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Evolution of Bloch-mode envelopes in two-dimensional generalized honeycomb lattices
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Wave propagation in two-dimensional generalized honeycomb lattices is studied. By employing the tight-
binding (TB) approximation, the linear dispersion relation and associated discrete envelope equations are derived
for the lowest band. In the TB limit, the Bloch modes are localized at the minima of the potential wells and
can analytically be constructed in terms of local orbitals. Bloch-mode relations are converted into integrals
over orbitals. With this methodology, the linear dispersion relation is derived analytically in the TB limit.
The nonlinear envelope dynamics are found to be governed by a unified nonlinear discrete wave system. The
lowest Bloch band has two branches that touch at the Dirac points. In the neighborhood of these points, the
unified system leads to a coupled nonlinear discrete Dirac system. In the continuous limit, the leading-order
evolution is governed by a continuous nonlinear Dirac system. This system exhibits conical diffraction, a
phenomenon observed in experiments. Coupled nonlinear Dirac systems are also obtained. Away from the Dirac
points, the continuous limit of the discrete equation leads to coupled nonlinear Schrödinger equations when the
underlying group velocities are nearly zero. With semiclassical approximations, all the parameters are estimated
analytically.
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I. INTRODUCTION

Wave propagation in nonlinear periodic media is of keen
interest and has resulted in new and interesting phenom-
ena [1–5]. These studies have been stimulated by rapid
experimental advances in optics, Bose-Einstein condensates
(BEC), and related fields. In optics, high-intensity laser
beams that propagate in periodic structures, such as periodic
wave-guide arrays and photonic lattices, naturally combine
periodicity and nonlinearity [2,3]. In BEC, condensates are
loaded into periodic optical lattices in addition to a harmonic
trap. The existence of the periodic optical lattices leads to
rich and complex condensate patterns [5]. The problems
mentioned previously in the two fields (optics and BEC)
are closely related, since their mathematical descriptions are
similar.

Localized structures that propagate without change of shape
have a potential application for information-light switching
and optical information. Many novel localized structures,
referred to as solitons, have been demonstrated experimentally
and theoretically in both one- (1D) and two-dimensional (2D)
periodic lattices. Such phenomena include (but are not limited
to) dipole solitons, vortex solitons, and soliton trains [6–8].
These solitons are usually considered theoretically as bifur-
cations from the Bloch-band edges into the band gaps [9,10].
Similarly, solitons can sometimes be found in near-periodic
and complex media [11,12]. While most work has tended
to focus on seeking different types of solitons and studying
their properties, nevertheless, the overall dynamics of wave
envelopes, beyond localized modes, is also very important.
Unfortunately, the complete analytical understanding of the
dynamics is still open.

The standard mathematical model that governs electro-
magnetic wave propagating in periodic nonlinear media or
condensates trapped in periodic optical lattices is the nonlinear
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Schrödinger (NLS) equation with a periodic potential. In this
description, the local minima of the periodic potential, which
are called sites, play an important role in the structure of the
Bloch modes and the associated dispersion relations. These
sites are the positions of the potential wells; and, in optics,
they have increased refractive index, hence, the electric field is
attracted to them. In BEC, the condensates localize near these
sites, since they are near the minima of the potential wells.
Mathematically speaking, the Bloch modes show increased
intensity around the sites. If the potential well at each site is
very deep, the intensity of the Bloch modes becomes more and
more localized around the sites. This is related to the so-called
tight binding (TB) approximation. The interactions of Bloch
modes are mainly determined by the behavior of the nearby
sites. Thus, the site distribution becomes very important in
classifying 2D lattices. Roughly speaking, there are simple 2D
lattices and nonsimple 2D lattices. A simple lattice contains
one site per unit cell, while a nonsimple lattice contains more
than one site per unit cell. Square lattices and equilateral
triangular lattices are typical simple lattices. A common and
naturally existing nonsimple lattice is the honeycomb lattice,
which has two sites in each unit cell. An important physical
application of these lattices is the material graphene, which has
a honeycomb lattice structure. Ablowitz and Zhu studied the
dynamics in simple nonlinear periodic media and developed
a unified description of the wave envelope dynamics [13]. In
this paper, we develop the analysis associated with nonsimple
honeycomb lattices.

Honeycomb lattices can lead to significantly different
results than found in simple lattices. Unlike simple lattices,
where different dispersion surfaces typically either separate
completely or intersect, it is found that, due to the underlying
symmetries in honeycomb lattices, the dispersion relation of
the associated Bloch theory, may also have isolated degenerate
points in the first band, where two dispersion surfaces touch
each other. These points are called Dirac points (sometimes
referred to as, diabolical points [14]); and, in the neighborhood
of the Dirac points, the dispersion surfaces have a conical
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structure. The existence of the Dirac points plays a very
important role in the novel properties of graphene [15]. Due
to the conical structure of the dispersion relations, from
lattice NLS equations, one can find nonlinear Dirac wave
systems, which govern the wave dynamics [16,17]. There are
interesting phenomena associated with these Dirac systems.
An example in optics is the conical diffraction, where a narrow
beam transforms into bright expanding rings [14,16,18].
Honeycomb lattices also admit various types of band-gap
solitons, which are due to the effect of nonlinearity like other
2D periodic lattices (cf. Refs. [19,20]). In BEC, honeycomb
background lattices may also lead to interesting phenomena
[17].

If the honeycomb lattice is deformed, and the symmetries
are broken, then the dispersion relation (first band) will change
as well as the associated wave envelope dynamics [21]. Under
some conditions, the first band with two branches, which
originally touch, can split into two bands with a corresponding
band gap formed between the two branches. Thus, the
dynamics of the wave envelope can change dramatically.

