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Hydrogen atom in momentum space with a minimal length
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A momentum representation treatment of the hydrogen atom problem with a generalized uncertainty relation,
which leads to a minimal length (�Xi)min = h̄

√
3β + β ′, is presented. We show that the distance squared

operator can be factorized in the case β ′ = 2β. We analytically solve the s-wave bound-state equation. The
leading correction to the energy spectrum caused by the minimal length depends on

√
β. An upper bound for the

minimal length is found to be about 10−9 fm.
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I. INTRODUCTION

Since Kempf and co-workers developed the theoretical
framework of quantum mechanics based on a generalized
uncertainty relation, which implies the existence of a minimal
length, in a series of papers [1–3], a lot of attention has
been attracted to the study of physical problems within
this formalism, see, for instance, Refs. [4–13]. The idea of
modifying the standard Heisenberg uncertainty relation in such
a way that it includes a minimal length has first been proposed
in the context of quantum gravity and string theory [14,15]. It
is assumed that this elementary length should be on the scale of
the Planck length of lp = 10−35 m, below which the resolution
of distances is impossible.

It was shown in Refs. [1–3] that the minimal length
uncertainty relation is closely connected to a modification of
the standard Heisenberg algebra by adding specific corrections
to the canonical commutation relations between position
and momentum operators so that the Heisenberg algebra
becomes [X̂i,P̂j ] = ih̄[(1 + βP̂

2
)δij + β ′P̂i P̂j ], where β and

β ′ are small positive parameters related to the minimal
length by (�Xi)min = h̄

√
3β + β ′. One of the fundamental

consequences of the generalized uncertainty relation is the
loss of localization in coordinate space due to the presence
of a nonzero minimal uncertainty in position measurements.
Consequently, momentum space is more convenient in order
to solve any eigenvalue problem. However, this is not often
possible, especially when the potential depends, in a not
too straightforward manner, on the position operators as in
the case of the hydrogen atom potential. In the literature,
this problem is the most studied in this modified version
of quantum mechanics [16–20]. This is natural because this
system has a particular interest. The elementary length has
been associated with the finite size of the electron; and the
use of the high-precision experimental data for the transition
1S-2S and for the Lamb shift were exploited to estimate an
upper bound for the minimal length of about 0.01–0.1 fm.

Except in Ref. [16], the energy spectrum of the hydrogen
atom has been obtained perturbatively in coordinate space:
The terms proportional to the deformation parameters β and
β ′ in the Schrödinger equation were regarded as perturbation
corrections to the Hamiltonian operator; the use of perturbation
theory allowed for the computation of the corrections in the
first order to the energy levels. In momentum space, the
difficulty lies in defining the square root of the operator R̂

2 =

∑3
i=1X̂iX̂i . To avoid this problem, the author of Ref. [16] used

complicated successive transformations on the wave function
and solved the s-wave bound-state equation. The spectrum is
obtained, however, the correction caused by the minimal length
is different from what was obtained in coordinate space.

Given the discrepancy between the results, which concern
this problem, it is interesting to consider it again with
another method. For this purpose, here, we give a simple
method to solve the s-wave deformed Schrödinger equation
in momentum space for the Coulomb potential. We show that,
in the particular case β ′ = 2β, the distance squared operator
R̂

2
can be factorized in the first order in the deformation

parameter β. We obtain the wave function and the energy
spectrum, which are different from that of Ref. [16]. By using
the experimental data for the Lamb shift, we find an upper
bound of the minimal length of 10−9 fm.

The rest of this paper is organized as follows. In Sec. II,
we give a brief review of different works, which concern the
hydrogen potential with a minimal length. In Sec. III, we study
this problem in momentum space. We summarize our results
in a brief concluding section.

