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Candidates for laser cooling of atomic anions: La− versus Os−
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This brief report is a follow-up to the recent proposal to use La− as another candidate, in addition to Os−,
in laser cooling of anions, which can then be used to cool antiprotons sympathetically. Using the relativistic
configuration interaction formalism, we calculate the photodetachment cross sections of the upper laser cooling
state La− 5d6s26p 3D1 and Os− 5d66s26p 6D9/2. Our results show that La− has a very similar two-photon
detachment loss as Os−, retaining it as another promising candidate for cooling antiprotons sympathetically.
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Ultracold antihydrogen atoms are of great scientific
interest [1]. For example, they can be efficiently trapped
for precise laser spectroscopy, enabling spectroscopic
comparison with hydrogen. They are also ideal systems
for direct measurement of gravitational acceleration of
antimatter. To form antihydrogen below 1 K, it is crucial
that the antiprotons be precooled before combining with the
positrons [2]. It was proposed [3] that antiprotons can be
sympathetically cooled by transferring their energy to some
precooled anions. These anions are cooled via laser cooling,
where they absorb a laser photon and undergo electric dipole
(E1) transitions to a bound state of opposite parity.

In an earlier paper [4], our research group proposed a new
candidate for laser cooling, La−, in addition to Os− [3,5].
Comparisons were made [4] between these two anions. For
example, the E1 transition in La− has a lower transition energy
than that in Os− (Fig. 1), but the upper state in La− does not
need to be repumped using a laser as will be necessary for Os−.
An ideal candidate anion would have only two bound states
connected by an E1 transition. This is essentially true for La−,

whose upper state decays almost entirely back to the ground
state even though there are other lower states. The Os− upper
state, however, can decay into another state, necessitating the
need to repump it to maintain efficient laser cooling.

One important consideration in laser cooling is the two-
photon detachment loss. The upper state of the anion may ab-
sorb a second photon, which kicks off the excess electron, and
become neutralized. La− would not be a competitive candidate
to Os− for laser cooling if its loss due to photodetachment is
much larger. For this reason, we decided to compare the upper
state photodetachment cross sections of La− and Os− at their
corresponding photon energies.

As shown in Fig. 1, the possible detachment channels for
La− and Os− in laser cooling are as follows.

La− : 5d6s26p 3D1 → 5d6s2 2D3/2 + εlj ,

Os− : 5d66s26p 6D9/2 → 5d66s2 5D2,3,4 + εlj
→ 5d76s 5F5 + εlj ,

where εlj denotes εs1/2 and εd3/2,5/2. The multiple detachment
thresholds in Os− are due to its high laser photon energy,
1.067 eV. The Os I 5d66s2 5D0, 5D1 states are omitted because
neither can make a total J value that is accessible by an E1
transition after coupling with a free s or d electron.
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In computing the cross sections for the above channels,
we employ the relativistic configuration interaction (RCI)
methodology. The wave functions for the anion bound state
and the neutral thresholds were obtained by doing RCI
calculations at the valence stage. The basis set consists of the
reference configurations (Fig. 1) and correlation configurations
that are one- or two-electron replacements of the reference
configurations. The radial functions for the spinors occupied
in the reference configurations are generated by the multicon-
figurational Dirac-Fock code of Desclaux [8]. For those not
occupied in the reference configurations, called virtual orbitals
and denoted vl, their radial functions are represented by the
relativistic screened hydrogenic functions (RSHs). The only
adjustable parameter in an RSH function, the effective charge,
Z∗, is determined via energy minimization.

One merit of the RCI formalism is that the basis set can be
tailored to the atomic property under study. In a cross-section
calculation, the energy values of the anion states and the neutral
states are taken from the measurements or calculations in the
literature (refer to the caption to Fig. 1). With energies being
thus accounted for, in cross-section calculations it is adequate
for the wave function to be able to yield the converged LS

compositions for an anion state or a Landé g value that
is in good agreement with the measurement in case of a
neutral state. In addition, the radial space of the important
configurations may need to be saturated by adding another
virtual orbital of the same symmetry. In La−, introducing a
second set of virtual orbitals lowers the total cross section by
∼7% while maintaining excellent gauge agreement (�1%).
The additional virtual p orbital helps saturate La− 5d6s2vp,
which is the only big contributor to the cross section other
than the reference configuration. In Os−, the addition of the
second virtual orbital changes the cross section very little
(<3%). This is consistent with the observation that the big
contributors to the Os− cross sections are exclusively the
reference configurations.

Unlike the previous work [4], the 5d2 correlation was
explicitly introduced in the basis set in this work. The near-
degeneracy between the 5d and the 6s electron manifests itself
as the mixing of 5d26s6p (∼18%) in La− 5d6s26p 3D1 and
the mixing of 5d76s6p (∼6%) in Os− 5d66s26p 6D9/2. A full
ab initio treatment would explicitly correlate both configu-
rations by applying the same one- and two- electron replace-
ments to them. For Os−, as discussed in the previous paper [4],
it was thought that this would cause extensive second-order
effects and lead to overcorrelation of 5d76s6p. The solution
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FIG. 1. Bound states of Os− (Table I in Ref. [4]) and La− (Tables VI and VII in Ref. [6]), together with neutral thresholds [7] that can be
accessed by the laser photon. Arrows show laser cooling transitions. The energy of the transition in La− is 0.337 eV.

