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Local field effect as a function of pulse duration
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In this brief report we give semiclassical consideration to the role of pulse duration in the observation of local
field effects in the regime of optical switching. We show that the main parameter governing local field influence
is the ratio of peak Rabi frequency corresponding to medium inversion and Lorentz frequency of the medium. To
obtain significant local field effect, this parameter should be near unity that is valid only for long enough pulses.
We also discuss the role of relaxation and pulse shape in this process.
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The concept of local field was introduced in the second
half of the nineteenth century by Hendrik Antoon Lorentz
and Ludvig Valentin Lorenz [1]. They demonstrated that
the microscopic (local) electric field EL acting on atoms or
molecules of the medium is different from the macroscopic
applied field E. This difference is due to polarization of
the medium P and describes the near dipole-dipole (NDD)
interactions between atoms or molecules. The well-known ex-
pression for the local field in the case of isotropic homogeneous
media is

EL = E + 4π

3
P. (1)

Utilization of this relation leads to the classic Clausius-
Mossotti equation between microscopic (molecular polariz-
ability) and macroscopic (dielectric permittivity) parameters
of the medium [2]. Local field correction (1) is a good
approximation in the case of nonresonant dense gases, liquids,
and solids. Moreover, it can be used to determine the
refractive index even for such quantum medium as Bose-
Einstein condensate [3–5] including the effects of atomic
correlations.

It turned out that it leads to some fundamental effects
if one considers radiation interacting with a dense collec-
tion of resonant two-level atoms. This system known as a
dense resonant medium should contain many atoms within
a cubic resonant wavelength [6]. The strength of NDD
interactions between atoms of this medium is measured by
value of the Lorentz frequency ωL = 4πµ2C/3h̄, where µ

is a transition dipole moment, C is the atom concentration
per unit volume, and h̄ is the Planck constant. The most
studied effect induced by the presence of the local field is
the intrinsic optical bistability which results in two-valued
dependence of the population difference between the ground
and excited states on light intensity in a stationary regime.
This effect was predicted theoretically [7] and then observed
experimentally [8]. The condition of bistability existence can
be formulated as an inequality b = ωLT2 > 4 [9], where
T2 is the transverse relaxation time. Realistic estimates of
value of b show that, as a rule, it does not exceed several
units, that is, b � 10. For example, for gaseous media with
typical parameters µ2 = 10−38 erg cm3, T2 = 10−9 s−1, and
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C = 1020 cm−3 [10], we have b ≈ 4. Condensed matter, for ex-
ample, excitonic media, possesses substantially greater dipole
moments, but they are compensated by relatively small atomic
concentrations [11].

Local field correction results in some remarkable effects on
pulse propagation in resonant medium. Some of them are con-
nected with new solitary wave properties, such as distinctions
of soliton form from the standard hyperbolic-secant envelope
and its area from 2π [12]. NDD interactions play a crucial role
in the generation of the so-called “incoherent” solitons [11].
They influence soliton formation in the so-called resonantly
absorbing Bragg reflectors [13], pattern formation in lasers
[14], and ultrashort, few-cycle pulse propagation in dense
resonant medium [15,16]. Crenshaw et al. [17] considered
ultrafast optical switching of the medium between ground
and excited states due to the action of a coherent pulse, that
is, a pulse whose duration is much less than the relaxation
times of the medium, tp � T1,T2. Switching was obtained for
the pulses with peak Rabi frequencies �p = µEp/h̄ (Ep is the
peak amplitude of the electric field) approximately equal to the
Lorentz frequency of the medium, that is, �p/ωL ≈ 1. This
is valid independent of the pulse area; however, if the pulse is
very short, it contains only a small fraction of π and, obviously,
cannot excite the medium. Therefore, this switching effect
holds true only for pulses long enough, namely, for ωLtp > 1.
This condition can be rewritten as btp/T2 > 1 and, taking into
account pulse coherence, gives b � 1, which seems not to be
realistic. In the next article [18], a more moderate condition
was considered, ωLtp � 1, together with taking into account
propagation effects. The results of that work were obtained
for pulses of picosecond durations. On the other hand, in a
femtosecond regime, the influence of NDD interactions on
pulse propagation was reported to be negligible, at least for
realistic values of b and ωL [19].

