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Experimental evidence of quantum randomness incomputability
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In contrast with software-generated randomness (called pseudo-randomness), quantum randomness can be
proven incomputable; that is, it is not exactly reproducible by any algorithm. We provide experimental evidence
of incomputability—an asymptotic property—of quantum randomness by performing finite tests of randomness
inspired by algorithmic information theory.
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I. QUANTUM INDETERMINACY

The irreducible indeterminacy of individual quantum pro-
cesses postulated by Born [1–3] implies that there exist
physical “oracles,” which are capable of effectively pro-
ducing outputs which are incomputable. Indeed, quantum
indeterminism has been proved [4] under some “reasonable”
side assumptions implied by Bell-, Kochen-Specker-, and
Greenberger-Horne-Zeilinger-type theorems. Yet, as quantum
indeterminism is nowhere formally specified, it is important to
investigate which (classes of) measurements lead to random-
ness, what are the reasons for possible distinctions, whether or
not the kinds of randomness “emerging” in different classes of
quantum measurements are “the same” or “different,” and what
are the phenomenologies or signatures of these randomness
classes. Questions about “degrees of (algorithmic) random-
ness” are studied in algorithmic information theory. Here are
just four types, among an infinity of others: (i) standard pseudo-
randomness produced by software such as MATHEMATICA or
MAPLE which are not only Turing computable but cyclic;
(ii) pseudo-randomness produced by software which is Turing
computable but not cyclic (e.g., digits of π , the ratio between
the circumference and the diameter of an ideal circle, or
Champernowne’s constant); (iii) Turing incomputable, but
not algorithmically random; and (iv) algorithmically random
[5–7]. In which of these four classes do we find quantum ran-
domness? Operationally, in the extreme form, Born’s postulate
could be interpreted to allow for the production of “random”
finite strings; hence quantum randomness could be of type (iv).
(Here the quotation marks refer to the fact that randomness
for finite strings is too “subjective” to be meaningful for our
analysis. The legitimacy of the experimental approach comes
from characterizations of random sequences in terms of the
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degrees of incompressibility of their finite prefixes [5–7].)
A sequence which is not algorithmically random but Turing
incomputable can, for instance, be obtained from an algo-
rithmically random sequence x1x2 · · · xn · · · by inserting a 0 in
between any adjacent original bits, i.e., obtaining the sequence
x10x20 · · · 0xn0 · · ·. This transformation destroys algorithmic
randomness because obvious correlations have appeared;
Turing incomputability is invariant under this transformation
because a copy of the original sequence is embedded in the new
one. Yet much more subtler correlations among subsequences
of Turing incomputable sequences may exist, thus making
them compressible and algorithmically nonrandom. There
is no a priori reason to interpret Born’s indeterminism by
its strongest formal expression (i.e., in terms of algorithmic
randomness).

Quantum randomness produced by quantum systems which
have no classical interpretation can be proven [4] Turing
incomputable. More precisely, if the experiment would run
under ideal conditions “to infinity,” the resulting infinite
sequence of bits would be Turing incomputable; that is, no
Turing machine (or algorithm) could reproduce exactly this
infinite sequence of digits. This result has many consequences.
Here is one example: The experiment could produce a billion
0’s, but not all bits produced will be 0. A stronger form
of incomputability holds true: Every Turing machine (or
algorithm) can reproduce exactly only finitely many scattered
digits of that infinite sequence. Yet this proof stops short
of showing that the sequence produced by such a quantum
experiment is algorithmically random; that is, it is unknown
whether or not such a sequence is or is not algorithmically
random. One of the strategies toward answering this question
is to empirically perform tests “against” the algorithmic
randomness hypothesis.

Our (more modest) aim is to present tests capable of
distinguishing computable from incomputable sources of
“randomness” by examining (long, but) finite prefixes
of infinite sequences. Such differences are guaranteed to exist
by [4], but, because computability is an asymptotic property,
there was no guarantee that finite tests can “pick” differences
in the prefixes that we have analyzed.
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FIG. 1. (Color online) Box-and-whisker plot for the results of the
“book stack” randomness test.

