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Cooling and squeezing via quadratic optomechanical coupling
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We explore the physics of optomechanical systems in which an optical cavity mode is coupled parametrically
to the square of the position of a mechanical oscillator. We derive an effective master equation describing
two-phonon cooling of the mechanical oscillator. We show that for high temperatures and weak coupling, the
steady-state phonon number distribution is nonthermal (Gaussian) and that even for strong cooling the mean
phonon number remains finite. Moreover, we demonstrate how to achieve mechanical squeezing by driving
the cavity with two beams. Finally, we calculate the optical output and squeezing spectra. Implications for
optomechanics experiments with the membrane-in-the-middle geometry or ultracold atoms in optical resonators
are discussed.
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Introduction. In optomechanical systems optical and me-
chanical degrees of freedom are coupled via radiation pressure,
optical gradient, or photothermal forces. While work in this
area was originally motivated by the goal of building sensitive
detectors for gravitational waves [1,2], the field has become
an active area of research in its own right. Its main goal is
to investigate quantum coherence in macroscopic solid-state
devices both for quantum information purposes and gaining
new insights into the quantum-to-classical transition [3,4].

In most optomechanical experiments an optical cavity mode
is parametrically coupled to the position of a mechanical
oscillator. Consequently, many properties of this setup have
been discussed, including red-sideband laser cooling in the
resolved-sideband limit [5,6], normal-mode splitting [7,8],
optical squeezing [9,10], backaction-evading measurements
[11–13], mechanical squeezing using either feedback [12,14],
squeezed light [15] or modulation of input power [16], and
entanglement between light and a mechanical oscillator [17].

However, some optomechanical systems feature a quadratic
optomechanical interaction, i.e. an optical cavity mode is
coupled parametrically to the square of the position of a
mechanical oscillator. One example is the membrane-in-
the-middle geometry, in which the membrane is placed at
a node or antinode of the cavity field [18–20]. A second
system which can realize quadratic optomechanical coupling
is a cloud of ultracold atoms loaded into an optical cavity,
where the cloud’s center-of-mass coordinate serves as the
mechanical degree of freedom [21,22]. To date, the theoretical
literature has focused on using the quadratic coupling to detect
phonon Fock states [18,19,23–25], but otherwise the possible
uses of this form of optomechanical coupling are largely
unstudied.

In this Rapid Communication we explore three features
of quadratic optomechanical coupling: two-phonon cooling
of the mechanical oscillator, squeezing of the mechanical
oscillator, and squeezing of the optical output field. Using
Fermi’s Golden rule we first write down an effective master
equation for the mechanical oscillator. In the classical limit
of large phonon number, two-phonon cooling processes
change the steady-state number distribution from exponential
to Gaussian, a consequence of the nonlinear damping. In
the quantum limit we find that ground-state cooling is not
possible since two-phonon cooling processes preserve the

phonon-number parity. We then demonstrate that the model
maps onto a degenerate parametric oscillator if the cavity is
driven by two laser beams whose frequencies are detuned to
either side of the cavity resonance by an amount equal to
the mechanical frequency. This opens up the possibility of
mechanical squeezing. Finally, we calculate the optical output
spectrum and find that this system is capable of producing
optical squeezing.

Hamiltonian. We start from the Hamiltonian (with h̄ = 1)

Ĥ = (ωR + gx̂2)(â†â − 〈â†â〉) + ωMb̂†b̂ + Ĥγ + Ĥκ , (1)

where ωR is the cavity resonance frequency, g the quadratic
optomechanical coupling, and x̂ = xZPF(b̂ + b̂†) the position
of the mechanical oscillator with zero-point fluctuations
xZPF = (2mωM )−1/2, frequency ωM , and mass m. â and b̂ are
annihilation operators obeying bosonic commutation relations.
Ĥγ and Ĥκ describe the coupling to the mechanical and optical
baths and the optical drive. We have subtracted the steady-
state mean photon number 〈â†â〉 which renormalizes the
frequency of the mechanical oscillator. The Hamiltonian (1) is
relevant to systems with membrane-in-the-middle geometry
[18], to ultracold atoms in optical resonators [21,22], and
double-microdisk whispering-gallery mode resonators [26]
when the first derivative of the cavity dispersion relation
ωcav(x) vanishes, i.e., ω′