In this paper, we employ a discrete approximation to
describe the envelope dynamics in general 2D honeycomb
lattices. This technique has been used in 1D problems [22,23].
We first derive the linear dispersion relation in the lowest band,
which can have two touching branches. If the the honeycomb
lattice is appropriately deformed, there exist two Dirac points
in the Brillouin zone. With the understanding of the linear
dispersion relation, the nonlinear dynamics are then governed
by a unified discrete wave system. At the locations where
the Bloch modes touch, we find a nonlinear discrete Dirac
system. From the discrete Dirac system in the continuous
limit, the dynamics of the wave envelope is governed by
a scaled nonlinear Dirac system. Coupled nonlinear Dirac
systems can also be obtained where the coupling is developed
between conjugate Dirac points. In another limit from the
general discrete system, the wave envelope away from the
Dirac points is governed by an NLS equation. We also study
the case when the input beam is composed of two Bloch-mode
envelopes, which correspond to the upper and lower branches,
respectively. In certain cases, the dynamics is found to be
governed by a coupled NLS system.

II. HONEYCOMB LATTICES AND THEIR
DISPERSION RELATIONS

Electromagnetic waves that propagate in an inhomoge-
neous Kerr nonlinear medium are often described by the 2D
NLS equation, written in dimensionless form

iψz + ∇2ψ − V (r)ψ + σ |ψ |2ψ = 0, (1)

where r = (x,y) is the transverse coordinate, z is the prop-
agation direction, V (r) represents the spatial varying of the
refractive index, which is often periodic, and σ is the nonlinear
coefficient, which is positive for focusing nonlinearity and is
negative for defocusing nonlinearity. This model also arises
in ultracold atoms, BEC, trapped in a periodic lattice where
the NLS with an external potential is often called the Gross-
Pitaevskii equation.

A 2D periodic function has two periods along two dif-
ferent directions, which we call primitive lattice vectors. We

denote them as v1 and v2. These two vectors can generate
a set of lattice vectors P = {mv1 + nv2 : m,n ∈ Z}, and,
then, for any v ∈ P , V (r + v) = V (r). In the dual spectrum
space, we denote k1 and k2 as the two primitive reciprocal
lattice vectors and we denote G = {mk1 + nk2 : m,n ∈ Z} as
the set of reciprocal lattice vectors. The relation between lattice
and reciprocal lattices is vm · kn = 2πδmn,m,n = 1,2. The
two primitive lattice vectors v1 and v2 form a parallelogram,
which is termed the unit cell of the physical lattice, which
we denote �. Due to its periodicity, the potential V (r) is
completely determined by the information in �. Similarly,
the parallelogram determined by the two reciprocal primitive
lattice vectors k1 and k2 is the unit cell of the reciprocal lattice,
which we denote �′.

In this paper, we will only study honeycomb lattices.
A honeycomb lattice can be generated by interfering three
plane waves for which the following lattice potential is a
prototype:

V (r) = V0

(1 + η1 + η2)2
[|eik0b1·r + η1e

ik0b2·r + η2e
ik0b3·r|2

− (1 + η1 + η2)2], (2)

where b1 = (0,1), b2 = (−
√

3
2 ,− 1

2 ), and b3 = (
√

3
2 ,− 1

2 ); V0 >

0 is the lattice intensity; η1 and η2 are relative intensities of the
plane waves. For simplicity, we only consider the case where
η1 = η2 = η > 0 in this paper. In order to form a honeycomb
lattice, the condition η > 1

2 should be satisfied.
As with other 2D periodic functions, honeycomb lattices

have two primitive lattice vectors. However, unlike simple 2D
lattices, a honeycomb lattice has two sites in one unit cell.
So, we need two starting points to generate all sites by the
periodicity. The site distributions are displayed in Fig. 1. It
is seen that the lattice has two sites in one cell, which we
call A and B sites. The dots represent A sites, and the circles
represent B sites. All A sites form a triangular lattice, and
all B sites form another triangular lattice. We denote A0 and
B0 as the positions of the starting sites. So, Av = A0 + v and
Bv = B0 + v are the positions of A and B sites in cell v. The
shift vector between A and B sites in one cell is defined as d0 =
A0 − B0. We also denote two other vectors d1 = d0 + v1 and
d2 = d0 + v2. Then, all A sites have three nearest B sites, and
the shift vectors are d0, d1, and d2. If η = 1, they all have the
same length, and this is a standard (undeformed) honeycomb
lattice. However, for a deformed honeycomb lattice, η �= 1 and
|d1| = |d2| �= |d0|.

FIG. 1. (a) A honeycomb lattice. (b) Characteristic vectors and
sites around a site. The shadow region in (a) is the primitive unit
cell �.
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The characteristic vectors of the honeycomb lattice Eq. (2)
are then,

v1 = l

(√
3

2
,
1

2

)
, v2 = l

(√
3

2
,−1

2

)
,

k1 = 4π√
3l

(
1

2
,

√
3

2

)
, k2 = 4π√

3l

(
1

2
,−

√
3

2

)
,

A0 =
√

3

2π
l

(
π − arccos

(
1

2η

)
,0

)
,

B0 =
√

3

2π
l

(
π + arccos

(
1

2η

)
− 2π,0

)
,

where l = 4π
3k0

is the lattice constant (i.e., the length of the
primitive lattice vectors). These values are found from the
geometric location of the minima of the lattice and periodicity.
The shift vectors from its three nearest B sites to the A site are

d0 =
√

3

2π
l

(
−2 arccos

(
1

2η

)
,0

)
,

d1 =
√

3

2π
l

(
π − 2 arccos

(
1

2η

)
,

√
3

3
π

)
,

d2 =
√

3

2π
l

(
π − 2 arccos

(
1

2η

)
,−

√
3

3
π

)
.

It is seen that |d0| = |d1| = |d2| =
√

3
3 l, when η = 1.