In this brief report we carefully examine the role of pulse
duration in the appearance of local field effects. We assume the
pulse to be intensive enough to excite the medium; that is, the
regime of ultrafast switching is considered. Therefore the main
dimensionless parameter of our research is ψ = �0/ωL, where
�0 is the characteristic peak Rabi frequency corresponding to
the pulse that switches the medium. �0 can be found due to the
conception of the pulse area. Indeed, if we take the equality

2
µ

h̄

∫ ∞

−∞
Edt = 2π (2)
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and assume the pulse to have Gaussian shape E =
E0 exp(−t2/2t2

p), we obtain

�0 =
√

π

2

1

tp
. (3)

So, the main parameter is

ψ = �0

ωL

=
√

π

2

1

ωLtp
. (4)

This value allows us to say whether the local field correction
is significant or not. It is seen that ψ is dependent on pulse
duration.

Our main thesis is that local field effects can be observed
when the ratio ψ is near unity (relatively long pulses), while
they can be neglected in the case of ψ � 1 (short pulses).
Further we prove this statement directly by numerical simula-
tions of pulse propagation inside a dense two-level medium.
The model used is based on the semiclassical Maxwell-Bloch
system for population difference W , microscopic polarization
R, and electric field amplitude �′ = �/ω = (µ/h̄ω)E (in
dimensionless form) [6,19,20]:

dR

dτ
= i�′W + iR(δ + εW ) − γ2R, (5)

dW

dτ
= 2i(�′∗R − R∗�′) − γ1(W − 1), (6)

∂2�′

∂ξ 2
− ∂2�′

∂τ 2
+ 2i

∂�′

∂ξ
+ 2i

∂�′

∂τ
= 3ε

(
∂2R

∂τ 2
− 2i

∂R

∂τ
− R

)
,

(7)

where τ = ωt and ξ = kz are dimensionless arguments; δ =
�ω/ω is the normalized detuning of the field carrier (central)
frequency ω from the atomic resonance; γ1 = (ωT1)−1 and
γ2 = (ωT2)−1 are the rates of longitudinal and transverse
relaxation, respectively; ε = ωL/ω is the normalized Lorentz
frequency; k = ω/c is the wave number, and c is the light
speed in vacuum. Here we assume that the background
dielectric permittivity of the medium is unity (two-level
atoms in vacuum). Equations (5) and (6) are derived in the
framework of the rotating wave approximation (RWA) which
requires �′ � 1 [21]. This condition is satisfied throughout
the article. In Eq. (7) we do not use slowly varying envelope
approximation (SVEA) which cannot hold true even for thin
films of the medium as noted in Ref. [18]. Description
based on Eqs. (5) and (6) does not take into account such
processes as multiple scattering, radiation reabsorption, and
spontaneous emission which result in quantum corrections
of the Lorentz-Lorenz relation [22,23]. However, many usual
effects of light propagation such as self-induced transparency
can be correctly treated in semiclassical approximation [21].

In our calculations we use Gaussian pulses with peak
amplitudes (3) and central wavelength λ = 0.5 µm. We
consider the case of strict resonance, that is, δ = 0. Initially
(before pulse incidence) the medium is in the ground state, that
is, W = 1 and R = 0. Thickness of the layer of the medium is
L = 5λ. NDD interactions between two-level atoms provide
Lorentz frequency ωL = 1011 s (note, that ωL � ω). This
value is believed to be high enough according to the typical
parameters described previously.

First, we consider the case of coherent pulses; that is, for
the phenomenological relaxation terms in Eqs. (5) and (6),
we assume γ1 = γ2 = 0. This allows us to study the pure
effect of the local field without any side effects connected
with relaxation. As one can see in all parts of Figs. 1(i) and
1(ii), the influence of NDD interactions on the dynamics of
pulses with durations tp = 0.1 and 1 ps (ψ = 125 and 12.5,
respectively) is negligible. For shorter (femtosecond) pulses
this is valid as well, in accordance with the results of Ref. [19].
Such pulses act as usual 2π ones, first inverting the medium
and then returning it exactly into the ground state. Transmitted
pulses demonstrate shape transformation resulting in pulse
compression [19], while reflected radiation is almost absent.
This situation can be treated as a self-induced transparency
(SIT) regime.

When we further make pulse duration greater, for tp = 5
and 10 ps [ψ = 2.5 and 1.25, all parts of Figs. 1(iii) and 1(iv)],
local field effects become apparent. Inversion of the medium
is reached later in comparison with the case of the absence of
NDD interactions. At the same time, the transmitted pulse is
decreasing, while the reflected one is getting more intensive.
At tp = 10 ps almost the entire initial energy of radiation is
transformed into the reflected pulse. Perhaps, this is connected
with the effect of coherent internal reflection which was studied
in the stationary regime earlier [24,25]. However, the local field
results in larger transmittance as compared with the case when
it is absent [see Fig. 1b(iv)].