II. TESTS OF EXPERIMENTAL QUANTUM
INDETERMINACY

Based on Born’s postulate, several quantum random num-
ber generators employing beam splitters have recently been
proposed and realized [8–15]. In what follows a detailed
analysis of bit strings of length 232 obtained by two such
quantum random number generators will be presented. (The
size correlates well with the square root of the cycle length used
by cyclic pseudo-random generators; randomness properties
of longer strings generated in this way are impaired.) We
will compare the performance of quantum random num-
ber generators with software-generated number generators
on randomness inspired by algorithmic information theory
(which complement some commonly used statistical tests
implemented in “batteries” of test suites such as, for instance,
DIEHARD [16], NIST [17], or TESTU01 [18]). The standard test
suites are often based on tests which are not designed for
physical random number generators, but rather to quantify
the quality of the cyclic pseudo-random numbers generated
by algorithms. As we would like to separate “truly” random
sequences from software-generated random sequences, the
emphasis is on the former type of tests.

The tests based on algorithmic information theory directly
analyze randomness and thus the strongest possible form of in-
computability. They differ from tests employed in the standard
randomness batteries as they depend on irreducible algorithmic
information content, which is constant for algorithmic pseudo-
random sequences. Some tests are related to each other, as
for instance sequences which are not Borel normal (cf. the
following) could be algorithmically compressed; the analysis
of results helps understand subtle differences at the edge of in-

computability or algorithmic randomness. All tests depend on
the size of the analyzed strings; the legitimacy of our approach
is given by the fact that algorithmic randomness of an infinite
sequence can be “uniformly read” in its prefixes (cf. [7]).

III. DATA SOURCES

The analyzed quantum data consist of 10 quantum random
strings generated with the commercially available QUANTIS

device [19], based on research of a group in Geneva [11],
as well as 10 quantum random strings generated by the
Vienna Institute for Quantum Optics and Quantum Information
(IQOQI) group [20]. The pseudo-random data consist of 10
pseudo-random strings produced by MATHEMATICA 6 [21], and
10 pseudo-random strings produced by MAPLE 11 [22], as well
as 10 strings of 232 bits from the binary expansion of π obtained
from the University of Tokyo’s supercomputing center [23].

The signals of the QUANTIS device are generated by a
light-emitting diode (LED) producing photons which are then
transmitted toward a beam splitter (a semitransparent mirror)
and two single-photon detectors (detectors with single-photon
resolution) to record the outcomes associated with the symbols
“0” and “1,” respectively [19]. Due to hardware imbalances
which are difficult to overcome at this level, QUANTIS processes
these raw data by unbiasing the sequence by a von Neumann–
type normalization: The biased raw sequence of zeros and
ones is partitioned into fixed subsequences of length two;
then the even-parity sequences “00” and “11” are discarded,
and only the odd parity ones “01” and “10” are kept. In a
second step, the remaining sequences are mapped into the
single symbols 01 �→ 0 and 10 �→ 1, thereby extracting a new
unbiased sequence at the cost of a loss of original bits ([24],
p. 768).

This normalization method requires that the events are (tem-
porally) uncorrelated and thus independent. (For the sake of
a simple counterexample, the von Neumann normalization of
the sequences 010101 · · · or 1100110011 · · · are the constant-
0 sequence 000 · · · and the empty sequence.) Under the
independence hypothesis, the normalized sequences are Borel
normal with probability one [25]; e.g., all finite subsequences
of length n occur with their expected asymptotic frequencies
2−n. (Alas, see [26] for some pitfalls when transforming such
sequences.)

The signals of the Vienna IQOQI group were generated with
photons from a weak blue LED light source, which impinged
on a beam splitter without any polarization sensitivity with
two output ports associated with the codes “0” and “1,”
respectively [10]. There was no pre- or post-processing of the
raw data stream, in particular no von Neumann normalization
as discussed for the QUANTIS device; however, the output was

TABLE I. Statistics for the results of the “book stack” randomness test.

Minimum Q1 Median Q3 Maximum Mean Standard deviation

MAPLE 796 4 344 90 492 20 696 30 108 700 534 10 330 68.58
MATHEMATICA 450 8 130 20 241 10 434 50 625 70 279 40 194 06.03
QUANTIS 286 00 604 80 877 80 106 700 156 100 899 90 415 45.76
VIENNA 911 0 384 20 577 20 732 20 976 60 538 60 279 38.92
π 855 1 354 80 421 00 528 70 784 10 412 80 207 58.46
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TABLE II. Statistics for the results based on the Solovay-Strassen probabilistic primality test.