It is also noted that the asymptotic expansion of the potential
near the sites is

V (r) ≈ V0

{
9k2

0

4(1 + 2η)2

[
(4η2 − 1)

3
(x − x0)2 + (y − y0)2

]
− 1

}
,

(3)

where (x0,y0) is the coordinate of some site. Note that, if
η = 1, the potential is locally harmonic. Otherwise, there is an
anisotropy ratio (4η2−1)

3 .
If the wave intensity |ψ(z,r)| is infinitesimal, or equiva-

lently, σ is infinitesimal, the nonlinear term can be omitted, and
we get a linear Schrödinger equation with a periodic potential.
It can be solved by seeking the propagating solution ψ(z,r) =
ϕ(r)e−iµz, where µ is called the propagation constant. Then,
we obtain a linear eigenvalue problem:

µϕ + ∇2ϕ − V (r)ϕ = 0. (4)

According to the Bloch theorem, the eigenfunction of the
the eigenvalue problem Eq. (4), called the Bloch mode or the
Bloch wave, has the k-dependent form

ϕ(r; k) = eik·rU (r; k), (5)

where U (r; k) has the same periodicity as the potential V (r)
for any k [i.e., U (r + v; k) = U (r; k) for any v ∈ P ]. The
eigenvalue µ = µ(k) is the dispersion relation. In this paper,
we use the convention that µ(k) is a periodic function of k and
so is the associated Bloch mode ϕ(r; k) [24]. The two periods
are k1 and k2. So, the dispersion relation µ(k) is defined in
the Brillouin zone �′ and usually can have multiple band
structures. There may exist band gaps between two dispersion
surfaces, where bounded Bloch modes are not allowed.

Due to the periodicity of ϕ(r; k) over k, one can represent
ϕ(r; k) as a Fourier series,

ϕ(r; k) =
∑

v

φ(r − v)eik·v, (6)

where φ(r − v) defined as

φ(r − v) = 1

|�′|
∫

�′
ϕ(r; k)e−ik·v dk (7)

is the so-called Wannier function [25]; here and afterward,
the sum over v means v takes all values in P (i.e., v =
mv1 + nv2) for all m,n ∈ Z. Bloch modes can be constructed
by Wannier functions through Eq. (6), and Wannier functions
can be constructed by Bloch modes through Eq. (7). Wannier
functions are independent of k. From the TB approximation,
the corresponding Bloch modes are mainly determined by
the local behavior of the potential near the sites. This
leads to Wannier functions being exponentially localized. As
opposed to simple lattices where the Wannier function is a
single localized function, the Wannier functions Eq. (7) for
honeycomb lattices are instead composed of two localized
functions.

In order to approximately compute the corresponding
Wannier function, we write the potential in the form

V (r) =
∑

v

[V1(r − v) + V2(r − v)], (8)

where V1(r) and V2(r) represent the potentials at sites A0 and
B0; V2(r) = V1(r + d0), where we recall that d0 = A0 − B0.
It is convenient to introduce the notation:

	Vs(r) = V (r) − Vs(r)

=
∑
v�=0

[Vs(r − v) + Vj (r − v)] + Vj (r), j �= s.

Usually, Vs(r),s = 1,2 can be approximated by rapidly
decaying functions. This approximation does not change the
Bloch modes and the associated dispersion relation in the
TB limit (via WKB theory) and leads to detailed analytical
results. This technique has been successfully used in simple
lattices [13]. In order to give the asymptotic expansion Eq. (3),
a simple approximation is

Vs(r) ≈ −V0e
k̂2[c2(x−x0)2+(y−y0)2], s = 1,2,

where c2 = (4η2−1)
3 and k̂2 = 9k2

0
4(1+2η)2 . It is noted that the

subsequent analysis is independent of this approximation.
However, this approximation can give analytical results. All
detailed calculations are in the Appendix.

For each rapidly decaying Vs(r), we can define the corre-
sponding orbital,

H0
s φs ≡ [∇2 − Vs(r)]φs(r) = −Eφs(r),

where, for any v ∈ P ,

Hv
s = ∇2 − Vs(r − v),

and E is called the orbital energy. It is noted that φ2(r) =
φ1(r + d0), since V2(r) = V1(r + d0).

In this paper, we only consider the lowest band in detail,
so we only need to consider the ground state of Hv

s . However,
the basic analysis presented in the following is valid for the
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higher bands as well. In the higher bands, the corresponding
eigenspace ofHv

s is usually degenerate, so one should consider
the degeneracy in some detail. Interested readers can combine
the following analysis with the analysis already performed in
simple lattices to study higher band dynamics [13].

The honeycomb potential has two wells in a unit cell, and
then, the Wannier function in Eq. (7) is a linear combination
of the two associated orbitals, that is,

φ(r) = αφ1(r) + βφ2(r), (9)

then, the Bloch mode has the form

ϕ(r; k) ≈
∑

v

[αφ1(r − v) + βφ2(r − v)]eik·v, (10)

where α and β are two parameters, which are determined by
the detailed calculations given later. It is noted that both φ1

and φ2 are real and normalized to unity (i.e.,
∫

φ1φ1 dr =∫
φ2φ2 dr = 1), and the sums over v are understood to be over

A sites when working with the φ1 function and over B sites
when dealing with φ2.

We first rewrite the eigenvalue problem Eq. (4) in the form(
H0

s + E
)
ϕ(r) = [E − µ + 	Vs(r)]ϕ(r) ≡ Fs. (11)

Note that the operator H0
s + E has a 1D null-space, which is

spanned by φs(r) for s = 1,2. Then, the Fredholm alternative
requires that the right-hand side be orthogonal to φs(r), that is,∫

Fsφs(r) dr =
∫

[E − µ + 	Vs(r)]ϕ(r)φs(r) dr = 0,

s = 1,2.