II. HYDROGEN ATOM WITH A MINIMAL
LENGTH: A REVIEW

As mentioned in Sec. I, several papers have been devoted to
the study of the hydrogen atom problem in quantum mechanics
with a generalized uncertainty relation, based on the following
deformed Heisenberg algebra [16–20]:

[X̂i,P̂j ] = ih̄[(1 + βP̂
2
)δij + β ′P̂i P̂j ], (1)

[P̂i ,P̂j ] = 0, (2)

[X̂i,X̂j ] = ih̄
2β − β ′ + β(2β + β ′)P̂ 2

1 + βP̂
2 (P̂iX̂j − X̂i P̂j ). (3)

Many representations of the operators X̂i and P̂i were used by
assuming that X̂i and P̂i are functions of the operators x̂i and
p̂i , which satisfy the standard canonical commutation relations
of ordinary quantum mechanics.

Brau was the first to use the perturbation technique to
calculate the correction to the energy spectrum of the hydrogen
atom due to the presence of a minimal length [17]. The author
made a simple choice of X̂i and P̂i in the coordinate space
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valid in the case β ′ = 2β, and in the first order in β, namely,

X̂i = x̂i , P̂i = p̂i(1 + βp̂ 2). (4)

Thus, the Schrödinger equation takes the form[
p̂ 2

2m
+ V (̂�r) + β

m
p̂ 4

]
ψ(�r) = Eψ(�r). (5)

As is clearly seen, the effect of the minimal length is
described by the presence of a perturbation term ( β

m
p̂ 4) in

the ordinary Schrödinger equation.
Thereafter, Akhoury and Yao [16] considered the same

problem in momentum space by using the following repre-
sentation:

X̂i = (1 + βp̂ 2)̂xi + β ′p̂i p̂j x̂j + γ p̂i, P̂i = p̂i . (6)

The authors write the Schrödinger equation for the
Coulomb potential V (r) = −α/r , in the form[

R̂

(
p̂ 2

2m
− E

)
− α

]
|ψ〉 = 0,

where R̂ is the square root of the operator R̂
2 = ∑3

i=1X̂iX̂i .
Unlike in ordinary quantum mechanics, where the expres-

sion of R̂ can be obtained for the s waves (l = 0), the definition
of this operator is not obvious in the deformed case even if
l = 0.

To overcome this problem, Akhoury and Yao performed
some changes of variables and transformations on the wave
function, and defined a supposedly radial distance operator
R̂ = ih̄[1 + (β + β ′)p2] d

dp
, which acts on the state τ |ψ〉

instead of |ψ〉, where τ is a transformation not explicitly
given. Nevertheless, the authors succeeded to get a solution to
the deformed Schrödinger equation, and to extract the energy
spectrum by imposing the condition of single valuedness on
the wave function. The correction to the energy levels is
completely different from that obtained by Brau. It is important
to mention that, in Ref. [16], the condition of single valuedness
was not correctly applied. In Sec. III, we propose another
method in momentum space; the correct energy spectrum will
be calculated.

The problem of the hydrogen atom has been reconsidered
by Benczik et al. [18], by using the representation given by
Eq. (6) with two approaches, the first by numerical techniques
in momentum space and the second by the perturbation theory
in position space. Their results are in disagreement with those
obtained by Akhoury and Yao, and differ from the ones of
Brau only for � = 0.

Finaly, Stetsko and Tkachuk [19] and Stetsko [20] proposed
another perturbative method by using the following position
representation of the operators X̂i and P̂i :

X̂i = x̂i + 2β − β ′

4
(p̂ 2x̂i + x̂i p̂

2), P̂i = p̂i

(
1 + β ′

2
p̂ 2

)
.

(7)

This representation reduces to that of Brau Eq. (4) in the case
β ′ = 2β. They compute the correction to the energy spectrum
in the first order in β and β ′. Their results reproduce those of
Brau even in the case � = 0.

For the sake of completeness, let us mention that the
Coulomb potential has also been considered in the one-

dimensional case in both nonrelativistic [21] and relativistic
[22] quantum mechanics with a minimal length. The treatment
was performed in momentum space, and the expression of the
energy spectrum is different from that obtained in the case
� = 0 of Ref. [16].

