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Klein tunneling and Dirac potentials in trapped ions
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We propose the quantum simulation of the Dirac equation with potentials, allowing the study of relativistic
scattering and Klein tunneling. This quantum relativistic effect permits a positive-energy Dirac particle to
propagate through a repulsive potential via the population transfer to negative-energy components. We show how
to engineer scalar, pseudoscalar, and other potentials in the 1 + 1 Dirac equation by manipulating two trapped
ions. The Dirac spinor is represented by the internal states of one ion, while its position and momentum are
described by those of a collective motional mode. The second ion is used to build the desired potentials with high
spatial resolution.
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The Dirac equation describes the successful merging of
quantum mechanics with special relativity [1], predicting
electron spin and antimatter. Surprisingly, it also predicts
some conflictive quantum relativistic effects, such as the
Zitterbewegung [2] and the Klein paradox [3], which have
been discussed theoretically though never experimentally
tested. Presently, there is growing interest in different as-
pects of quantum simulations [4,5]. Recently, the quantum
simulation of a free-particle Dirac equation in trapped ions
[6,7] has generated a dialogue between relativistic quantum
mechanics and quantum optics [8,9]. Here, we propose the
quantum simulation of the Dirac equation with potentials in
trapped ions, allowing us to explore the nonintuitive physics
of relativistic scattering, especially when compared with
Schrödinger quantum mechanics. We also show that in 1 + 1
dimensions, only the scalar and pseudoscalar potentials can
be used to confine a Dirac particle. Moreover, we discuss how
electromagnetic potentials give rise to Klein tunneling [10], in
which a particle propagates through a repulsive potential by
turning into its antiparticle [11].

The Dirac equation with a covariant potential [1] can be
written as [

−ih̄ �∂ − mc − 1

c
Vcov

]
ψ = 0, (1)

where we used Feynman’s notation, �A = γ µAµ, with γ µ being
the Dirac matrices and Aµ a four-vector. The external potential
Vcov can take many forms that transform differently under
Lorentz rotations and boosts. In particular, Vcov includes scalar
potentials that add to the relativistic mass term, as well as
pseudoscalar, electric, and magnetic potentials, among other
cases. Multiplying Eq. (1) by γ 0 := β, and introducing the
vector of matrices �α = γ 0 �γ , the momentum operator �p =
−ih̄∇, and the time t = x0/c, we obtain

ih̄∂tψ = [c�α · �p + mc2β + βVcov]ψ. (2)

Up to unitary transformations, there are different sets of
matrices, α and β, determining different Dirac representations.
In the case of 1 + 1 dimensions, in particular, α and β can be

chosen as any two different Pauli matrices. For simplicity, we
will use a real representation,

γ 0 = β = σz, γ 1 = iσy, α = σx. (3)

There are six ways to introduce a potential in the Dirac
equation [1], depending on its behavior under Lorentz trans-
formations. Using the pseudoscalar operator γ 5 := i

∏
µ γ µ

and the tensor σµν := iγ µγ ν, these are

Vcov = V + q �A + Bµνσ
µν + qγ 5Ṽ + qγ 5 ˜�A + B̃µνγ

5σµν.

(4)

The potential V transforms as a scalar and mimics an induced
mass term. The field A transforms as a four-vector and
corresponds to the electromagnetic potential acting on a charge
q, with the electric potential A0 = φ and a three-vector
component �A. The remaining four potentials B, Ã, Ṽ , and
B̃, transform as matrices, pseudoscalars, pseudovectors, and
pseudotensors, respectively, and behave as anomalous field
moments [1].

In 1 + 1 dimensions, the landscape simplifies considerably
and we can choose a parametrization such that

ih̄∂tψ =
[
cσx

(
p − q

c
A

)
+ qφ + (mc2 + V )σz − qṼ σy

]
ψ

= H (q)ψ, (5)

where only A, φ, V , and Ṽ are nonzero. We will first focus on
potentials that are linear in the particle position

V = υscx, φ =υelx/e, A= υmagx/e, and Ṽ = υpsx/e,

(6)
where e is the unit charge, and we will assume q = ±e.

