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Elementary gates for quantum information with superposed coherent states

Petr Marek and Jaromı́r Fiurášek
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We propose an alternative way of implementing several elementary quantum gates for qubits in the coherent-
state basis. The operations are probabilistic and employ single-photon subtractions as the driving force. Our
schemes for single-qubit PHASE gate and two-qubit controlled PHASE gate are capable of achieving arbitrarily
large phase shifts with currently available resources, which makes them suitable for the near-future tests of
quantum-information processing with superposed coherent states.
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Quantum computation offers several advantages over its
classical counterpart, namely an exponential speedup for some
computational tasks. Currently, the most advanced approach
to actually building the quantum computer relies on the use
of two-level quantum systems: qubits. Their quantum optical
implementation relied initially on states of single photons [1],
but recently there were proposals to use superpositions of two
“macroscopical” objects, two coherent states of light differing
by phase [2,3]. Since then there has been considerable attention
focused on obtaining such superposed coherent states [4] or
even arbitrary qubits in the coherent-state basis [5].

Any quantum computer needs to be constructed from basic
building blocks, from quantum gates. In principle, two types
of gates are required. Single-mode gates are needed to control
quantum states locally, while two-mode gates serve to provide
entanglement. The original proposal for quantum computing
with coherent states [3] suggested that these gates could be
implemented by coherent displacements and interference on
unbalanced beam splitters followed by projection back onto the
computational subspace. This approach looks fine in theory,
but with regards to currently available experimental resources,
there is hardly any interesting effect that can be observed.

This statement requires some clarification. The scheme put
forward in Ref. [3] relies on the phase shift that occurs when a
coherent state gets displaced, D̂(β)|α〉 = e(αβ∗−α∗β)/2|α + β〉.
If |β| � |α|, the displaced state strongly resembles the original
one, differing mainly in the phase shift of the basis coherent
state. The displacement could be driven classically, providing
the single-mode phase-shift operation, or by another quantum
state to implement a two-qubit gate. However, the need for
the low value of the displacement results in a low value of the
implemented phase shift, considering the currently achievable
size of superposed coherent states, |α| ≈ 1. Consequently, a
large number of operations (at least ten) would be required to
achieve a π phase shift. Furthermore, an indispensable part
of the operation is quantum teleportation, which projects the
displaced state back onto the computational basis |α〉, |−α〉
and which should be implemented after each step. Without it,
the actual nature of transformations is revealed to be that of
a trivial displacement or a beam splitter. Unfortunately, the
teleportation requires the entangled superposed coherent state
as a resource, which, together with the need for photon number
resolving detectors, renders it either unavailable or highly
probabilistic.

All in all, the operations of [3] allow, in principle, deter-
ministic interactions of arbitrary strength. In reality though,

the single step produces only a very weak effect, and the need
to teleport the states afterward means that presently the full
gate is probabilistic anyway and that there probably will not
be more steps in the foreseeable future. Therefore, if we wish
to test the principles of quantum-information processing with
the superposed coherent states, we need to devise alternative,
more feasible, approaches.

In the following, we are going to present an alternative
way of performing several of the elementary gates: the single-
mode PHASE gate, the two-mode controlled PHASE gate, and
the single-mode Hadamard gate. The gates are probabilistic,
relying on projective measurements (photon subtractions, in
particular) to deliver the nonlinear effect.

To clearly convey the basic ideas let us work in the idealized
scenario of perfect superposition of coherent states and perfect
photon subtraction. We start with the single-mode PHASE

gate which is necessary for single qubit manipulations. The
procedure is schematically shown in Fig. 1. An arbitrary qubit
in the coherent-state basis,

|ψin〉 = x|α〉 + y|−α〉, (1)

is first coherently displaced by γ , |ψin〉 → D̂(γ )|ψin〉. This
operation can be easily performed by mixing the signal beam
with an auxiliary strong coherent field on a highly unbalanced
beam splitter [6]. Subsequently, a single photon is subtracted
from the state, which is mathematically described by the action
of annihilation operator â. Finally, the state undergoes an
inverse displacement by −γ , and we have

|ψout〉 = D̂(−γ )âD̂(γ )|ψin〉
= x(α + γ )|α〉 + y(−α + γ )|−α〉. (2)

This operation becomes equivalent to a PHASE gate provided
that the complex displacement γ satisfies

γ − α

γ + α
= eiφ, (3)

which yields γ = iα/ tan(φ/2). The output state after PHASE

gate then reads

|ψout〉 = i(xe−iφ/2|α〉 + yeiφ/2|−α〉), (4)

and it can be seen that, up to a global phase factor, any nonzero
phase shift φ may be performed in this way.

