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Calibration of single-photon detectors using quantum statistics
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I show that calibration of the single-photon detector can be performed without knowledge of the signal
parameters. Only partial information about the state statistics is sufficient for that. If one knows that the state
is the squeezed one or the squeezed one mixed with the incoherent radiation, one can infer both the parameters
of the state and the efficiency of the detector. For that one needs only to measure on/off statistics of detector
clicks for the number of known absorbers placed before the detector. Thus, I suggest a scheme that performs a
tomography of the signal and the measuring apparatus simultaneously.
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Nowadays single-photon detectors are necessary tools for
quantum optics, informatics, and telecommunications. But to
use them, they have to be calibrated. In any experiment where
photon counting of a few-photon signal is to be performed,
it is required to know, with precision, characteristics of the
used detector. It is necessary to know the efficiency, the dark
counts rate, the dead time, the twilight time, the afterpulsing
rate, and other parameters needed to bridge a gap between the
theoretical fiction of an “ideal detector” and a realistic photon-
registering device. In practice, a calibration is most commonly
achieved by using a standard source and/or precalibrated
detector [1]. However, this procedure is quite involved, and
can hardly be accomplished outside the metrology laboratory.
A researcher really needs a simple and reliable procedure
which would enable one to calibrate a detector with sufficient
accuracy without leaving his or her own laboratory. Besides
that, one cannot refrain oneself from questioning the optimality
of the usual procedure when applied to a few-photon signal.
Indeed, apart from knowledge of the signal field intensity
required for calibration, the standard procedure uses virtually
no information stored within the signal.

Attempts to use quantum statistical properties of the signal
for a calibration have already three decades of history. In the
1980s it was suggested to calibrate using photons proclivity
to be born in pairs during the spontaneous down-conversion
process [2,3]. In this scheme one implements two detectors.
A click on the first detector means that there is a certainty
of having a photon on the way to the second detector. To
infer an efficiency of the second detector it is sufficient to
find a ratio of clicks on both detectors. Such a scheme makes
it unnecessary either to compare the detector in question with
the precalibrated detector, or to calibrate the source. Moreover,
one does not need to know efficiencies of either detector to
perform. Just the knowledge about photons arriving always
in pairs makes the calibration possible. So, the procedure
was termed as the “absolute” calibration. Nowadays, this
procedure is actively researched, realized, and generalized
(see, for example, [4–6]).

Obviously, a knowledge of the quantum state statistics can
be exploited in a far more extensive way. Actually, the statistics
itself can be a precise calibrating tool making it unnecessary
to implement standard sources and detectors, or correlated and
twin photon states. In this work I show that one can perform an

accurate “absolute” calibration of the detector using a partial
knowledge of the quantum statistics of a signal state. For
example, information on a relation between just two elements
of the signal state density matrix is sufficient to perform the
calibration. It is interesting that the calibration performed in
this manner is rather robust with respect to imperfections
of this information, i.e., to contamination of the signal with
noise.

In this work I consider a particular practically realizable
scheme of the absolute detector calibration using a simple and
easily generated signal state, namely the squeezed vacuum,
possibly contaminated with the thermal noise. I emphasize that
to perform the calibration one needs only a general knowledge
about the quantum statistics. Initially, the degree of squeezing
and the temperature of the incoherent component are supposed
to be unknown. I demonstrate that it is possible to determine
them simultaneously together with the detector efficiency, thus
performing simultaneous tomography of the source and the
measuring device. It can be accomplished by using already
well-established procedure of the photon-number distribution
reconstruction using on/off detectors [7–9]. For that one has
to implement a set of absorbers with known transmittivities
(notice, that they need not be either too high or too low).