By substituting the earlier Bloch mode Eq. (10) into the
preceding Fredholm conditions yields that

(µ − E)

[∑
v

κ11(v)eik·v
]

α −
[∑

v

λ11(v)eik·v
]

α

+ (µ − E)

[∑
v

κ12(v)eik·v
]

β −
[∑

v

λ12(v)eik·v
]

β = 0,

and

(µ − E)

[∑
v

κ22(v)eik·v
]

β −
[∑

v

λ22(v)eik·v
]

β

+ (µ − E)

[∑
v

κ21(v)eik·v
]

α −
[∑

v

λ21(v)eik·v
]

α = 0,

where

κij (v) =
∫

φi(r)φj (r − v) dr,

λij (v) =
∫

φi(r) 	Vj φj (r − v) dr.

Now, the original eigenvalue problem Eq. (4) is converted
into a linear system for α,β. The system has nontrivial
solutions if and only if the determinant of the coefficient
matrix is zero. This determines the dispersion relation, and
the solutions of the linear system (i.e., the relation of α and β)
give the eigenmodes Eqs. (4)–(10).

The preceding linear system can be greatly simplified in the
TB limit. Note that κij (v) and λij (v) exponentially decay as
|v| → +∞. We only consider on-site and nearest-neighbor
interactions, while other interactions are very small. More
specifically, for site A0, we only keep its interactions with
itself and its three nearest neighbors, which are B sites at B0,
B−v1 , and B−v2 ; for the site B0, its three nearest neighbors are
A sites at A0, Av1 , and Av2 .

From the symmetries of the potential, we find that

c0 = λ11(0) = λ22(0),

c1 = κ12(0) = κ21(0) = 1

ρ1
κ12(−vs) = 1

ρ1
κ21(vs),

c2 = λ12(0) = λ21(0) = 1

ρ2
λ12(−vs) = 1

ρ2
λ21(vs),

where ρs > 0,s = 1,2 denote the ratio of the asymme-
try of three nearest-neighbor interactions under deforma-
tions and ρs = 1 when the lattice is not deformed (i.e.,
η = 1).

Thus, the previous system becomes[
µ − E − c0 (µ − E)c1γ1(k) − c2γ2(k)

(µ − E)c1γ
∗
1 (k) − c2γ

∗
2 (k) µ − E − c0

]

×
(

α

β

)
=

(
0
0

)
, (12)

where

γs(k) = 1 + ρse
−ik·v1 + ρse

−ik·v2 , s = 1,2. (13)

The preceding system Eq. (12) has nonzero solutions if
and only if the determinant is zero, which gives the dispersion
relation:

(µ − E − c0)2 = |(µ − E)c1γ1(k) − c2γ2(k)|2.
Note that c1 � 1, so the dispersion relation is

(µ − E − c0)2 ≈ |c0c1γ1(r) − c2γ2(r)|2. (14)

The preceding equation Eq. (14) defines two dispersion
relation branches written in a unified form (j = 1,2),

µj (k) ≈ E + c0 + (−1)jC|γ (k)|, (15)

where we denote

C = c0c1 − c2 > 0,

γ (k) = 1 + ρe−ik·v1 + ρe−ik·v2 ,

and

ρ = c0c1ρ1 − c2ρ2

c0c1 − c2
> 0.

All parameters in the previous equations can be calculated
analytically in the TB approximation. Details can be found
in the Appendix. For the undeformed honeycomb lattice (i.e.,
η = 1, ρ = 1).

The eigenmode that corresponds to µj (k) then
satisfies[

(−1)j |γ (k)| γ (k)

γ ∗(k) (−1)j |γ (k)|
] (

α

β

)
=

(
0
0

)
. (16)
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So far, we have found the dispersion relation for the lowest
band and the associated Bloch modes. The linear dynamics
associated with the lowest band is completely solved due to
the completeness of the Bloch modes [26].

Whereas the first band of the dispersion relation for simple
lattices is usually simple when V0 � 1 [13], this is not usually
the case for honeycomb lattices. As indicated by Eq. (15), we
find the first band for honeycomb lattices has two branches.
This is called Davydov splitting in the theory of molecular
excitons [27]. This is due to having multiple sites per unit cell.

Since µ1(k) � µ2(k), we call µ1(k) the lower branch and
µ2(k) the upper branch. If γ (k) is real and positive, for
instance, k = 0, we get α = β for the lower branch and
α = −β for the upper branch; so the lower branch corresponds
to a symmetric Bloch mode, and the upper branch corresponds
to an antisymmetric Bloch mode. However, γ (k) is usually
nonreal, in which case, α and β have a more complex
relationship.

If ρ < 1
2 , |γ (k)| > 0 and µ1(k) < µ2(k) for any k ∈ R2,

thus, there exists a gap between the upper and lower branches.
So, they are considered to belong to two different bands.
Note that ρ measures the asymmetry of three nearest-neighbor
interactions and depends on both V0 and the asymmetric
parameter η. For a fixed V0, the smaller η is, that is, the
greater the deformation, the smaller the ρ . In this paper,
we only consider the case where ρ > 1

2 , then γ (k) always
has two isolated zeros in the Brillouin zone �′. We call
these two zeros K and K′, which are referred to as Dirac
points. Here, K = 2

l
(0,π − arccos 1

2ρ
) and K′ = −K. The two

branches touch each other at these two Dirac points, and they
belong to the same band. The existence of the Dirac points are
due to the underlying symmetries of the honeycomb lattices.
Interesting phenomena are associated with the Dirac points.