cav(x0) = 0, so that g = ω′′
cav(x0)/2 is

the leading order of the optomechanical coupling.
Expressing â = e−iωLt (ā + d̂) with the laser frequency ωL,

choosing ā real, and neglecting d̂†d̂ with respect to ā(d̂† + d̂),
we obtain the following quantum master equation:

�̇ = −i[ĤS,�] + κD[d̂]� + γ (1 + nth)D[b̂]� + γ nthD[b̂†]�

(2)

with the system Hamiltonian

ĤS = −�d̂†d̂ + ωMb̂†b̂ + ḡ(b̂ + b̂†)2(d̂† + d̂), (3)

where � = ωL − ωR is the detuning, ḡ = gāx2
ZPF the cou-

pling, κ and γ the cavity and mechanical damping rates, and
nth the thermal phonon number. We assume that the optical
bath is at zero temperature.D[ô]� = ô�ô† − (ô†ô� + �ô†ô)/2
denotes the standard dissipator in Lindblad form.

Current experiments with the membrane-in-the-middle
geometry work in the resolved-sideband limit at large thermal
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phonon number, i.e., κ = 105 Hz, ωM = 106 Hz, γ = 0.1 Hz,
and nth = 107 at T = 300 K, while the optomechanical
coupling is small compared to the cavity linewidth ḡ/κ = 10−5

[18–20]. Experiments with ultracold atoms in optical res-
onators have recently also realized quadratic optomechanical
coupling, albeit with much larger coupling ḡ/κ ≈ 1 at small
thermal phonon number nth. However, they operate in the
single-photon regime and outside the resolved-sideband limit,
so that our results do not directly apply [21,22].

Numerical simulations of the full quantum master equation.
If the cavity is driven on the red two-phonon resonance, i.e.,
� = −2ωM , in the good-cavity limit, i.e., κ � ωM , we expect
two-phonon cooling processes to be important. Concentrating
on the resonant terms, i.e., ĤS = ḡ(b̂†b̂†d̂ + H.c.), we solve the
full quantum master equation (2) numerically for small thermal
phonon numbers nth. As the coupling strength ḡ increases,
we find that (i) for γ nth � κ the mechanical oscillator is
cooled due to the coupling to the zero-temperature bath of
the optical field [27], (ii) for γ nth � κ the optical field is
heated by the coupling to the mechanical oscillator, and (iii) for
γ nth ≈ κ both effects are important and the density matrix has
nonzero off-diagonal elements so that the correlator |〈d̂†b̂b̂〉|
is nonzero. These features are generic, but the details depend
on the thermal phonon number nth. As an example we plot
in Fig. 1 the steady-state mean phonon number 〈b̂†b̂〉 and the
mean number of photons due to the coupling to the membrane
〈d̂†d̂〉 as a function of the coupling strength ḡ/κ and thermal
coupling γ /κ for nth = 1.

Effective master equation describing two-phonon cooling.
For γ nth � κ and weak coupling, i.e., ḡ � κ , we can employ
a quantum noise approach [27], i.e., we calculate two-phonon
cooling and amplification rates using Fermi’s Golden rule.
Concentrating on the diagonal terms of the density matrix
�nn = Pn, we write down a set of rate equations

Ṗn = −γ [nth(n + 1) + (nth + 1)n]Pn

+ γ nthnPn−1 + γ (nth + 1)(n + 1)Pn+1

− [�↓n(n − 1) + �↑(n + 2)(n + 1)]Pn

+�↓(n + 2)(n + 1)Pn+2 + �↑n(n − 1)Pn−2. (4)