In the following, we consider, again, the hydrogen atom
problem by using a momentum representation, which is more
appropriate in this version of quantum mechanics.

III. MOMENTUM SPACE TREATMENT

Let us consider the Schrödinger equation for the hydrogen
atom in the form[

R̂

(
p̂ 2

2m
− E

)
− α

]
|ψ〉 = 0, (8)

where the strength of the potential is α = e2

4πε0
. In the

momentum representation, the wave function reads [4]

ψ( �p) = 〈 �p |ψ 〉 = Ym
� (θ,ϕ)ψ(p).

By restricting ourselves to the � = 0 wave function and by
using the momentum representation given by Eq. (6), with
γ = 0, we obtain the following expression for the distance
squared operator:

R̂
2 = (ih̄)2

{
[1 + (β + β ′)p2]2 d2

dp2

+ 2

p
[1 + (β + β ′)p2] [1 + (2β + β ′)p2]

d

dp

}
. (9)

In the general case, this operator is not factorizable in the
sense that its square root is unknown. In spite of this, we show
that R̂

2
can be factorized in the particular case β ′ = 2β in the

first order in β. Indeed, since β and β ′ are supposed to be small
parameters, the distance squared operator can be expressed as

R̂
2 = (ih̄)2

[
(1 + 6βp2)

d2

dp2
+ 2

p
(1 + 7βp2)

d

dp

]
+ O(β2).

(10)
In Eq. (10), R̂

2
can be written as R̂ × R̂ , where

R̂ = ih̄

[
(1 + 3βp2)

d

dp
+ 1

p
(1 + βp2)

]
+ O(β2). (11)

From Eqs. (8) and (11), the radial Schrödinger equation for
the hydrogen atom in momentum space with a minimal length
reads

(1 + 3βp2) (p2 + k2)
dψ(p)

dp
+

[
1

p
(1 + βp2)(p2 + k2)

+ 2p(1 + 3βp2) + 2iαm

h̄

]
ψ(p) = 0, (12)

where k2 = −2mE.
In order to integrate this equation, it is convenient to make

it in the form

dψ(p)

dp
+

(
η − 1

p + ik
− η + 1

p − ik
+

1
3 − ξ

p + i/
√

3β

+
1
3 + ξ

p − i/
√

3β
− 1

p

)
ψ(p) = 0, (13)
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in which,

ξ = αm
√

3β

h̄(1 − 3βk2)
, η = αm

h̄k(1 − 3βk2)
.

The solution to Eq. (13) is

ψ(p) = A
(1 + 3βp2)1/3

p(p2 + k2)
exp[2ξ i arctan (p

√
3β)

− 2ηi arctan (p/k)], (14)

where A is a normalization constant. In the limit β = 0, ψ(p)
reduces to the result of ordinary quantum mechanics [23].

Our wave function differs from that obtained in Ref. [16]
by the factor 1

p
(1 + 3βp2)1/3:

ψ(p) = 1

p
(1 + 3βp2)1/3ψ(p)Akhoury.

This discrepancy is due to a certain transformation used in
Ref. [16], which has not been explicitly given.

To extract the energy spectrum, by following
Refs. [16,23–26], we require that ψ(p) must be a single-valued
function (i.e., it must be unchanged under the transformation):

arctan (z) → arctan (z) + π.

Thus, we must have

ξ − η = n, (15)

where n is an integer number. This leads to the following
quantization condition:

αm

h̄k(1 + k
√

3β)
= n, n = 1,2, . . . . (16)

By solving for k and by using k = √−2mE, we obtain

E±
n = − 1

24mβ

[
1 ±

(
1 + 4

mα

h̄n

√
3β

)1/2
]2

.

In the limit β → 0, E+
n diverges. So, the energy spectrum

reads

En = − 1

24mβ

[
1 −

(
1 + 4

mα

h̄n

√
3β

)1/2
]2

, n = 1,2, . . . .