The Brillouin zone and the dispersion relation is displayed
in Fig. 2. In (a), the Brillouin zone is the shadowed parallel-
ogram. However, in the literature, the hexagon surrounded
by dotted lines is often used as the Brillouin zone. The
parallelogram and the hexagon are actually equivalent due to
the periodicity. In (b), we plot the dispersion relation in an
extended Brillouin zone (which corresponds to the rectangle
surrounded by dashed lines) for convenience. It is seen that
there exist Dirac points. In that figure, it seems that there

FIG. 2. (a) Brillouin zone of the honeycomb lattice and special
points. (b) The dispersion relation of the lowest band. The shadow
region in (a) is the Brillouin zone. It is equivalent to the hexagon
surrounded by dotted lines, which is often used as the Brillouin zone
instead in the literature.

are six touching points, but actually, there are only two
independent Dirac points. For example, in (a), all dots are
equivalent to the K′ point, and all circles are the K point due
to the periodicity of µ(k).

If k is not a Dirac point, the two branches have different
values, and each one has a 1D eigenspace, and the correspond-
ing eigenfunction is determined by solving the linear system
Eq. (16). If k = K,K′, µ1 = µ2 = E + c0. The upper and
lower branches merge to the same value. Thus, the eigenvalue
has multiplicity 2. Then, to solve the eigenproblem, Eq. (16)
implies that both α,β in the Bloch mode Eq. (10) are free. So,
the eigenspace that corresponds to µ = E + c0 is 2D. A conve-
nient set of two linearly independent Bloch modes is given by

ϕ(1)(r; k) ≈
∑

v

φ1(r − v)eik·v, (17)

ϕ(2)(r; k) ≈
∑

v

φ2(r − v)eik·v, (18)

where k only takes the values K or K′. Then, ϕ(1) represents
the Bloch mode that corresponds to the A component, while
ϕ(2) represents the Bloch mode that corresponds to the B

component. These two Bloch modes are displayed in Fig. 3,
where it is seen that Bloch mode ϕ(1)(r; K) has intensity only
near the A sites, while the Bloch mode ϕ(2)(r; K) has intensity
only near B sites. In general, an arbitrary Bloch mode is a
linear combination of these two Bloch modes.

III. DYNAMICS OF DISCRETE BLOCH-MODE
ENVELOPES—A UNIFIED NONLINEAR DISCRETE

ENVELOPE EQUATION

Understanding of the linear dispersion relation allows us
to describe the wave envelope dynamics in the presence of
weak (not infinitesimal) nonlinearity. A discrete Bloch-mode
envelope has the form

ψ ∼
∑

v

[avφ1(r − v) + bvφ2(r − v)]eik·v. (19)

Here, av and bv are scaled Bloch envelopes that correspond to
the different A and B sites; thus, av is defined on the A site
and similarly for bv. Under evolution, the envelopes av(Z) and
bv(Z) vary slowly in z, here, Z = εz (the small parameter ε

will be determined later).
To leading order, the evolution of the envelope is taken to

be of the form

ψ ∼
{∑

v

[av(Z)φ1(r − v) + bv(Z)φ2(r − v)]eik·v
}

e−i(E+c0)z.

(20)

It is noted that the input Bloch-mode envelope in Eq. (19)
is usually composed of two components: One is related to
the lower branch with propagating phase e−iµ1z, and the other
is related to the upper branch with propagating phase e−iµ2z.
Since the difference is order O(C), which is very small, they
all have the propagation constant E + c0 to leading order. The
corrections of the propagation constants are included in the
envelopes.

By substituting the previous envelope approxima-
tion Eq. (20) into the lattice NLS equation, Eq. (1)
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FIG. 3. (Color online) Two Bloch modes in the extended unit cell. (a) Bloch mode ϕ(1)(r; K). (b) Bloch mode ϕ(2)(r; K). The extended unit
cell is the smallest rectangle that contains the primitive unit cell �.

implies(
Hp

s + E
)∑

v

[av(Z)φ1(r − v) + bv(Z)φ2(r − v)]eik·v

= −
∑

v

{
εi

dav

dZ
+ av [c0 − 	Vs(r − p)]

}
φ1(r − v)eik·v

−
∑

v

{
εi

dbv

dZ
+ bv [c0 − 	Vs(r − p)]

}
φ2(r − v)eik·v

− σ

{∑
v

[avφ1(r − v) + bvφ2(r − v)] eik·v
}2

×
{∑

v

[avφ1(r − v) + bvφ2(r − v)] eik·v
}∗

, (21)

where p ∈ P is a lattice vector.
By applying the Fredholm conditions for the operators

Hp
s + E,s = 1,2, which have a 1D null-space, yields

εi
dap

dZ
+ (c0c1L−

1 − c2L−
2 )bp + σg|ap|2ap = 0,

εi
dbp

dZ
+ (c0c1L+

1 − c2L+
2 )ap + σg|bp|2bp = 0,

where

L−
s bp = bp + ρsbp−v1e

−ik·v1 + ρsbp−v2e
−ik·v2 ,

L+
s ap = ap + ρsap+v1e

ik·v1 + ρsap+v2e
ik·v2 ,

s = 1,2, and g = ∫
φ4

1 dr = ∫
φ4

2 dr.
The preceding system can be rewritten in a nicer form (by

taking the maximal balance ε = C),

i
dap

dZ
+ L−bp + σ

C
g|ap|2ap = 0, (22)

i
dbp

dZ
+ L+ap + σ

C
g|bp|2bp = 0, (23)

where

L−bp = bp + ρbp−v1e
−ik·v1 + ρbp−v2e

−ik·v2 , (24)

L+ap = ap + ρap+v1e
ik·v1 + ρap+v2e

ik·v2 . (25)

The previous system is a discrete evolution system, which
governs the evolution of the Bloch wave envelope at a general

location k. It gives a unified description of the discrete envelope
dynamics for the lowest band of a honeycomb lattice. One can
carry out higher band dynamics via a similar procedure. This
discrete system can describe the spatial scale at the order l (lat-
tice constant). The slow time ε arises from the smallness of C,
which also corresponds to the thickness of the dispersion band.
It is valid in the TB limit. The nonlinearity can be chosen as the
same order of C or smaller. Note that when we specialize to the
Dirac point (i.e., either k = K,K′), then the foregoing discrete
equations are regarded as a nonlinear discrete Dirac system.