The terms in the first two lines are due the coupling of
the mechanical oscillator to its thermal bath with rate γ

and thermal phonon number nth. The terms in the last
two lines are due to two-phonon processes whose rates
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FIG. 1. Steady-state mean phonon 〈b̂†b̂〉 (left) and photon number
〈d̂†d̂〉 (right) as a function of the coupling strength ḡ/κ and thermal
coupling γ /κ for thermal phonon number nth = 1, obtained from the
numerical solution of the full quantum master equation (2).

are governed by �↓/↑ = g2x4
ZPFSnn(±2ωM ), where Snn(ω) =

κ|ā|2|χR(ω)|2 is the photon number spectral density and
χR(ω) = [κ/2 − i(ω + �)]−1 the cavity response function.
We note that nonlinear damping of an oscillator has been
studied in Refs. [28,29].

The infinite set of rate equations (4) can be replaced
by a single differential equation for the generating function
F (z,t) = ∑∞

n=0 Pn(t)zn. For vanishing two-phonon amplifi-
cation �↑ = 0 the steady-state equation can be solved exactly
in terms of the confluent hypergeometric function [30].

We point out that it is an advantage of quadratic cooling that
it enables cooling when the membrane or atoms are placed at
a node of the cavity field. In this situation the system is most
insensitive to absorption from the membrane or atoms as well
as to bistability from radiation pressure.

Two-phonon cooling in the classical limit. For large ther-
mal phonon number nth � 1 and weak two-phonon cooling
γ nth � �↓ we can replace the quantum operators b̂ and
d̂ in their Heisenberg equations of motion by complex
amplitudes β = 〈b̂〉 and α = 〈d̂〉 and obtain two coupled
classical Langevin equations β̇ = −γβ/2 − 2iḡβ∗α + ξ and
α̇ = −κα/2 − iḡβ2, where the thermal noise is characterized
by 〈ξ (t)ξ ∗(t ′)〉 = γ nthδ(t − t ′). Adiabatically eliminating the
optical field we obtain an equation of motion with a nonlinear
damping term β̇ = −γβ/2 − 4ḡ2|β|2β/κ + ξ . Solving the
corresponding Fokker-Planck equation we obtain the phonon
number distribution

Pn ∝ exp

(
− n

nth

)
exp

(
−�↓n2

γ nth

)
. (5)

The distribution changes from an exponential for γ /�↓ �
nth to a Gaussian for γ /�↓ � nth. In the latter limit the
mean phonon number is given by 〈n〉 =

√
γ nthκ/πḡ2. The

expression in Eq. (5) agrees with the high-temperature limit of
the exact solution to the rate equations [30]. We conclude that
the change in the steady-state phonon number distribution is a
purely classical effect due to nonlinear damping.

The quadratic coupling in current membrane-in-the-middle
experiments is very small. Nonetheless, it leads to sizable
effects if the thermal phonon number nth is large. In Fig. 2(left)
we plot the steady-state phonon number distribution for
a thermal phonon number nth = 107, corresponding to a
temperature of T = 300 K, both in the absence �↓ = 0
and presence �↓/γ = 4 × 10−7 of two-phonon cooling. We
find the Planck distribution with mean nth = 107 becomes
a nearly-Gaussian distribution with mean nth = 2.8 × 106.
The qualitative change in the phonon number distribution for
membrane-in-the-middle experiments is the main result of this
Rapid Communication.

Two-phonon cooling in the quantum limit. Solving the rate
equations (4) in the limit of strong optical damping and/or
small thermal heating rate γ nth, i.e., �↓ � γ nth, we obtain
the phonon number distribution P0/P1 = 3 + 1/nth with all
other Pn = 0 and the minimal mean phonon number n̄0

M =
1/(4 + 1/nth). The fact that strong cooling leaves both ground
and first excited state occupied is a consequence of the fact that
two-phonon cooling processes preserve the phonon-number
parity.
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FIG. 2. (Color online) (Left) Classical limit: Semilogarithmic
plot of the steady-state phonon number distribution Pn for ther-
mal phonon number nth = 107. Planck distribution for �↓ = 0
(dashed) and nearly-Gaussian distribution for �↓/γ = 4 × 10−7

(solid). (Right) Quantum limit: Mean phonon number 〈b̂†b̂〉 as a
function of coupling ḡ/κ obtained from the quantum master equation
(blue dots) and the classical rate equations without (red solid) and
with strong-coupling correction (green dashed). The black dashed
line indicates the minimal phonon number n̄0

M for nth = 5.