(17)
To leading order(s) in the small parameter β, the spectrum

can be expressed as follows:

En = −
(

mα2

2h̄2n2
− m2α3

h̄3n3

√
3β + 15

2

m3α4

h̄4n4
β

)
+ O(β3/2),

n = 1,2, . . . . (18)

The first term represents the energy spectrum of ordinary
quantum mechanics, while the second and third terms are
the corrections brought about by the existence of a minimal
length. As we see, our result coincides with that of the one-
dimensional Coulomb potential [21], where the quantization
condition has been derived by imposing the Hermiticity of the
Hamiltonian.

The main feature of the spectrum Eq. (18) is the pres-
ence of a positive correction proportional to the minimal
length [(�X)min = h̄

√
3β], which is the leading correction.

Previously, this term was omitted in Ref. [16]; the correction
due to the modification of the Heisenberg algebra is negative,
and is described only by the third term of Eq. (18). This is
because the condition of the single valuedness was not strictly
applied. The authors took, instead of Eq. (15), the condition
η = n, which is not sufficient to assure that the wave function
be single valued. In the perturbative treatment of the hydrogen
atom [17–20], β is the perturbation parameter, and, naturally
the first-order correction is proportional to this deformation
parameter.

This result is very important because it leads to an order
of magnitude of the minimal length completely different from
what was obtained in Refs. [16–20], where an upper bound
for the minimal length was found to be about 0.01–0.1 fm.
The estimation of this bound was mainly obtained by two
methods. The first requires that the corrections to the spectrum
due to the modification of the Heisenberg algebra are smaller
than the experimental error on the value of the transition 1S-2S

in the hydrogen atom [16,17]. The second assumes that the
effects of the minimal length are included in the gap between
the theoretical and the experimental values of the Lamb shift
for the hydrogen atom levels [18–20].

Indeed, we now use Eq. (18) to give a new constraint for
the minimal length. Let us write, to leading orders in the small
parameter β, the following relative shift:

E2S − E1S

E1S

= −3

4
+ mα

4h̄

√
3β − 21

16

m2α2

h̄2 β + O(β3/2).

(19)
The 1S-2S energy splitting in the hydrogen atom is

measured with an accuracy of ε = 1.8 × 10−14 [27]. If we
attribute this error entirely to the minimal length correction
Eq. (19), and by taking only the first dominant contribution
into account, we can write

ε = mα

4h̄

√
3β + O(β),

which gives the value (�X)min ∼ 5 × 10−9 fm. This upper
bound is much smaller than the one obtained in Refs. [16,17].
This is due to the absence of the term proportional to

√
3β in

these references.
It was noted in Ref. [18] that a better estimate for the

minimal length is obtained by including its corrections in the
Lamb shift. Thus, from Eq. (18), the difference (Lexp

1S − Lth
1S)

can be taken as

�E1S = m2α3

h̄3n3

√
3β = h

(
L

exp
1S − Lth

1S

)
.

Given Lth
1S = 8172,731(40) MHz [28] and L

exp
1S =

8172,837(22) MHz [29], we obtain the value (�X)min ∼
10−6 fm. Again, we have a stringent limit on the value of
the minimal length. One can conclude that, in nonrelativistic
treatment of the hydrogen atom problem, the inclusion of a
minimal length would not affect the hydrogen atom physics
because its predicted size is too small.

IV. SUMMARY

We have proposed a simple method to solve the s-wave
Schrödinger equation in momentum space for the hydrogen
atom problem in the framework of quantum mechanics
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with a generalized uncertainty relation, characterized by a
minimal length (�X)min = h̄

√
3β + β ′. We have shown that

the distance squared operator R̂
2

is factorizable in the case
β ′ = 2β in the first order in the deformation parameter β.
The wave functions and the corresponding energy levels are
obtained. The leading correction to the energy spectrum is
proportional to

√
β, which is in agreement with that of the

one-dimensional case [21]. The dependence on
√

β drastically
lowers the minimal length scale, which is of about 10−9 fm.
This leads us to conclude that the minimal length in the

problem considered here is too small so that its effects on
the hydrogen atom physics are negligible.
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