Minimum Q1 Median Q3 Maximum Mean Standard deviation

MAPLE 93.0 96.0 101.0 113.5 120.0 104.9 10.577 23
MATHEMATICA 93.0 97.0 109.0 132.3 142.0 113.5 19.608 67
QUANTIS 99.0 103.3 113.0 121.3 130.0 112.6 10.668 75
VIENNA 82.0 100.3 104.5 109.0 119.0 103.5 11.037 81
π 84.0 91.8 106.0 110.8 128.0 104.7 10.668 75

constantly monitored (the exact method being subject to a
pending patent). In very general terms, the setup needs to
be running for at least one day to reach a stable operation.
There is a regulation mechanism which keeps track of the
bias between “0” and “1” and tunes the random generator for
perfect symmetry. Each data file was created in one continuous
run of the device lasting over hours.

We have employed the extended cellular automaton gener-
ator default of MATHEMATICA 6’s pseudo-random function. It
is based on a particular five-neighbor rule, so each new cell
depends on five nonadjacent cells from the previous step [21].
MAPLE 11 uses a Mersenne Twister algorithm to generate a
random pseudo-random output [22].

IV. TESTING INCOMPUTABILITY AND RANDOMNESS

The tests we performed can be grouped into (i) two tests
based on algorithmic information theory, (ii) statistical tests
involving frequency counts (Borel normality test), (iii) a test
based on Shannon’s information theory, and (iv) a test based
on random walks.

In Figures 1–5 the graphical representation of the results
is rendered in terms of box-and-whisker plots, which char-
acterize groups of numerical data through five characteristic
summaries: test minimum value, first quantile (representing
one fourth of the test data), median or second quantile
(representing half of the test data), third quantile (representing
three fourths of the test data), and test maximum value. Mean
and standard deviation of the data representing the results of the
tests are calculated. Tables containing the experimental data
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FIG. 2. (Color online) Box-and-whisker plot for the results based
on the Solovay-Strassen probabilistic primality test.

and the programs used to generate the data can be downloaded
from our extended paper [27].

A. Book stack randomness test

The book stack (also known as “move to front”) test [28,29]
is based on the fact that compressibility is a symptom of less
randomness.

The results, presented in Fig. 1 and Table I, are derived
from the original count, the count after the application of the
transformation, and the difference. The key metric for this test
is the count of ones after the transformation. The book stack
encoder does not compress data but instead rewrites each byte
with its index from the top (front) with respect to its input
characters being stacked (moved to front). Thus, if a lot of
repetitions occur (i.e., a symptom of nonrandomness), then
the output contains more zeros than ones due to the sequence
of indices generally being smaller numerically.

B. Solovay-Strassen probabilistic primality test

The second algorithmic test, based on the Solovay-
Strassen probabilistic primality test, uses Carmichael (com-
posite) numbers, which are “difficult” to factor, to deter-
mine the quality of randomness by computing how fast the
probabilistic primality test reaches the verdict “composite”
[30,31].

To test whether a positive integer n is prime, we take k

natural numbers uniformly distributed between 1 and n − 1,
inclusive, and, for each chosen i, check whether the predicate
W (i,n) holds. If this is the case we say that “i is a witness
of n’s compositeness.” If W (i,n) holds for at least one i then
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FIG. 3. (Color online) Box-and-whisker plot for the results for
tests of the Borel normality property.
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TABLE III. Statistics for the results for tests of the Borel normality property.

Minimum Q1 Median Q3 Maximum Mean Standard deviation

MAPLE 224 30 471 70 619 90 761 30 945 10 602 10 219 33.52
MATHEMATICA 8572 255 00 405 90 556 50 864 30 418 70 232 29.77
QUANTIS 146 800 185 100 210 500 226 600 260 000 207 200 335 15.65
VIENNA 774 10 340 200 350 500 392 500 260 000 337 100 103 354.3
π 142 60 288 60 408 80 478 60 790 30 402 20 179 06.21

n is composite; otherwise, the test is inconclusive, but in this
case if one declares n to be prime then the probability of being
wrong is smaller than 2−k .