In Fig. 2(right) we plot the steady-state phonon number
〈b̂†b̂〉 as a function of coupling ḡ obtained from the full
quantum master equation (2) and the rate equations (4).
The two results show excellent agreement at weak coupling
ḡ � κ . As 4ḡ2/κ becomes comparable to κ , the Fermi’s
Golden rule expression for two-phonon cooling breaks down
and the predictions of the full master equation (2) and the
weak-coupling rate equations (4) will in general be different. In
the limit where only the Fock states with phonon number n � 3
are important, we adiabatically eliminate the off-diagonal
terms in the quantum master equation (2) and find that the
strong-coupling two-phonon cooling rates are given by

�
↓
n,n−2 = 4ḡ2n(n − 1)κ

κ2 + 4ḡ2n(n − 1)
. (6)

In the weak-coupling limit ḡ � κ this expression simplifies
to our previous result 4ḡ2n(n − 1)/κ . In the limit of strong
coupling ḡ � κ , the two-phonon cooling rate �

↓
n,n−2 remains

finite and cannot exceed the cavity damping rate κ . This leads
to a minimum phonon number which is larger than the one
predicted from the weak-coupling theory. In Fig. 2 (right)
we plot the steady-state mean phonon number obtained
from the modified rate equations and find excellent agree-
ment with the exact solution to the full quantum master
equation (2).

We note that for quadratic coupling in the good-cavity
limit, the phonon number distribution Pn can be measured
by monitoring the phase shift of the reflected light [18,19,23].

Mechanical amplification and squeezing. Driving the cavity
at both ωR ± ωM with equal strength, the classical part
of the cavity field oscillates in time ā = A cos ωMt . In
the case of linear optomechanical coupling this enables a
backaction-evading measurement of one quadrature of the
mechanical oscillator [11–13], but does not itself produce
squeezing apart from the one which is conditioned on the
measurement outcome. When we instead consider the same
drive applied to a system with quadratic coupling, moving to an
interaction picture with respect to Ĥ0 = ωRâ†â + ωMb̂†b̂ and
keeping only nonrotating terms of the quadratic coupling, we

obtain the standard Hamiltonian of the degenerate parametric
oscillator, i.e., ĤDPO = χ

2 [b̂2 + (b̂†)2] with χ = gx2
ZPFA/2.

Thus this setup could be used to amplify small mechanical
signals [27].

Solving the linear quantum Langevin equations we see that
the steady-state fluctuations in the quadrature X̂ = (b̂eiωMt +
H.c.)/

√
2 of the mechanical oscillator are squeezed below

the thermal level, 〈X̂2〉 = (nth + 1/2)/(1 + 2χ/γ ), depending
on the ratio χ/γ . At threshold χ = γ /2, i.e., before the
parametric oscillator becomes unstable, the squeezing reaches
the theoretical limit for an internal mode of 3dB [31].
Although the parameters of current membrane-in-the-middle
setups show small coupling ḡ � κ and large thermal phonon
number nth � 1, we emphasize that the ratio χ/γ which is of
importance here can still be comparable to unity and lead to
significant noise squashing.

The mechanical squeezing can be detected by coupling
the position of the mechanical oscillator parametrically to
a second optical mode. This scenario has been studied in
Ref. [14].