It should be noted that the earlier discrete approach can
be extended beyond the TB limit. If the potential intensity
V0 is not sufficiently large, the nearest-neighbor interaction
approximation may not be adequate. In such cases, additional
sites should be included in order to get more accurate
approximations. This is outside the scope of this paper.

IV. CONTINUOUS LIMIT OF THE DISCRETE SYSTEM

For different values of k, we find that the evolution of the
envelopes can be very different. In this context, we consider
a further limit, where av and bv vary slowly with respect to
how v changes. Namely, we consider the continuous limit
of the preceding discrete systems for general values of k.
The envelopes can be written in the form a(R) and b(R),
where R = (X, Y ) = νr represents the spatial coordinate of
the slowly varying envelopes.

Before proceeding, we introduce the following notations:
∂m = ∂

∂rm
and ∇ = (∂1,∂2); ∂̃m = ∂

∂Rm
and ∇̃ = (∂̃1,∂̃2); ∂̄m =

∂
∂km

and ∇̄ = (∂̄1,∂̄2); ∂̄m,n = ∂̄n∂̄m and ∂̃m,n = ∂̃n∂̃m.
By using the Taylor expansion,

ap+v = ap + νv · ∇̃a + ν2

2
vH̃vT a + · · · ,

where H̃ = (∂̃11 ∂̃12

∂̃21 ∂̃22
) is the Hessian matrix operator with respect

to R, we get

L−bp = bpγ − iν∇̄γ · ∇̃b − ν2

2

2∑
m,n=1

∂̄m,nγ ∂̃m,nb + · · · ,

L+ap = apγ
∗ − iν∇̄γ ∗ · ∇̃a − ν2

2

2∑
m,n=1

∂̄m,nγ
∗ ∂̃m,na + · · · .
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Hence, we have

i ∂Za +
(

γ b − iν∇̄γ · ∇̃b − ν2

2

2∑
m,n=1

∂̄m,nγ ∂̃m,nb

)

+ σ

C
g|a|2a = 0, (26a)

i ∂Zb +
(

γ ∗a − iν∇̄γ ∗ · ∇̃a − ν2

2

2∑
m,n=1

∂̄m,nγ
∗ ∂̃m,na

)

+ σ

C
g|b|2b = 0. (26b)

This is the continuous limit of the discrete system, valid for
any k. It contains many scales. We still need to understand the
behavior based on maximal balance, which depends critically
on the location of k.

A. Continuous Nonlinear Dirac System

In this section, we consider the case where k is one Dirac
point (i.e., k = K,K′). In this case, γ (k) = 0, so µ1 = µ2, and
the corresponding eigenspace is 2D. Therefore, the envelopes
a(R) and b(R) are independent, and they correspond to Bloch
modes ϕ(1) and ϕ(2), respectively.

At k = K, we find that

∇̄γ = i(−v1ρe−iK·v1 − v2ρe−iK·v2 ) = i

√
3l

2
(1,ζ i), (27)

∇̄γ ∗ = i(v1ρeiK·v1 + v2ρeiK·v2 ) = i

√
3l

2
(−1,ζ i), (28)

where ζ =
√

4ρ2−1√
3

. We note that ζ = 1 when the lattice is not
deformed (η = 1 and ρ = 1).

By introducing a new variable Z1 = νZ (note Z =
εz), then after taking the maximal balance εν = Cν = |σ |,
we get

i ∂Z1 a +
√

3 l

2
(∂X + ζ i∂Y )b + s(σ )g|a|2a = 0, (29a)

i ∂Z1 b +
√

3 l

2
(−∂X + ζ i∂Y )a + s(σ )g|b|2b = 0, (29b)

where s(σ ) is the sign of σ . The preceding system is the
so-called (continuous) nonlinear Dirac system. It governs the
dynamics of the envelopes associated with the Dirac point K.

Similarly, if k = K′, the corresponding system is

i ∂Z1 a +
√

3 l

2
(∂X − ζ i∂Y )b + s(σ )g|a|2a = 0; (30a)

i ∂Z1 b +
√

3 l

2
(−∂X − ζ i∂Y )a + s(σ )g|b|2b = 0. (30b)

The two Dirac systems for K and K′ are the same by just
changing Y to −Y .

The original field of the lattice NLS equation Eq. (1) has
the following form:

ψ(z,r) ∼ [a(Cνz,νr)ϕ(1)(r; k)

+ b(Cνz,νr)ϕ(2)(r; k)]e−i(E+c0)z,

(c)(b)(a)

(d) (e) (f)

FIG. 4. (Color online) The propagation of a Gaussian Bloch-
mode envelope associated with a Dirac point. Top: simulations
of the lattice NLS equation Eq. (1); bottom: simulations of the
nonlinear Dirac system Eq. (29). Here, only the a envelope is
displayed.

where envelopes a and b satisfy the previous Dirac systems by
depending on the k value.

An important associated phenomenon exhibited by the
foregoing Dirac system is conical diffraction [16,18]. Here,
we compare the numerical simulations of both the lattice
NLS equation and the nonlinear Dirac system for certain
parameters. The comparison is displayed in Fig. 4. The
top panel is from the lattice NLS equation Eq. (1), where
V0 = 100,k0 = 32/

√
3,η = 1, and σ = 0.1 with the initial

condition as a certain Bloch mode multiplied by a wide
Gaussian. The bottom panel is from the nonlinear Dirac system
Eq. (29), where s(σ ) = 1. Initially, a is a unit Gaussian, and
b is zero. From the top panel, we see that a spot becomes two
rings, which are separated by the so-called Poggendorff’s dark
ring [14]. The simulation of the nonlinear Dirac system gives
a fine match.