All the preceding potentials can be simulated with trapped
ions [12]. Let us consider a string of two trapped ions, 1
and 2, which could be 40Ca+ ions with long-lived internal
states |S1/2,m = 1/2〉 and |D5/2,m = 3/2〉. The first ion
will encode a Dirac spinor in those internal states, while
the second ion will be used as an ancilla to implement
potentials. Assuming the validity of the Lamb-Dicke approx-
imation, addressed laser beams can be used to implement
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FIG. 1. (Color online) Setup for simulating a Dirac particle in
an external potential. A string of two trapped ions is manipulated
with addressed laser beams, coupling to each ion’s internal state and
the collective motion. The Hamiltonian for a free Dirac particle and
the potentials A, V , and Ṽ can be implemented directly by the laser
light impinging on ion 1. The electrostatic potential φ is implemented
by red and blue sidebands applied to the auxiliary ion to create an
interaction ∝ σ x

2 x̂, with the auxiliary ion prepared in an eigenstate
of σ x

2 .

interactions of the forms Hc = h̄
̃(σ+
j eiφ + σ−

j e−iφ) (carrier),
Hr = h̄η
̃r (aσ+

j eiφr + a†σ−
j e−iφr ) (red sideband), and Hb =

h̄η
̃b(a†σ+
j eiφb + aσ−

j e−iφb ) (blue sideband) on each ion
j = 1,2. Here, 
̃(b,r) and φ(b,r) are the Rabi frequency and
phase of each light field, η � 1 is the Lamb-Dicke parameter,
and σ+

j (σ−
j ) and a† (a) are raising (lowering) operators for

the ion’s internal states and for a collective motional mode.
For the one-dimensional case, we could use, for instance, the
center-of-mass mode.

As shown in [6,7], the Dirac Hamiltonian for a free
particle, H free

D = cσxp̂ + mc2σz, can be engineered using a
simultaneous blue and red sideband interaction of equal
strength with the appropriate relative phase, amplitude, and
detuning h̄
 := mc2. Here, p̂ = ih̄ a†−a

2�
, � = √

h̄/4m̃ω is the
size of the ground-state wave packet, m̃ is the mass of a single
ion, and ω is the trap frequency. We consider now two ions
(see Fig. 1) and show how to extend this model to include each
of the potentials V , Ṽ , A, and φ.

The potentials A and Ṽ can be created simultaneously by
changing the phase and the intensity of the sidebands. Note
that the total Hamiltonian (cσxp̂ − eσxυmagx̂ − eυpsx̂σy), with
x̂ = (a† + a)�, can be decomposed in terms of a†σ± and aσ±.
For the implementation of the scalar potential, we can use two
additional light fields acting on ion 1 with Rabi frequency 
̃sc,
one blue detuned by ω/2 from the spinor transition, the other
red detuned by the same amount to create a Hamiltonian term
4h̄η
2

scx̂σ z
1 /ω� [13]. Alternatively, we can choose another

representation in which the mass term acquires the Pauli
matrix σy . In this case, the term mc2 is created by a carrier
excitation, whereas the scalar potential can be engineered from
blue and red sidebands in the same way as A and Ṽ . Finally,
the electrostatic field can be implemented by driving a blue
and red sideband simultaneously on the auxiliary ion. With
appropriate phases, the resulting Hamiltonian term becomes

∝ σx
2 x̂. Preparing the auxiliary ion in an eigenstate of σx

2 , this
operator can be replaced by its eigenvalue, and the interaction
reduces to the desired form. A general Hamiltonian for this
system that can be compared to Eq. (5), in the rotating frame
and after rotating-wave approximation, reads

H = h̄η(
̃be
iφba†σ+

1 + 
̃re
iφr aσ+

1 + H.c.)

+ h̄η
̃2σ
x
2 x̂/� + h̄

(

 + 4η
2

scx̂/ω�
)
σ z

1 . (7)

Here, the first two terms with their Hermitian conjugates
describe blue and red motional sidebands, the term involving
the second ion describes a conditional displacement, and the
last term involves constant and position-dependent Stark shifts.
The relations between the Dirac model in Eq. (5) and the ion
system in Eq. (7) are

h̄
 = mc2, h̄η
̃2/� = υel, 4h̄η
2
sc/ω� = υsc, (8)

while the relative weights of c, υmag, and υps, can be set by
changing phases φb,r and amplitudes 
r,b.