This is because at least half the i values from 1 to n − 1
satisfy W (i,n) if n is indeed composite, and none of them
satisfy W (i,n) if n is prime [30]. Selecting k natural numbers
between 1 and n − 1 is the same as choosing a binary string
s of length n − 1 with k 1’s such that the ith bit is 1 if and
only if i is selected. Reference [31] contains a proof that,
if s is a long enough algorithmically random binary string,
then n is prime if and only if Z(s,n) is true, where Z is a
predicate constructed directly from conjunctions of negations
of W.1

A Carmichael number is a composite positive integer k

satisfying the congruence bk−1 ≡ 1(mod k) for all integers b

relative prime to k. Carmichael numbers are composite, but
they are difficult to factorize and thus are “very similar” to
primes; they are sometimes called pseudo-primes. Fermat’s
primality test declares significantly more Carmichael numbers
as primes than the Solovay-Strassen test. With increasing
values, Carmichael numbers become “rare.”2

We used the Solovay-Strassen test for all Carmichael
numbers less than 1016—computed in Refs. [32,33]—with

1In fact, every “decent” Monte Carlo simulation algorithm in which
tests are chosen according to an algorithmic random string produces
a result which is not only true with high probability but rigorously
correct [34].

2There are 1,401,644 Carmichael numbers in the interval [1,1018].
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FIG. 4. (Color online) Box-and-whisker plot for average results
in “sliding window” estimations of the Shannon entropy.

numbers selected according to increasing prefixes of each
sample string till the algorithm returns a nonprimality verdict.
The metric is given by the length of the sample used to reach
the correct verdict of nonprimality for all of the 246 683
Carmichael numbers less than 1016. [We started with k = 1
tests (per each Carmichael number) and increase k until the
metric goal is met; as k increases we always use new bits
(never recycling) from the sample source strings.] The results
are presented in Fig. 2 and Table II.

C. Borel normality test

Borel normality—requesting that every binary string ap-
pears in the sequence with the correct probability 2−n for a
string of length n—served as the first mathematical definition
of randomness [25]. A sequence is (Borel) normal if every
binary string appears in the sequence with the right probability
(which is 2−n for a string of length n). A sequence is normal
if and only if it is incompressible by any information lossless
finite-state compressor [35], so normal sequences are those
sequences that appear random to any finite-state machine.

Every algorithmic random infinite sequence is Borel normal
[36]. The converse implication is not true: There exist com-
putable normal sequences (e.g., Champernowne’s constant).

Normality is invariant under finite variations: Adding,
removing, or changing a finite number of bits in any normal
sequence leaves it normal. Further, if a sequence satisfies the
normality condition for strings of length n + 1, then it also
satisfies normality for strings of length n, but the converse is
not true.
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FIG. 5. (Color online) Box-and-whisker plot for the results of the
random walk tests.
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TABLE IV. Statistics for average results in “sliding window” estimations of the Shannon entropy.

Minimum Q1 Median Q3 Maximum Mean Standard deviation

MAPLE 0.977 2 0.978 1 0.978 4 0.978 7 0.978 8 0.978 3 0.000 523 161 7
MATHEMATICA 0.977 6 0.978 1 0.978 3 0.978 5 0.980 0 0.978 3 0.000 665 493 6
QUANTIS 0.977 9 0.978 3 0.978 3 0.978 6 0.979 5 0.978 4 0.000 452 269 9
VIENNA 0.977 2 0.977 7 0.978 4 0.979 0 0.979 2 0.978 3 0.000 695 583 4
π 0.977 9 0.978 4 0.978 8 0.979 0 0.979 9 0.978 8 0.000 606 272 4

Normality was transposed to strings in Ref. [36]. In
this process one has to replace limits with inequalities. As
a consequence, these two properties, which are valid for
sequences, are no longer true for strings.

For any fixed integer m > 1, consider the alphabet Bm =
{0,1}m consisting of all binary strings of length m, and for every
1 � i � 2m denote by Nm

i (x) the number of occurrences of
the lexicographical ith binary string of length m in the string
x (considered over the alphabet Bm). By |x|m we denote the
length of x over Bm; |x|1 = |x|. A string x is Borel normal if
for every natural 1 � m � log2 log2 |x|,

∣∣∣∣N
m
j (x)

|x|m − 2−m

∣∣∣∣ �
√

log2 |x|
|x| ,

for every 1 � j � 2m. In Ref. [36] it is shown that almost all
algorithmic random strings are Borel normal.