To demonstrate a way of calibrating the detector using
only a partial knowledge of the signal state statistics, let us
start with the simple example of a mixture of the vacuum,
one and two photons. It is described by the following density
matrix:

ρ = (1 − ρ1 − ρ2)|0〉〈0| + ρ1|1〉〈1| + ρ2|2〉〈2|, (1)

where |n〉 denotes the Fock state with n photons. Let us
assume that we know only about ρ1 = ρ2, but nothing else.
So, we prepare a set of K absorbers with transmittivities Tk

and measure frequencies, fk , of “no clicks” on the detector
for every one of them. Then, we reconstruct parameters ρn

maximizing the following log-likelihood function:

ln (L) =
∑

k

fk ln [p(Tk)/P ], (2)

where

p(Tk) =
∞∑

n=0

(1 − Tkηd )nρn (3)
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is the estimated probability of no clicks for the assumed
detector efficiency ηd , and

P =
∑

k

p(Tk)

is the sum of estimated probabilities. Notice that ηd should be
considered the total efficiency of the measurement setup, i.e.,
it includes also any losses arising on the way from the source
to the detector. The maximization can be performed using a
simple and fast iterative procedure extensively investigated in
Refs. [9,10]. The results can be seen in Fig. 1. One can see
that incorrect guessing of the detector efficiency distorts the
photon-number distribution. Due to that fact, by estimating
a difference between supposedly equal coefficients of the
photon-number distribution, it is possible to hazard a fairly
accurate guess of the detector efficiency. It is worth noting that
both the number of absorbers and total number of measure-
ments remain well within practically reasonable limits (K of
about few tenths and the total number of measurements, N ∼
106–107) for an achieved estimation accuracy of about a few
percent.

Of course, the state (1) is not a simple one to realize in
practice. But one immediately recalls an easily producible
state with the same property of the photon-number distribution,
namely, the squeezed vacuum state. Indeed, for such a state,
elements ρn, corresponding to odd n, are zeros. For the
squeezed vacuum state, the probability, p(Tk,S), of “no clicks”
is given by the following formula [11]:

p(Tk,S) =
√

2

1 + S + (1 − Tkηd )2(1 − S)
, (4)

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

|ρ
2−

ρ 1|

 η
d

0 1 2
0

0.2

0.4

0.6

0.8

n

ρ n

FIG. 1. (Color online) An example of estimated difference
between one- and two-photon elements, |ρ2 − ρ1|, of the signal
state (1) in dependence of the assumed detector efficiency, ηd ,
for three different realizations of the registered frequencies of “no
clicks” on the detector (solid, dash-dotted, and dotted lines). The
true efficiency of the detector is 0.75, K = 40 absorbers were
taken with transmittivities equidistantly distributed within the interval
Tk ∈ [0.1,0.9]; 106 measurements were assumed for each absorber.
In the inset it is shown how the estimated photon-number distribution
is distorted by incorrect guessing of the detector efficiency. Grey
bars correspond to the true distribution; black ones to the assumed
efficiency ηd = 0.9; grey ones correspond to ηd = 0.65.

where S is the squeezing parameter. It is defined as

S = cosh (r),

where r = |α|, and the squeezed vacuum state is

|s〉 = U (α)|0〉, U (α) = exp {α(a†)2 − α∗a2}, (5)

and a, a† are photon annihilation and creation operators. It is
easy to infer from Eq. (4) that by estimating the probability
p(T ,S) and its derivative over the variable transmission, T ,
just for two values, say, T1 and T2, one obtains

ηd = F (T1)T2 − F (T2)T1

F (T1) − F (T2)
,

(6)
F (T ) = 4

[p(T ,S)]3

dp(T ,S)

dT
.

In the limit of an infinite number of measurements (no
statistical errors) Eqs. (4) and (6) define uniquely both
the detector efficiency and the squeezing parameter. But,
of course, a realistic set of measurements is always finite.
So, registered data are unavoidably fluctuating. Instead of
the deterministic estimation given by Eqs. (6), it is more
reasonable to implement a statistical estimation procedure
(which supplies an estimation of possible errors, too). In Fig. 2
one can see a result of the log likelihood function (2) for the
probability given by Eq. (4). For a total of 108 measurements
and 100 different absorbers one gets about 2% uncertainty for
estimating both the efficiency, ηd , and the squeezing parameter,
S. An estimate for the uncertainty budget was obtained by
repeating the measurement run 104 times. It is worth noting that
this estimate is in a good agreement with the estimate obtained
via the Fisher information matrix [12]. This Fisher matrix
estimate gives for values of parameters used for Fig. 2 the
following results: S = 3.49 ± 0.0196, ηd = 0.504 ± 0.0061.
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FIG. 2. (Color online) An example of log-likelihood function
(2) for the probability distribution (4) The arrow points to the
maximum. Left inset demonstrates a distribution of values of
the squeezing parameter, S. Right inset shows a distribution of the
estimated efficiency, ηd . Both distributions were obtained for 104