The rings in the conical diffraction are actually elliptic if

η �= 1, where the ratio of axes is ζ =
√

4ρ2−1√
3

. We also give two
elliptic rings in Fig. 5. It is seen that the rings are not perfectly
circular but elliptic. We also notice that the intensity along the
rings is not uniform. The intensity is largest at the edges of
the major axis and is smallest at the edges of the minor axis. It
is noted that ζ → 0 as ρ → 1

2 . So, if ζ has the same order as
ν, a new maximal balance should be considered, and it leads
to other interesting equations. This is outside the scope of this
paper.

(a) (b)

FIG. 5. (Color online) Circular rings become elliptic when
honeycomb lattices are deformed. (a) ρ = 0.8, (b) ρ = 0.6.
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B. NLS equations

In this section, the k value we are studying is well away from
the Dirac points, then γ (k) �= 0; and, therefore, the dispersion
relation is not degenerate. However, the input envelope Eq. (19)
usually contains two components; one corresponds to the
branch µ1, and the other is associated with the branch µ2.
We first assume that the input envelope only contains one
component. We will show that the governing equation is an
effective NLS equation.

We expand the solution of the system Eq. (26) into a
perturbation series:

a ∼ a0 + νa1 + ν2a2 + · · · ,
b ∼ b0 + νb1 + ν2b2 + · · · .

We will use a multiscale expansion to derive the governing
equations. We introduce a new scale Z1 = νZ (note Z = εz)
and will take the following balance:

|σ |
C

= ν2.

Then, to leading order, we get the system:

i ∂Z a0 + γ b0 = 0, (31a)

i ∂Z b0 + γ ∗a0 = 0. (31b)

It has the solution:

a0 = P (Z1,R)ei|γ |Z + Q(Z1,R)e−i|γ |Z, (32a)

b0 = |γ |
γ

P (Z1,R)ei|γ |Z − |γ |
γ

Q(Z1,R)e−i|γ |Z. (32b)

The leading-order solutions give the corrections to the
propagation constants of the original field ψ in Eq. (20). Here,
P (Z1,R) corresponds to the lower branch µ1(k), and Q(Z1,R)
corresponds to the upper branch µ2(k).

We are interested in the nonlinear effect, so we have to solve
the system to the order O(ν2). It is convenient to eliminate b

in the original system Eq. (26). By including orders through
O(ν2), we have

∂2
Z (νa1 + ν2a2) + |γ |2(νa1 + ν2a2)

= i(γ ∇̄γ ∗ + γ ∗∇̄γ ) · ∇̃(νa0 + ν2a1) + ν2g[i∂Z(|a0|2a0)

− γ |b0|2b0] + ν2

2

2∑
m,n=1

(γ ∗ ∂̄m,nγ + γ ∂̄m,nγ
∗

+ ∂̄mγ ∂̄nγ
∗ + ∂̄mγ ∗ ∂̄nγ ) ∂̃m,na0. (33)

We first assume Q = 0 and then solve the foregoing
equation order by order by applying the multiscale replacement
∂Z → ∂Z + ν∂Z1 .

At the order O(ν), we have

∂2
Z1

a1 + |γ |2a1

= [−2i|γ |∂Z1P + i(γ ∇̄γ ∗ + γ ∗∇̄γ ) · ∇̃P ]ei|γ |Z.

Removal of the secular term implies that

−2i|γ |∂Z1 P + i[(γ ∇̄γ ∗ + γ ∗∇̄γ ) · ∇̃P ] = 0. (34)

It is noted that a1 is the same as the homogeneous solution,
which means a1 = Da0, where D is a constant. It is seen that

a1 does not make any contribution to next-order equations. So,
we set D = 0 for simplicity.

The preceding equation is a transport equation. Note that

∇µ1 = −C
γ ∇̄γ ∗ + γ ∗∇̄γ

2|γ | . (35)

Then, the leading-order equation is

∂P

∂Z1
+ ∇̄µ̃1 · ∇̃P = 0, (36)

where µ̃1 = µ1

C
. So, ∇̄µ̃1 is the group velocity of the transport.

This is similar to the homogeneous case, where the envelopes
move with the group velocity. Note that the group velocity is
not just the gradient but a scaled gradient. This is because
the gradient is small due to the TB approximation, and
we absorb it into the time scale (the propagating direc-
tion). This is similar to the simple lattice cases, where the
leading-order phenomenon is governed by a transport equation
[13].

We expand the equation to the next order to study the
nonlinear effect. An easy way to obtain the correction to
the transport equation is to insert a correction into the earlier
equation, that is,

∂P

∂Z1
+ ∇̄µ̃1 · ∇̃P = νh, (37)

where h is defined subsequently.
At the order O(ν2), we have

∂2
Za2 + |γ |2a2 = [−∂2

Z1
P − 2s(σ )g|γ ||P |2P ]

ei|γ |Z

+ 1

2

2∑
m,n=1

(γ ∗ ∂̄m,nγ + γ ∂̄m,nγ
∗ + ∂̄mγ ∂̄nγ

∗

+ ∂̄mγ ∗ ∂̄nγ )∂̃m,nP ei|γ |Z − 2i|γ |h.

Removal of the secular terms yields that

−∂2
Z1

P − 2s(σ )g|γ ||P |2P + 1

2

2∑
m,n=1

(γ ∗ ∂̄m,nγ + γ ∂̄m,nγ
∗

+ ∂̄mγ ∂̄nγ
∗ + ∂̄mγ ∗ ∂̄nγ ) ∂̃m,nP − 2i|γ |h = 0.