then was to omit the 5d2 correlation but incorporate its effect
to the wave function by shifting the related diagonal matrix
elements. However, for the Os− 6D9/2 odd state studied here,
including the 5d2 correlation does not seem to cause problems.
While the 5d2 correlation in 5d66s26p does introduce to
5d76s6p the triple replacements 5d3 → 6sxl2 + 6sxlx

′
l
′

(xl

denotes either a Dirac-Fock orbital, nl, or a virtual orbital,
vl), these replacements are going to be small. Experience has
shown that large triple replacements are usually products of
the large one- and two-electron replacements. The preceding
5d3 correlation can be viewed as a product of 5d → 6s and
5d2 → xl2 + xlx

′
l
′
, but 5d → 6s is small (e.g., contributes

only several tens of milli–electron volts to 5d76s in Os I).
Therefore, we do not expect this 5d3 correlation to contribute
much to 5d76s6p. In contrast, these 5d3 replacements are
not applicable to 5d66s26p, whose 6s subshell is already
full. In support of the foregoing argument, after explicitly
incorporating the 5d2 correlation in the basis set, we obtain
LS compositions almost identical to those in the previous
calculation [4]. For the neutral states, the 5d2 correlation is also
explicitly included and good agreements with the experimental
Landé g values are obtained.

The 5d2 correlation produces a large number of basis
functions, so we use the REDUCE method [9] to keep the basis
size within the default 20 000 limit. Briefly, this method rotates

the basis functions of a correlation configuration to maximize
the number of functions that have zero matrix elements with the
reference functions. These functions are then discarded, but
those that have nonzero matrix elements are kept. With the
REDUCE method, a reduction of a factor of 20 is achievable.

The continuum-state wave function is constructed by
coupling the wave function of a free electron to that of a neutral
state [10]. Assuming that the angular part of the free electron’s
wave function takes the same form as that of a bound electron,
its radial function is numerically generated in a frozen-core
Dirac-Fock potential, using a modified version [10] of the
relativistic continuum wave solver code of Perger et al. [11,12].

The cross section is calculated using [13]

σ = 4π2α a2
0
df

dE
= 8.067

df

dE
(Mb), (1)

where α is the fine-structure constant, a0 is the radius of the
first Bohr orbit, and df

dE
is the differential oscillator strength

for the E1 transition from the anion bound state to the
continuum state. df

dE
is evaluated using a modified version [14]

of our code for bound states. This modified version has been
used to reproduce the experimental photoelectron spectrum of
Ce− [15].

It is known that the presence of resonances may produce
pronounced features in the photoelectron spectrum. Therefore,
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it is important to mix the important resonance states into the
wave function for the continuum state. An important resonance
state, according to Fano’s theory [16], should posses at least
two properties: (1) it should be connected to the initial bound
state by a strong E1 transition; and (2) it should have a large
mixing in the continuum state. In a previous work on Hf−
[17], we implemented Fano [16] and Mies’s [18] theory to
incorporate big resonance states. For La− and Os−, however,
analysis shows no big resonance state to be present. In the La−
case, given the initial bound state 5d6s26p 3D1, the potentially
important resonance in a 6p detachment would be 5d26s2.
RCI calculations have shown (see Fig. 1) that all the 5d26s2

states lie below the neutral ground state except for the 1S0,
1G4 state. Since the initial 5d6s26p state is dominantly 3D1,
transition to either 1S0 or 1G4 is not E1 allowed. Similarly,
for Os−, the initial 5d66s26p state is dominated by sextuplets
(6D9/2, 6F9/2), but the potentially important resonance 5d76s2

can make at most a quartet. Due to this lack of big resonance
states, no mixing of resonances into the continuum was made.

The calculated cross sections for La− and Os− are summa-
rized in Table I. The cross section to each neutral threshold
is the sum of all the relevant relativistic channels. As can be
seen, we obtained very good gauge agreement for La− due
to the careful selection of the 6p radial functions [6] for La−
5d6s26p. The gauge agreement for Os− is not at the same
level. However, our results for Os− are consistent with the
order of estimates, 10−17 cm2 (tens of megabarns) [5] and
5 × 10−17 cm2 [19], both made by experimental data fitting.

TABLE I. Photodetachment cross sections (in both Babuskin
gauge and Coulomb gauge) of the upper state of La− and Os− in
laser cooling.

Anion upper Neutral Cross section (Mb)

bound state threshold Babu. gauge Coul. gauge

La− 5d6s26p 3D1 5d6s2 2D3/2 34.4 34.9

Os− 5d66s26p 6D9/2 5d66s2 5D4 30.1 36.6

5d66s2 5D2 ∼0 ∼0

5d66s2 5D3 0.6 0.5

5d76s 5F5 1.5 1.0
Total 32.2 38.1

In conclusion, our calculations show that the upper states in
laser cooling of La− and Os− have very similar photodetach-
ment cross sections. In other words, La− will have two-photon
detachment loss very similar to that of Os− if used in laser
cooling. Combined with its other merits [4], La− does make a
promising candidate for laser cooling. It is our hope that this
work will stimulate more experimental explorations of laser
cooling of La−, which can then be used to cool antiprotons to
very low temperatures.

Support for this work was provided by National Science
Foundation Grant No. PHY-0652844.
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