The creation of an electrostatic potential via a detuned
laser acting on ion 2 yields the interesting case of interaction
terms h̄η
̃2x̂σ x

2 /� + h̄
2σ
z
2 . For a large detuning 
2 � η
̃2

this interaction becomes effectively ∝ x̂2σ z
2 , allowing the

simulation of quadratic potentials [14].
Electric potential and Klein tunneling. Not all potentials

can actually confine a Dirac particle. To prove this, let us
introduce an antiunitary operation known as charge conju-
gation ψc = Kψ = Cψ�, combining complex conjugation
and a unitary matrix Cγ µ�C−1 = −γ µ. The charge conjugate
spinor satisfies a Dirac equation with opposite charge ih̄∂tψc =
H (−q)ψc, in which certain terms of the covariant potential
which are proportional to the charge q have changed sign.
We can also show that the negative-energy branch of a Dirac
equation can be antiunitarily related to the positive-energy
branch with opposite charge KH (q)K−1 = −H (−q). In other
words, the negative-energy branch of the Dirac spectrum
is indistinguishable from particles with opposite charge.
Moreover, these antiparticles will see certain components of
the covariant potential, A,Ṽ ,Ã, with opposite sign as for their
positive-energy counterparts.

The fact that positive- and negative-energy states see
different effective potentials, and that both components are
coupled, allows the apparition of the so-called Klein paradox
[1]. The electric potential in Eq. (6) is repulsive for positive-
energy charged particles in a large region, (q/e)υelx > 0, but
it will allow the antiparticle or negative-energy states to tunnel
into a region that would be forbidden in the (Schrödinger)
nonrelativistic regime (see Fig. 2). The situation is even more
interesting, for if we send a massive charged positive-energy
particle against an electrostatic potential barrier and the
particle has enough energy, it will split into positive and
negative wave packets, the former bouncing back and the latter
penetrating into the energy barrier (see Fig. 3).

We explain now how Klein tunneling can be interpreted
in terms of a quantum optical concept: the Landau-Zener
tunneling [15]. Working in momentum space, where x =
(+ih̄∂p), and with charge q = e, the electric potential υelx

is equivalent to a deceleration or a decrease in the particle
momentum, which can be compensated for by using the change

020101-2



RAPID COMMUNICATIONS

KLEIN TUNNELING AND DIRAC POTENTIALS IN . . . PHYSICAL REVIEW A 82, 020101(R) (2010)

FIG. 2. (Color online) Klein tunneling in a repulsive potential,
φel(x) = υelx. (a) In position space, the particle may bounce back (I)
or enter the forbidden region by reducing its kinetic energy (II). (b) In
momentum space, I and II correspond to the particle having positive
energy or turning into an antiparticle.

of variables ψ(p,t) = ξ (p + υelt),

ih̄∂t ξ = [cσx(p − υelt) + mc2σz]ξ. (9)

This equation corresponds exactly to a Landau-Zener process
in which an effective magnetic field along the x direction is
increased linearly in time.

The dynamics is summarized in Fig. 2. If the particle
initially moves against the slope, that is, p > 0, the potential
will decelerate the particle which may (I) bounce back or (II)
tunnel inside the potential barrier. The first case corresponds
to adiabatic transition in the Landau-Zener picture; it happens
when the change of the momentum is small, h̄c|υel| �
m2c4, and is the typical behavior of nonrelativistic particles.
However, for large enough slope or in the relativistic limit, it
becomes possible for the particle to switch branch, acquiring
negative kinetic energy and entering the originally forbidden
region. More precisely, the probability of transition can be
computed with the Landau-Zener formula as follows

PII = exp

(
−2π

m2c4

2h̄cυel

)
. (10)

Note that once the particle has switched to negative-energy
states, it has an opposite charge and the potential φel accelerates
the particle indefinitely in the opposite direction. This makes
such a potential effectively a filter that separates particles from
antiparticles.

Using Eq. (9), it is easy to perform numerically accurate
simulations of the Klein scattering for arbitrary initial condi-
tions and different ratios of the potential slope, m2c4/h̄cυel.

In Fig. 3, we see that for very small masses, the particle is
either not confined, or it splits into a negative-charge and a
positive-charge component [Fig. 3(b)]. In the nonrelativistic
limit, m2c4 � h̄cυel, though, the particle mostly bounces back
from the barrier. Figure 3(a) corresponds only to situation II,
Fig. 3(b) combines I and II, and finally the third situation
[Fig. 3(c)] is just I.