Another important gate for quantum-information process-
ing is the two-qubit controlled PHASE gate, which is, up to local
operations, equivalent to the controlled-NOT (CNOT) gate, and
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FIG. 1. (Color online) Schematic representation of the single-
mode PHASE gate. BS stands for a mostly transmitting strongly
unbalanced beam splitter, APD stands for avalanche photodiode, and
D represents the displacement operation.

which is used to establish entanglement in cluster states. It can
be implemented in a manner similar to the single-qubit PHASE

gate, also employing displacements and photon subtractions
as the driving force. However, to achieve interaction between
the two modes 1 and 2 while preserving the computational
basis, the operations take place in one arm of a Mach-Zehnder
interferometer, see Fig. 2. For the input two-qubit state written
in the coherent-state basis

|�in〉 = c11|α,α〉 + c10|α,−α〉 + c01|−α,α〉 + c00|−α,−α〉,
(5)

the controlled PHASE gate is symmetric and preserves the
structure of the state, only providing the term |−α〉|−α〉 with
a phase factor eiφ , where φ is the phase shift introduced by the
gate. A normalized output state of the gate corresponding to
input state (5) thus reads

|�out〉 = c11|α,α〉 + c10|α,−α〉 + c01|−α,α〉
+ eiφc00|−α,−α〉, (6)

which is a new state with coefficients c′
mn related to cmn as

c′
11

c11
= c′

01

c01
= c′

10

c10
= c′

00

c00
e−iφ. (7)

The implementation of the gate requires a Mach-Zehnder in-
terferometer with two single-photon subtractions accompanied
by suitable displacements placed in one of the arms, which can
be formally expressed as

|�out〉 = Û
†
BSbD̂

†
2âD̂2D̂

†
1âD̂1ÛBSb|�in〉

= (â + b̂ + γ2)(â + b̂ + γ1)|�in〉. (8)

Here, â and b̂ represent the annihilation operators of modes 1
and 2, respectively, D̂1,2 stand for the displacement operators
acting as D̂

†
1,2âD̂1,2 = â + γ1,2/

√
2, and ÛBSb is the unitary

evolution operator of a balanced beam splitter, Û
†
BSbâÛBSb =

(â + b̂)/
√

2.

FIG. 2. (Color online) Schematic representation of the two-mode
controlled PHASE gate. BSb stands for a balanced beam splitter
and D1,2 represent displacements by γ1,2/

√
2. Numbers 1 and 2

distinguish the two participating modes, while labels “in” and “out”
describe the input and output states of the gate.

After the transformation, the composition of the state
remains the same, only the coefficients are transformed to

c′
11 = c11[4α2 + 2α(γ1 + γ2) + γ1γ2],

c′
10 = c10γ1γ2,

(9)
c′

01 = c01γ1γ2,

c′
00 = c00[4α2 − 2α(γ1 + γ2) + γ1γ2].

To achieve the controlled PHASE gate transformation given
by (7) one needs to attune the displacements γ1 and γ2 in such
a way that

γ1 + γ2 = −2α,
(10)

γ1γ2 = 8α2

eiφ − 1
.

An explicit calculation provides closed analytical formulas for
the required displacements

γ1,2 = −α

[
1 ±

√
eiφ − 9

eiφ − 1

]
. (11)

Again, the phase shift φ can attain an arbitrary nonzero value.
It is important to stress, and it holds for both the PHASE

gates, that although we have used direct displacements of the
participating modes, it is actually more feasible to apply all the
required displacement operations only on the ancillary modes
used for the photon subtraction, just before the avalanche
photodiode (APD) measurement. To explain the procedure
we consider an arbitrary two-mode coherent state |α′,β ′〉
and subject it to the evolution sketched in Fig. 3. First, the
two modes are separately split on strongly unbalanced beam
splitters with transmission coefficients t ≈ 1 and reflection
coefficients r � 1, which leads to a joint state |α′,β ′〉|rα′,rβ ′〉.
The two ancillary modes are now mixed on a balanced beam
splitter and one of the modes is traced out. Since r is very
small, this does not significantly reduce the purity and we can
keep working with the state vector. The remaining mode is then
split on another balanced beam splitter and two displacement
operations are performed, arriving at the premeasurement state

|α′,β ′〉
∣∣∣∣ r2(α′ + β ′) + γ ′

1,
r

2
(α′ + β ′) + γ ′

2

〉
. (12)

FIG. 3. (Color online) Alternative architecture of the two-mode
controlled PHASE gate. BSb stands for a balanced beam splitter, while
BSu represents a strongly unbalanced weakly reflective one. APD
represents avalanche photodiode and D1 and D2 are the displacement
operations. Numbers 1 and 2 distinguish the two participating modes,
while labels “in” and “out” describe the input and output states of the
gate.
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In the limit of small r , the APD detectors can be represented
by projection onto the single-photon Fock state 〈1| and if
the displacements are chosen so γ ′

1,2 = γ1,2r/2 the final state
looks as

(α′ + β ′ + γ1)(α′ + β ′ + γ2)|α′,β ′〉, (13)

which is exactly what we want.
Note that a similar approach was already used for generation

of an arbitrary coherent-state qubit [5], which also demon-
strated, albeit in a limited way, the core principle behind the
single-mode PHASE gate.