First we count the maximum, minimum, and difference of
nonoverlapping occurrences of m-bit (m = 1, . . . ,5) strings
in each sample string. Then we test the Borel normality
property for each sample string and found that almost all
strings pass the test, with some notable exceptions. We found
that several of the Vienna sequences failed the expected count
range for m = 2 and a few of the Vienna sequences were
outside the expected range for m = 3 and m = 4 (with some
less then the expected minimum count and some more than
the expected maximum count). The only other bit sequence
that was outside the expected range count was one of the
MATHEMATICA sequences that had too big of a count for k = 1.
Figure 3 depicts a box-and-whisker plot of the results. This is
followed by statistical (numerical) details in Table III.

D. Test based on Shannon’s information theory

The next test computes “sliding window” estimations of
the Shannon entropy L1

n, . . . ,L
t
n according to the method

described in [37]: A smaller entropy is a symptom of less
randomness. The results are presented in Fig. 4 and Table IV.

E. Test based on random walks

A symptom of nonrandomness of a string is detected when
the plot generated by viewing a sample sequence as a 1D
random walk meanders “less away” from the starting point
(both ways); hence the maximum–minimum range is the
metric.

The fifth test is thus based on viewing a random sequence
as a one-dimensional random walk, whereby the successive
bits, associated with an increase of one unit per bit of the
x coordinate, are interpreted as follows: 1 =“move up” and
0 =“move down” on the y axis. In this way a measure is
obtained for how far away one can reach from the starting
point (either positive or negative) from the starting y value
of 0 that one can reach using successive bits of the sample
sequence. Figure 5 and Table V summarize the results.

V. STATISTICAL ANALYSIS OF RANDOMNESS
TESTS RESULTS

In what follows the significance of results corresponding to
each randomness test applied to all five sources are analyzed by
means of some statistical comparison tests. The Kolmogorov-
Smirnov test for two samples [38] determines whether two
datasets differ significantly. This test has the advantage of
making no prior assumption about the distribution of data
(i.e., it is nonparametric and distribution free).

The Kolmogorov-Smirnov test returns a p value, and
the decision “the difference between the two datasets is
statistically significant” is accepted if the p value is less than
0.05, or, stated pointedly, if the probability of taking a wrong
decision is less than 0.05. Exact p values are only available
for the two-sided two-sample tests with no ties.

In some cases we have tried to double-check the decision
“no significant differences between the datasets” at the price of
a supplementary, plausible distribution assumption. Therefore,
we have performed the Shapiro-Wilk test for normality [39]
and, if normality is not rejected, we have assumed that the
datasets have normal (Gaussian) distributions. In order to
be able to compare the expected values (means) of the two

TABLE V. Statistics for the results of the random walk tests.

Minimum Q1 Median Q3 Maximum Mean Standard deviation

MAPLE 676 40 887 30 126 400 162 500 180 500 125 300 429 95.59
MATHEMATICA 735 00 847 60 981 10 103 400 120 300 964 50 146 85.34
QUANTIS 138 200 161 600 209 000 250 200 294 200 211 300 559 60.23
VIENNA 920 70 130 200 155 600 167 600 226 900 152 900 367 17.55
π 585 70 704 20 828 00 919 20 107 500 821 20 148 33.75

022102-5



CALUDE, DINNEEN, DUMITRESCU, AND SVOZIL PHYSICAL REVIEW A 82, 022102 (2010)

TABLE VI. Kolmogorov-Smirnov test p values for the “book
stack” tests.

MATHEMATICA QUANTIS VIENNA π

MAPLE 0.417 5 0.167 8 0.994 5 0.417 5
MATHEMATICA 0.002 1 0.167 8 0.417 5
QUANTIS 0.167 8 0.012 3
VIENNA 0.417 5

samples, the Welch t-test [40], which is a version of Student’s
test, has been applied. In order to emphasize the relevance of
p values less than 0.05 associated with Kolmogorov-Smirnov,
Shapiro-Wilk, and Welch’s t-tests, they are printed in boldface
and discussed in the text.

A. Book stack randomness test

The results of the Kolmogorov-Smirnov test associated
with the “book-stack” tests are enumerated in Table VI.
Statistically significant differences are identified for QUANTIS

versus MATHEMATICA and π .
As more compression is a symptom of less randomness, the

corresponding ranking of samples is as follows: 〈QUANTIS〉 =
899 88.9 > 〈VIENNA〉 = 538 63.8 > 〈MAPLE〉 = 534 11.6 >

〈π〉= 412 77.5 > 〈MATHEMATICA〉 = 279 38.3. The Shapiro-
Wilk tests results are presented in Table VII.

