in the
nonrelativistic limit, though it is opened up by spin-orbit
mixing of the 2�1/2 state with the excited electronic 2�1/2

state. Due to its purely relativistic origin, the corresponding
dipole matrix element proves very difficult to obtain by
computational methods. To circumvent the need for a direct
computational value, we write the dipole matrix element as in
Ref. [21],

|〈2�3/2|D|2�1/2〉| ∼= ξ |〈2�3/2|D|2�1/2〉|,
where ξ is the small parameter quantifying the spin-orbit mix-
ing. We find from computation |〈2�3/2|D|2�1/2〉|∼0.1 a.u.,
indicating that |〈2�3/2|D|2�1/2〉| is appreciably smaller than
the dipole matrix elements in Eqs. (18). Thus we conclude that
neglect of the decay channel 2�3/2,v → 2�1/2,v is acceptable,
because its contribution to linewidths will be overshadowed by
the contribution from the vibrational decay.

As a specific example, we consider the natural linewidth of
the 2�1/2,v = 1 vibronic level. With Eqs. (17), we find

�(2�1/2,v = 1) = 5.3 × 10−17a.u. = 0.35 Hz.

We note that this is an order of magnitude larger than the
estimate given in Ref. [21].

VII. CONCLUSION

Here we have extended upon Flambaum and Kozlov’s work
[21] by considering properties of silicon monobromide that
make it a prospective candidate for detecting variations in the
fine-structure constant α and the proton-to-electron mass ratio
µ (in particular, variations in the combined constant αµ1/4).
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We have examined the rovibronic spectrum by employing the
most accurate experimental data available in the literature,
namely, that of Bosser et al. [22]. Furthermore, we present
results of ab initio calculations for the precise dependence of
the spectroscopic constants on variations in α. We additionally
present calculated values for the natural linewidths of the
rovibronic levels which place a fundamental limit on the
accuracy to which variations in αµ1/4 may be determined.

As in Ref. [21], we emphasize that dedicated measure-
ments are necessary to find precise values for the transition

frequencies and determine the best transitions. It is our hope
that this work entices experimental progress in this direction.
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