runs of the series of 106 measurements for each value of 100 absorber
transmittivities equidistantly distributed within the interval [0.1,0.9].
True values of the parameters are S = 3.5, ηd = 0.51.
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Now let us discuss the practicalness of the calibration
scheme discussed above. First of all, let us consider a problem
of dark counts. The presence of dark counts can be modelled
as a superposition of the squeezed signal state with the
incoherent light. Thus, the presence of dark counts (as well
as a contamination of the generated state by thermal noise)
can potentially be quite harmful for the presented method.
However, there is a simple solution for the problem. It is
possible to account for a possible incoherent contamination
estimating simultaneously three parameters: the detector effi-
ciency, the squeezing parameter, and the temperature of the
incoherent component. Assuming the density matrix of the
squeezed thermal signal as

ρ =
√

2 sinh(β/2)U (α) exp [−β(a†a + 0.5)]U †(α), (7)

one obtains for the probability of zero clicks the following
formula [11]:

p(T ,S,Q) = 2√
q+ − (1 − T ηd )q0 + (1 − T ηd )2q− , (8)

where

q0 = 2(Q2 − 1), q± = 1 + Q2 ± 2QS, Q = coth (β/2).

An example of the log-likelihood function for Eq. (8) is given
in Fig. 3. For a total number of measurements only four
times higher than the one used for the two-parameter case
depicted in Fig. 2, it is possible to achieve the same level of
accuracy. For the realization depicted in Fig. 3 the estimated
parameters are S = 3.48 ± 0.0067, Q = 1.22 ± 0.0066, ηd =
0.509 ± 0.00043.

In view of the discussion about dark counts given above,
one can conclude that the scheme is rather robust with respect
to afterpulsing (the appearance of false clicking due to the
detector being held off not long enough). Provided that
afterpulsing can be considered just as excess dark counts, it
can be accounted for by the procedure given above. Then, even
if the afterpulsing is not thermal, for nonrandom pulses one
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FIG. 3. (Color online) An example of log-likelihood function (2)
for the probability distribution (8). The arrow points to the maximum.
4 × 106 measurements were assumed for each value of 100 absorber
transmittivities equidistantly distributed within the interval [0.1,0.9].
True values of the parameters are S = 3.5, ηd = 0.51, Q = 1.2.

can make the scheme impervious to it precisely due to the fact
that, actually, we are measuring the absence of clicks. Namely,
if there is no click, the next pulse goes as off usual. If there is a
click, one can block a consequent signal pulse, thus avoiding
the afterpulse effects.

The dead time of the detector poses a more serious problem.
Obviously, the dead time should be known at least with an
accuracy up to an order of magnitude, to ensure that only
a negligible portion of clicks is lost due to the dead time.
It limits a practically achievable number of measurements.
Taking a typical dead-time of modern single-photon detectors
to be about 10 ns, one concludes that a few hours would
be sufficient for performing the calibration up to units of a
few percent accuracy. From the registered probability of “no
clicks” it is possible also to derive a conclusion about the signal
having a too large or too small number of photons. If one is
getting registered frequencies too close to unity, or much lower
than it, than, obviously, an accuracy of the estimation would
be impaired, and a tuning of the source is necessary.

It is important to notice that one does not really need
to calibrate with precision all the absorbers/beam splitters
required to perform the calibration. To use just a few of
them one can resort to the loop scheme already realized in
experiment [8,14]. In the loop scheme the signal pulse is
traveling through the same beam splitter several times, and
the split signal is measured after each pass.

Finally, one should specify the kind of squeezed state source
required for the calibration procedure described above. This
procedure assumes the single-mode state of field. However,
it can be easily seen that if the efficiency of the detector
is constant within the spectral range of the signal, the field
impinging on the detector can really be a modal superposition.
Indeed, complex amplitudes of different modes are added. At
the fixed position on the entrance of the detector the total
field impinging on it can be always represented as the single
collective mode, described, for example, by the following
collective operator [13]:

a =
∫

dωf (ω)A(ω),

where A(ω) are operators for monochromatic modes satisfying
the commutation relations [A(ω),A†(w)] = δ(ω − w), and the
spectral function f (ω) satisfying∫

dω|f (ω)|2 = 1.