Now let us add phenomenological relaxation. We take
typical parameters T1 = 1000 ps and T2 = 100 ps, so that
the NDD interaction parameter is b = ωLT2 = 1. For pulse
durations tp = 0.1 and 1 ps the results are almost the same
as those in the relaxation-free case [see all parts of Figs. 1(i)
and 1(ii)]. But for longer pulses we have to take into account
relaxation. It is seen in Fig. 2a(i) that for tp = 5 ps relaxation
results in energy conservation inside the medium for a long
time (the population difference does not reach unity) and,
hence, the output (transmitted and reflected) radiation is only
a small fraction of the incident one [compare with Fig. 1(iii)].
For the pulse with tp = 10 ps [Fig. 2a(ii)], relaxation of the
population difference on the entrance of the medium is slow,
too. However, this results in strong reflection rather than
trapping of pulse energy. The time shift of both population
difference and peak of reflected radiation in the case of local
field correction is seen as well. Therefore, one can say that
local field effects appear in the regime of internal reflection
rather than in the regime of self-induced transparency.

Finally, we should discuss the question of pulse shape.
One can see in Fig. 1a(iv) that the behavior of the population
difference for a long pulse with tp = 10 ps is different from
that in Figs. 1a(i) and 1a(ii) even in the case when the local
field correction is absent. This is due to the Gaussian shape
of such a long pulse. For comparison we take the invariant
pulse with hyperbolic secant shape, E = E0sech(t/tp). The
condition (2) leads in this case to the peak Rabi frequency

�0 = 1

tp
. (8)

Figure 3 demonstrates that the curve of the population
difference for hyperbolic secant pulse with peak amplitude (8)
and duration tp = 10 ps is really less deformed as compared
with Gaussian pulse of the same duration. However, all other
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FIG. 1. (Color online) (a) Population difference on the entrance of the medium, (b) transmitted and (c) reflected radiation at different pulse
durations: (i) tp = 0.1 ps, (ii) tp = 1 ps, (iii) tp = 5 ps, and (iv) tp = 10 ps. Relaxation is absent. Results correspond to calculations without
local field correction (LFC) (solid lines) and with it (dashed lines) in Eq. (5).

peculiarities (e.g., predominant reflection) are still valid in this
case. The same statement is true for qualitative properties of
the effect of the local field correction on pulse propagation in
the dense two-level medium considered.

In conclusion, in this note we considered the case of
pulse propagation in a dense two-level medium in the regime
of optical switching. It is clearly demonstrated by direct
numerical calculations that the local field effect on pulse
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FIG. 2. (Color online) (a) Population difference on the entrance of the medium, (b) transmitted, and (c) reflected radiation at different pulse
durations: (i) tp = 5 ps, (ii) tp = 10 ps. Relaxation times T1 = 1000 ps and T2 = 100 ps. Results correspond to calculations without local field
correction (LFC) (solid lines) and with it (dashed lines) in Eq. (5).
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FIG. 3. (Color online) Population difference on the entrance
of the medium for different pulse shapes: hyperbolic secant and
Gaussian. Pulse duration tp = 10 ps. Relaxation and local field
correction are absent.

propagation in such media is dependent on pulse duration.
The governing parameter ψ is the ratio of peak Rabi frequency
(characteristic for medium switching) and Lorentz frequency
of the medium. For short (femtosecond) pulses this ratio is
large, and we have the regime of self-induced transparency
without any significant influence of local field. In other
words, as pulse duration is decreasing, one needs to have
much greater Lorentz frequencies (that seems not to be
realistic) to obtain any local field effect. On the other hand,
when Lorentz frequency is increasing as medium is getting
more dense, one has to take into account the processes of
multiple scattering (and, hence, radiation trapping), which
was ignored in our study. For long (picosecond) pulses,
such that ψ ∼ 1, the influence of the local field becomes
apparent, while the SIT regime transforms into the regime of
coherent internal reflection. On the other hand, the relaxation
processes (just as the pulse shape) can be sufficient in the
case of long pulses. The results obtained may be used for
proper choice of the parameters of experiments dealing with
local field observation (at least, in some special experimental
geometries).
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