Since normality is not rejected for any string, we apply the
Welch’s t-test for the comparison of means. The results are
enumerated in Table VIII. Significant differences between the
means are identified for the following sources: (i) QUANTIS

versus all other sources (MAPLE, MATHEMATICA, VIENNA, π )
and (ii) VIENNA versus MATHEMATICA and MAPLE (as already
mentioned).

B. Solovay-Strassen probabilistic primality test

The Kolmogorov-Smirnov test results for this test are
presented in Table IX, where no significant differences are
detected.

The Shapiro-Wilk test results are presented in Table X.
Since there is no clear pattern of normality for the data, the
application of Welch’s t-test is not appropriate.

C. Borel test of normality

The results of the Kolmogorov-Smirnov test are presented
in Table XI.

Statistically significant differences are identified for
(i) QUANTIS versus MAPLE, MATHEMATICA, and π ;
(ii) VIENNA versus MAPLE, MATHEMATICA, and π ; and
(iii) QUANTIS versus VIENNA.
Note the following:
(1) Pseudo-random strings pass the Borel normality test for

comparable, relatively small (with respect to quantum strings;

TABLE VII. Shapiro-Wilk test p values for the “book stack” tests.

MAPLE MATHEMATICA QUANTIS VIENNA π

0.788 0 0.481 9 0.723 9 0.814 6 0.517 2

TABLE VIII. Welch’s t-test p values for the “book stack” tests.

MATHEMATICA QUANTIS VIENNA π

MAPLE 0.053 5 0.043 6 0.974 0.341 2
MATHEMATICA 0.000 9 0.028 3 0.155 1
QUANTIS 0.036 8 0.005 4
VIENNA 0.269 0

cf. the following) numbers of counts: If the angle brackets 〈x〉
stand for the statistical mean of tests on x, then 〈MAPLE〉 =
602 10, 〈MATHEMATICA〉 = 418 70, 〈π〉 = 402 20.

(2) Quantum strings pass the Borel normality test only
for “much larger numbers” of counts (〈QUANTIS〉 = 207 200,
〈VIENNA〉 = 337 100).
As a result, the Borel normality test detects and
identifies statistically significantly differences between
all pairs of computable and incomputable sources of
“randomness.”

D. Test based on Shannon’s information theory

The results of the Kolmogorov-Smirnov test are presented
in Table XII. No significant differences are detected. The
descriptive statistics data for the results of this test indi-
cate almost identical distributions corresponding to the five
sources.

The results of the Shapiro-Wilk test associated with a
test based on Shannon’s information theory are presented
in Table XIII. Since there is no clear pattern of normal-
ity for the data, the application of Welch’s t-test is not
appropriate.

E. Test based on random walks

The Kolmogorov-Smirnov test results associated with test
based on random walks are presented in Table XIV. Statisti-
cally significant differences are identified for (i) QUANTIS ver-
sus all other sources (MAPLE, MATHEMATICA, VIENNA, and π );
(ii) VIENNA versus MATHEMATICA, VIENNA (as already
mentioned), and π ; and (iii) MAPLE versus π .

Quantum strings move farther away from the starting
point than the pseudo-random strings (i.e., 〈QUANTIS〉 >

〈VIENNA〉 > 〈MAPLE〉 > 〈MATHEMATICA〉 > 〈π〉).
It was quite natural to double-check the conclusion “QUAN-

TIS and VIENNA do not exhibit significant differences.” Hence
we run the Shapiro-Wilk test, which concludes that normality
is not rejected (cf. Table XV).

Next, we apply the Welch’s t-test for the comparison
of means. The results are given in Table XVI. Significant

TABLE IX. Kolmogorov-Smirnov test p values for the Solovay-
Strassen tests.

MATHEMATICA QUANTIS VIENNA π

MAPLE 0.759 1 0.400 5 0.759 1 0.759 1
MATHEMATICA 0.759 1 0.759 1 0.759 1
QUANTIS 0.400 5 0.759 1
VIENNA 0.988 3
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TABLE X. Shapiro-Wilk test p values for the Solovay-Strassen
tests.