Provided that the detector has the same efficiency in the
spectral range of the incident field, the detector sees exactly
this collective mode. One can say here that the detector
defines the measured mode both spatially and spectrally.
Since we are interested in the calibration of the detector, this
fake “single-modality” will do perfectly for the purpose. Of
course, then the reconstruction procedure will estimate the
parameters (squeezing, etc.) of the collective state defined by
operators a, a†. So, the main requirement for the source is
(apart from being a well-defined spacial mode) a sufficient
spectral narrowness. Here it is useful to mention that by using
subthreshold optical parametric generators, it is possible to
produce squeezed vacuum fields with quite narrow spectra.
Moreover, recently a generation into well-defined, practically
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monochromatic spatiotemporal modes was achieved [15]. To
add, a recent experiment on squeezing has demonstrated that
the measured degree of squeezing depends nonexponentially
on the efficiency of the measurement scheme [16]. This fact can
be considered as an indication of the possibility to determine
the loss of the scheme by comparison of the theoretical
prediction for the assumed loss with the actually measured
squeezing.

To conclude, I have presented a simple and efficient way
to calibrate singe-photon detectors. To perform the calibration
one does not need to make any comparison with standard,
precalibrated detectors or implement a calibrated source. For
the method one needs a source generating the squeezed vacuum
state. It is not necessary to know a priori an exact average
number of photons of such a signal. It is not necessary to
know a priori a dark count rate of the detector and guess a
degree of contamination of the signal by an incoherent light.
Provided that the statistics of the input signal is known (and
that statistics can be quite general; in particular, it is possible
to consider a superposition with the coherent component, too),

one is able to estimate from the set of registered data both
the parameters of the signal and the detector. One needs
to pay for such a possibility with an increased number of
measurements in comparison with the case when the problem
is just to reconstruct the photon number distribution of the
signal. However, an increase is not crucial (of about 10−102

times for reaching the same accuracy, see Refs. [8,9]), and is
well within borders of practical feasibility.

Finally, it is worth emphasizing once more that, actually,
the presented calibration scheme performs simultaneous to-
mography of both the measurement setup and the signal
state. Starting with some piece of initial information, the
researcher is able to greatly improve his or her knowledge
of the state and measurement process just by performing the
measurement.
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discussions.

[1] W. Budde, Physical Detectors of Optical Radiation, Vol. 4,
Optical Radiation Measurement series (Academic Press, New
York, 1983).

[2] D. N. Klyshko, Sov. J. Quantum Electron. 10, 1112 (1980).
[3] A. A. Malygin, A. N. Penin, and A. V. Sergienko, Pis’ma Zh.

Eksp. Teor. Fiz. 33, 493 (1981) [JETP Lett. 33, 477 (1981)].
[4] G. M. D’Ariano, L. Maccone, and P. LoPresti, Phys. Rev. Lett.

93, 250407 (2004).
[5] G. Brida, M. Genovese, and M. Gramegna, Las. Phys. Lett. 3,

115 (2006).
[6] S. V. Polyakov and A. L. Migdall, Opt. Express 15, 1390 (2007).
[7] D. Mogilevtsev, Opt. Commun. 156, 307 (1998); Acta Physica

Slovaca 49, 743 (1999).
[8] J. Rehacek, Z. Hradil, O. Haderka, J. Perina Jr., and M. Hamar,

Phys. Rev. A 67, 061801(R) (2003); O. Haderka, M. Hamar, and
J. Perina Jr., Eur. Phys. J. D 28, 149 (2004).

[9] A. R. Rossi, S. Olivares, and M. G. A. Paris, Phys. Rev. A 70,
055801 (2004); A. R. Rossi and M. G. A. Paris, Eur. Phys.
J. D 32, 223 (2005); G. Zambra, A. Andreoni, M. Bondani,

M. Gramegna, M. Genovese, G. Brida, A. Rossi, and M. G. A.
Paris, Phys. Rev. Lett. 95, 063602 (2005).

[10] Z. Hradil, D. Mogilevtsev, and J. Řeháček, Phys. Rev. Lett. 96,
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