Finally, to complete the set of gates necessary for imple-
mentation of an arbitrary single-qubit operation, we present a
feasible implementation of the Hadamard gate. Unlike the two
previous gates, the Hadamard gate requires more than single-
photon subtractions. This is quite understandable because the
gate is supposed to transform a coherent state |α〉 into a
superposed state |α〉 + |−α〉, which is a strongly nonlinear
process. Therefore an additional superposed coherent state, let
us say |α〉 + |−α〉, is required.

The core principle is simple and it employs the previously
described controlled PHASE gate. This gate, with φ = π ,
transforms the initial and the ancillary state to

x|α〉(|α〉 + |−α〉) + y|−α〉(|α〉 − |−α〉). (14)

The gate is finalized by using a projective measurement 〈π |
such that 〈π |α〉 = 〈π |−α〉. An example of such a measurement
is the homodyne detection of the p̂ quadrature, postselecting
the state only if a specific value is detected, or a photon number
resolving detector projecting on an arbitrary even-number
Fock state.

This kind of Hadamard gate requires three projective
operations. Two photon subtractions for implementation of the
controlled gate and one additional measurement to confine the
state into a single mode. There is another possibility, illustrated
in Fig. 4, which reduces the number of operations to two. This
improvement is compensated by imperfection of the operation,
as it works only approximatively, even though the quality may
be made arbitrarily large.

Here too we need another superposed coherent state |α〉 +
|−α〉. If we consider a displacement by some amplitude β, a
single-photon subtraction, and the inverse displacement, the
state would be transformed to

(α + β)|α〉 + (−α + β)|−α〉. (15)

FIG. 4. (Color online) Schematic representation of the approxi-
mate single-mode Hadamard gate. BSu stands for a highly unbalanced
weakly reflecting beam splitter, while BS� is a beam splitter with
transmission coefficient t� used to set the parameter �. APD stands
for a avalanche photodiode and 〈π | represents the suitable projective
measurement (see text).

We can now see that for β = 0 we have obtained an odd
cat state, while for β 	 α the cat state remained even. If
we could correlate the displacement with the basis states of
the initial state x|α〉 + y|−α〉, we would have obtained the
required transformation. So how to do it?

Let us start with the initial state (1) and displace it by α.
The complete state of the initial mode and the resource mode
then looks as

(x|β〉 + y|0〉) ⊗ (|α〉 + |−α〉), (16)

where β = 2α, but its value could be different if the initial state
had a different amplitude than the ancillary resource. The next
step is to apply a joint single-photon subtraction, similarly as
for the controlled PHASE gate, represented by operator �â +
b̂ (where â and b̂ are annihilation operators acting on the
ancillary and the input mode, respectively) and a projection
of the initial mode onto a certain pure state 〈π | that will be
specified in the following. The resulting single-mode output
state then reads

x〈π |β〉[(β + �α)|α〉 + (β − �α)|−α〉]
+ y〈π |0〉�α(|α〉 − |−α〉). (17)

If |�α| � |β| holds, we can make the approximation β ±
�α ≈ β and the output state simplifies to

x〈π |β〉β(|α〉 + |−α〉) + y〈π |0〉�α(|α〉 − |−α〉). (18)

The desired Hadamard operation is then performed if

〈π |β〉β = 〈π |0〉�α. (19)

To achieve this, the projective measurement |π〉 needs to be
properly chosen. For example, using homodyne detection to
project on an x̂ eigenstate 〈x̂ = q| is appropriate, provided that
exp[−(q − √

2β)2/2] = exp(−q2)α�/β. This can always be
done. The value of � itself can be set by manipulating the beam
splitter of the joint photon subtraction as � = t�/

√
1 − t2

� . In
this way, even if there is a large difference in amplitudes
of the two participating states, the Hadamard gate can be
implemented with arbitrary precision. Note that the standard
way of generating an odd superposed coherent state by a
photon subtraction is actually very close to the implementation
of the proposed Hadamard gate for a known coherent-state
input.

The experimental implementation of the proposed gates
should be straightforward. The most difficult part of the
gates is the photon subtraction, which can be implemented
by a strongly unbalanced beam splitter and an on-off photo-
detector—the avalanche photodiode. In this form the photon
subtraction is becoming a staple of continuous variables
quantum optical experiments and it is widely used to gen-
erate superposed coherent states [4,5], or to manipulate and
concentrate entanglement [7,8].
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To summarize, we have proposed a feasible implemen-
tation of several elementary gates for superposed coherent-
state qubits. The main benefit of the proposed approach,
which is based on using single-photon subtractions, is
that it allows achieving strong nonlinearities even with the
currently available small cat-like states exhibiting |α| ≈ 1,
much unlike the proposal of Ref. [3]. The experimen-
tal feasibility, together with the ability to produce strong
nonlinearities, makes these gates suitable for immediate

tests of quantum-information processing with coherent-state
qubits.
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