MAPLE MATHEMATICA QUANTIS VIENNA π

0.069 6 0.036 3 0.437 8 0.696 3 0.431 5

TABLE XI. Kolmogorov-Smirnov test p values for the Borel
normality tests.

MATHEMATICA QUANTIS VIENNA π

MAPLE 0.417 5 <10−4 0.000 2 0.167 8
MATHEMATICA <10−4 0.000 2 0.994 5
QUANTIS 0.000 2 <10−4

VIENNA 0.000 2

TABLE XII. Kolmogorov-Smirnov test p values for Shannon’s
information theory tests.

MATHEMATICA QUANTIS VIENNA π

MAPLE 0.787 0 0.787 0 0.787 0 0.167 8
MATHEMATICA 0.787 0 0.417 5 0.052 5
QUANTIS 0.417 5 0.167 8
VIENNA 0.417 5

TABLE XIII. Shapiro-Wilk test p values for Shannon’s informa-
tion theory tests.

MAPLE MATHEMATICA QUANTIS VIENNA π

0.196 2 0.018 9 0.034 5 0.379 0 0.877 4

TABLE XIV. Kolmogorov-Smirnov test p values for the random
walk tests.

MATHEMATICA QUANTIS VIENNA π

MATHEMATICA 0.167 8 0.012 3 0.417 5 0.052 5
QUANTIS <10−4 0.002 1 0.167 8
VIENNA 0.052 5 <10−4

π 0.000 2

TABLE XV. Shapiro-Wilk test p values for the random walk tests.

MAPLE MATHEMATICA QUANTIS VIENNA π

0.200 6 0.926 8 0.546 4 0.888 8 0.957 7

TABLE XVI. Welch’s t-test p values for the random walk tests.

MATHEMATICA QUANTIS VIENNA π

MAPLE 0.069 61 0.001 3 0.140 9 0.011 9
MATHEMATICA <10−4 0.000 7 0.043 5
QUANTIS 0.014 3 <10−4

VIENNA 0.000 1

differences between the means are identified for the following
sources: (i) QUANTIS versus all other sources (MAPLE, QUANTIS,
VIENNA, and π ); (ii) VIENNA versus MATHEMATICA, QUANTIS

(as already mentioned), and π ; (iii) MAPLE versus π .

VI. SUMMARY

Tests based on algorithmic information theory analyze
algorithmic randomness, the strongest possible form of in-
computability. In this respect they differ from tests employed
in the standard test batteries, as the former depend on
irreducible algorithmic information content, which is constant
for algorithmic pseudo-random generators. Thus the set of
randomness tests performed for our analysis could in principle
be expected to be “more sensitive” with respect to differenti-
ating between quantum randomness and algorithmic types of
“quasi-randomness” than statistical tests alone.

All tests have produced evidence—with different degrees of
statistical significance—of differences between quantum and
nonquantum sources:

(a) For the test for Borel normality—the strongest discrim-
inator test—statistically significant differences between the
distributions of datasets are identified for (i) QUANTIS versus
MAPLE, MATHEMATICA, and π ; (ii) VIENNA versus MAPLE,
MATHEMATICA, and π ; and (iii) QUANTIS versus VIENNA. Not
only is the average number of counts larger for quantum
sources, but the increase is quite significant: QUANTIS is 3.5–5
times larger than the corresponding average number of counts
for software-generated sources, and VIENNA is 5–8 times larger
than those values.

(b) For the test based on random walks, statistically
significant differences between the distributions of datasets
are identified for (i) QUANTIS versus all other sources
(MAPLE, MATHEMATICA, VIENNA, and π ) and (ii) VIENNA

versus MATHEMATICA, VIENNA, and π . Quantum strings
move farther away from the starting point than the pseudo-
random strings (i.e., 〈QUANTIS〉 > 〈VIENNA〉 > 〈MAPLE〉 >

〈MATHEMATICA〉 > 〈π〉).
(c) For the “book-stack” test, significant differences be-

tween the means are identified for the following sources:
(i) QUANTIS versus all other sources (MAPLE, MATHEMATICA,
VIENNA, and π ) and (ii) VIENNA versus MATHEMATICA and
MAPLE.