Output spectrum. Let us now return to the full model (3). Up
to second order in the coupling ḡ, the cavity output spectrum
which is defined as Sout

dd (ω) = ∫
dt eiωt 〈d̂†

out(t)d̂out(0)〉 with

d̂out = d̂in + √
κd̂ and 〈d̂in(t)d̂†

in(t)〉 = δ(t − t ′) is given by
Sout

dd (ω) = 4κḡ2|χR[−ω]|2Sx2x2 (ω) where

Sx2x2 (ω) = γ (nth + 1)2

γ 2 + (ω − 2ωM )2
+ γ n2

th

γ 2 + (ω + 2ωM )2

+ 2γ nth(nth + 1)

γ 2 + ω2
. (7)

We see the output spectrum Sout
dd (ω) has sidebands at ω =

±2ωm and ω = 0 as expected for quadratic coupling.
Optical squeezing spectrum. One application of optome-

chanical devices which has been widely advocated [9,10] is to
use the nonlinear coupling between light and mirror to squeeze
the incoming coherent light beam, i.e., reduce one of its
quadratures below the shot-noise level at certain frequencies.
The quantity which characterizes this noise reduction is the
optical squeezing spectrum Sout

θ (ω) given by [32]

Sout
θ (ω) = 1 +

∫ ∞

−∞
dt eiωt 〈: X̂out

θ (t),X̂out
θ (0) :〉

= 1 + κ

∫ ∞

−∞
dt eiωtT [〈: X̂θ (t),X̂θ (0) :〉], (8)

where X̂out
θ = (d̂†

oute
iθ + H.c.)/2, 〈A,B〉 = 〈AB〉 − 〈A〉〈B〉,

the colons indicate normal ordering, and T is the time-ordering
operator [32]. The former expression is useful for calculations
in input-output theory and the latter for master equation
simulations evoking the quantum regression theorem.

In Fig. 3 we plot the optimal squeezing spectrum of the
cavity output field Sout

opt (ω) = minθ Sout
θ (ω) as a function of

detuning �. In the good-cavity limit at zero temperature
we find squeezing at ω = 0 and ω = 2ωM for � = 0 and
� = −2ωM , respectively. We choose parameters ωm/κ = 5,
ḡ/κ = 0.5, γ /κ = 0.1, and nth = 0, possibly relevant to future
experiments with ultracold atoms in optical resonators.
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FIG. 3. Optimal squeezing spectrum of the cavity output field
Sout

opt (ω) as a function of detuning �. The parameters are ωm/κ = 5,
ḡ/κ = 0.5, γ /κ = 0.1 and nth = 0.

To gain insight beyond numerics we obtain the squeezing
spectrum perturbatively up to second order in the coupling ḡ

Sout
opt (ω) = 1 + Sout

dd (ω) + Sout
dd (−ω)

− 8ḡ2κ

∣∣∣∣χR(ω)χR(−ω)Sx2x2 (ω)

−
(

nth + 1

2

)
χ∗

R(ω)χR(−ω)[κχR(ω) − 1]

×
[

1

γ + i(ω − 2ωM )
− 1

γ + i(ω + 2ωM )

]∣∣∣∣ .
(9)

As in the case of linear optomechanical coupling [9,10],
we find two regimes of squeezing: for small detuning and
small frequencies as well as for detuning and frequencies
close to twice the mechanical frequency. For the same
parameters and at zero temperature the amount of squeezing
is comparable to the linear optomechanical systems. However,
thermal fluctuations are more destructive for squeezing effects
with quadratic optomechanical coupling due to the quadratic
scaling with the thermal phonon number nth and due to the fact
that the spectrum Sx2x2 (ω) has weight at zero frequency.

Conclusions. We have explored the physics of nonlinear
optomechanical systems where an optical cavity mode cou-
ples quadratically rather than linearly to the position of a
mechanical oscillator. For optomechanical experiments with
membrane-in-the-middle geometry, we predict a qualitative
change in the phonon number distribution and mechanical
noise squashing. For future experiments with ultracold atoms
in optical resonators, we found the quantum limit of two-
phonon cooling as well as mechanical and optical squeezing.
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