Scalar potential. As we discussed above, the Klein paradox
only applies to potentials which are not invariant under
charge conjugation. A scalar potential [16] such as V in
Eq. (4), acting similarly on both particle and antiparticle states,
can still confine and reproduce the physics we are used to
in the nonrelativistic limit. In particular for our choice of
linearly growing potential V = υscx, with υel,υmag,υps = 0,

it is possible to show the existence of bound orbits. This is
best analyzed by squaring the effective Hamiltonian

H 2 = cp2 + (υscx + mc2)2 + ch̄υscσy. (11)

The first implication is that the scalar potential eigenenergies
correspond to those of a harmonic oscillator

E2 = 2h̄cυsc

(
n + 1

2
± 1

)
. (12)

The second implication is that the conserved quantity H 2 is
defining elliptical orbits in the phase space of position and
momentum {x,p}, once more as a harmonic oscillator, but
these orbits are now centered around the point x = mc2/υsc.

These closed and bound orbits exist both for the Dirac particles
and the antiparticles, implying that both are confined around
the same trajectories.

Pseudoscalar potential and Dirac oscillator. The last
analyzed case is the pseudoscalar term υpsxσy with υps =
mωc. There is a similarity between

H = c(σxp + σymωx) + mc2σz (13)

and the Hamiltonian of a 1 + 1 Dirac oscillator [8],

ih̄∂tψ = [c�α( �p + imωβ �x) + mc2β]ψ, (14)

(a) (b) (c)

FIG. 3. (Color online) Scattering events for three effective masses, m = 0, 0.5, and 1 (left to right). We plot the total probability density as
a function of space x and time t. We have used natural units c = h̄ = 1, and a fixed potential slope cυel = 1.
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but this coincidence only happens because of our restricted
dimensionality, γ 5 = αβ. With the oscillator length scale,
aosc = √

h̄/mω, and the Rabi frequency h̄
 =
√

h̄ωmc2, the
pseudoscalar potential can be reformulated as a detuned
Jaynes-Cummings (JC) model

ih̄∂tψ = [h̄
(iσ−a† − iσ+a) + mc2σz]ψ, (15)

which should be easy to simulate. A similar calculation as
before produces again closed phase-space orbits

1

mω
p2 + x2mω + h̄σz = E2, (16)

which are a consequence of the JC discrete spectrum

En = ±mc2

√
n

h̄ω

mc2
+ 1 ∼ mc2 + 1

2
nωh̄. (17)

Note also that a replacement of ω → −ω is still a Dirac
oscillator, but then it turns into an anti-JC Hamiltonian.

Conclusions and outlook. We have proposed a quantum
simulation of the 1 + 1 Dirac equation with potentials in
trapped ions, bringing together the physics of relativistic
quantum mechanics to a controllable tabletop experiment in
quantum optics. Our simulation protocols can be combined
with tools for monitoring and preparing the quantum state of
the ions. In particular, newly developed techniques [7,17] make
it possible to obtain the position, momentum, and probability
distribution |ψ(x)|2 of the particle in an efficient way, allowing
the “frame-by-frame” reconstruction of the scattering event.

Besides this, the initial state of the Dirac particle can be
accurately engineered in position, momentum, and even energy
branch [7]. This is important for the electrostatic potential
because, by preparing a particle with positive energy, we could
see a full reflection for shallow slopes and full transmission
for steeper slopes, making the Klein paradox visible. As an
example, similar to Ref. [18], one could prepare a positive-
energy wave packet with average momentum p̂ = 4h̄/�

and choose experimentally accessible parameters 
̃b = 
̃r =
2π × 20 kHz, 
1 = 2π × 1 kHz, η = 0.05, and 
̃2 = 2π×
50 kHz. This permits us to obtain a tunneling probability of
0.5 which could be observed in the laboratory. Numerical
simulations show that the whole tunneling dynamics with these
parameters takes place within 1 ms, which is well within the
motional and internal state coherence time. To study Klein
tunneling, see the case of electric potential and Fig. 3, the
slope strength or the mass of the simulated particle can be
varied by changing laser intensities and frequencies.
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