(d) For the test based on Shannon’s information theory, as
well as for the Solovay-Strassen test, no significant differences
among the five chosen sources are detected. In the first case
the reason may come from the fact that averages are the same
for all samples. In the second case the reason may be because
the test is based solely on the behavior of algorithmic random
strings and not on a specific property of randomness.

We close with a cautious remark about the impossibility to
formally or experimentally “prove absolute randomness.” Any
claim of randomness can only be secured relative to, and with
respect to, a more or less large class of laws or behaviors, as
it is impossible to inspect the hypothesis against an infinity
of—and even less so all—conceivable laws. To rephrase a
statement about computability ([41], p. 11), “How can we ever
exclude the possibility of our presented, some day (perhaps
by some extraterrestrial visitors), with a (perhaps extremely
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complex) device that ‘computes’ and ‘predicts’ a certain type
of hitherto ‘random’ physical behavior?”
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A. Lepistö (Turku Centre for Computer Science, Turku, Finland,
2007), pp. 129–131.

[34] C. Calude and M. Zimand, Int. J. Comput. Math. 16, 47
(1984).

[35] J. Ziv and A. Lempel, IEEE Trans. Inf. Theory 24, 530 (1978).
[36] C. Calude, in Developments in Language Theory, edited by

G. Rozenberg and A. Salomaa (World Scientific, Singapore,
1994), pp. 113–129.

[37] A. D. Wyner, IEEE Information Theory Society (1994).
[38] W. J. Conover, Practical Nonparametric Statistics (Wiley,

New York, 1999), p. 584.
[39] S. S. Shapiro and M. B. Wilk, Biometrika 52, 591 (2005).
[40] B. L. Welch, Biometrika 34, 28 (1947).
[41] M. Davis, Computability and Unsolvability (McGraw-Hill,

New York, 1958).
[42] R. Solovay and V. Strassen, SIAM J. Comput. 7, 118 (1978).

022102-8

http://dx.doi.org/10.1007/BF01397477
http://dx.doi.org/10.1007/BF01397184
http://dx.doi.org/10.1038/438743a
http://dx.doi.org/10.1016/S0019-9958(66)80018-9
http://dx.doi.org/10.1016/0375-9601(90)90408-G
http://dx.doi.org/10.1080/09500349414552281
http://dx.doi.org/10.1080/09500349414552281
http://dx.doi.org/10.1063/1.1150518
http://dx.doi.org/10.1088/0256-307X/21/10/027
http://dx.doi.org/10.1063/1.2338830
http://dx.doi.org/10.1063/1.2338830
http://dx.doi.org/10.1103/PhysRevA.75.032334
http://dx.doi.org/10.1103/PhysRevA.79.054306
http://www.stat.fsu.edu/pub/diehard/
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22b.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22b.pdf
http://dx.doi.org/10.1145/1268776.1268777
http://dx.doi.org/10.1145/1268776.1268777
http://www.idquantique.com/images/stories/PDF/quantis-random-generator/quantis-whitepaper.pdf
http://www.idquantique.com/images/stories/PDF/quantis-random-generator/quantis-whitepaper.pdf
http://reference.wolfram.com/mathematica/tutorial/RandomNumberGeneration.html
http://reference.wolfram.com/mathematica/tutorial/RandomNumberGeneration.html
http://www.maplesoft.com/support/help/Maple/view.aspx?path=rand
http://www.maplesoft.com/support/help/Maple/view.aspx?path=rand
ftp://pi.super-computing.org
http://dx.doi.org/10.1007/BF03019651
http://dx.doi.org/10.1007/BF03019651
http://arXiv.org/abs/arXiv:0912.4379
http://dx.doi.org/10.1016/j.jspi.2004.02.010
http://dx.doi.org/10.1016/j.jspi.2004.02.010
http://dx.doi.org/10.1137/0206006
http://dx.doi.org/10.1137/0206006
http://dx.doi.org/10.1002/cpa.3160310407
http://dx.doi.org/10.1002/cpa.3160310407
http://arXiv.org/abs/arXiv:math.NT/9803082
http://dx.doi.org/10.1080/00207168408803423
http://dx.doi.org/10.1080/00207168408803423
http://dx.doi.org/10.1109/TIT.1978.1055934
http://dx.doi.org/10.1093/biomet/52.3-4.591
http://dx.doi.org/10.2307/2332510
http://dx.doi.org/10.1137/0207009