Note that

∂2
Z1

P =
2∑

m,n=1

∂̄mµ̃1 ∂̄nµ̃1 ∂̃m,nP,

and

∂m,nµ1 = − C

2|γ | (−2 ∂̄mµ̃1 ∂̄nµ̃1 + γ ∗ ∂̄m,nγ + γ ∂̄m,nγ
∗

+ ∂̄mγ ∂̄nγ
∗ + ∂̄mγ ∗ ∂̄nγ ). (38)

Then, the following equation is obtained

∂P

∂Z1
+ ∇̄µ̃1 · ∇̃P

+ ν

[
1

2

2∑
m,n=1

∂̄m,nµ̃1 ∂̃m,nP + s(σ )g|P |2P
]

= 0. (39)

By introducing a moving coordinate system R̄ = R −
∇̄µ̃1Z1 (we drop the bar above R), and a new propagating
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distance scale Z2 = νZ1, that is,

P (Z1,R) = P (Z2,R − ∇̄µ̃1Z1) (40)

yields

i ∂Z2P + 1

2

2∑
m,n=1

∂̄m,nµ̃1 ∂̃m,nP + s(σ )g|P |2P = 0. (41)

This is an effective NLS equation. Thus, similar to simple
lattices, the governing equations are effective NLS equations
when the eigenspace is 1D. Actually, this NLS equation
can also be derived from a continuous multiscale expan-
sion method (cf. Ref. [13]). Thus, we see that effective
NLS equations can be derived from the unified nonlinear
discrete system in honeycomb lattices when the k point
is distinct from the Dirac points K,K′. The dispersive
coefficients can easily be computed via Eq. (38) in the TB
limit. However, on the other hand, in a continuous multi-
scale expansion approach, the coefficients are not explicit,
since the dispersion relation generally cannot be obtained
analytically.

The original field in the lattice NLS equation has the
form

ψ(z,r) ∼ P (Cν2z,ν(r − ∇̄µ1z))e−iµ1z,

where the envelope P satisfies the previous effective NLS
equation Eq. (41).

Similarly, for the branch µ2 (i.e., when P = 0), the
governing equation is found to be

i ∂Z2Q + 1

2

2∑
m,n=1

∂̄m,nµ̃2 ∂̃m,nQ + s(σ )g|Q|2Q = 0. (42)

Note that ∇̄µ̃2 = −∇̄µ̃1 and ∂̄m,nµ̃2 = −∂̄m,nµ̃1. So, the
envelopes of the upper branch and the lower branch propagate
in opposite directions and have dispersive terms with opposite
signs.

As examples, we investigate the governing equations
at some special points where ∇̄µ̃2 = ∇̄µ̃1 = 0 (see also
Ref. [13]). The locations of these points are depicted in
Fig. 2(a). We only give the Hessian matrices of the dispersion
relation for the first band; the second band is the negative of
the first band.

At the � point (k = 0), γ (0) = γ ∗(0) = 3. So, µ1 = E0 +
c0 − 3C and µ2 = E0 + c0 + 3C. The Hessian matrix, defined
as H̄ = (∂̃11 ∂̃12

∂̃21 ∂̃22
) is

H̄µ1 = Cl2

2

(
ρ 0

0 2ρ2+ρ

3

)
.

It is seen that the � point on the lower branch is a minimum
point, while it is the maximum point on the upper branch. So,
the governing equations are

i ∂Z2P + ρl2

4

(
∂XX + 2ρ + 1

3
∂YY

)
P + s(σ )g|P |2P = 0,

(43)

and

i ∂Z2Q − ρl2

4

(
∂XX + 2ρ + 1

3
∂YY

)
Q + s(σ )g|Q|2Q = 0.

(44)

Thus, we replace a focusing equation with a defocusing
equation.

At the M point [k = 1
2 (k1 + k2)], the Hessian matrix is

H̄µ1 = C
3ρl2

2

(− ρ

2ρ−1 0

0 ρ

3

)
.

So M is a saddle point.
At the X1 point (k = 1

2 k1), the Hessian matrix is

H̄µ1 = Cl2

(
0

√
3ρ

2√
3ρ

2 ρ2

)
.

X1 is a saddle point.
At the X2 point (k = 1

2 k2), the Hessian matrix is

H̄µ1 = Cl2

(
0 −

√
3ρ

2

−
√

3ρ

2 ρ2

)
.

X2 is a saddle point.
Therefore, at the M , X1, and X2 points, the governing

equations are hyperbolic NLS equations.
It is noted that we obtain a focusing NLS equation at

the band edge � point if σ > 0. It is expected that solitons
will bifurcate from this point into the semi-infinite band gap.
Interested readers can find experimental and numerical results
in Refs. [18,19]. At the M , X1, and X2 points, the governing
equations are hyperbolic NLS equations. Such equations have
been derived in deep water waves [28]. It is not clear what
interesting physical phenomenon can exist in these hyperbolic
NLS equations. This deserves more study but is outside the
scope of this paper.

C. Coupled NLS equations

In this section, we consider the case where the initial enve-
lope contains both µ1 and µ2 components. From Sec. IV B,
we know that the leading-order governing equation of each
component is a transport equation. In general, each component
will propagate with opposite velocities, which are ∇̄µ̃1

and ∇̄µ̃2 = −∇̄µ̃1, respectively. So, there are no significant
nonlinear interactions between these two components. Along
each moving coordinate, we will get two decoupled transport
equations to leading order. However, if the two components
have nearly zero velocity [i.e., |∇̄µ̃1| ∼ |∇̄µ̃2| ∼ O(ν)], they
would interact with each other, and coupled NLS equations
will be obtained.

Similar to the one component case, we get the envelope at
the leading order:

a0 = P (Z2,R − ∇̄µ̃1Z1)ei|γ |Z + Q(Z2,R − ∇̄µ̃2)e−i|γ |Z.

(45)
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Introduce a unified moving coordinate system R̄ = R −
∇̄µ̃1Z1 (we drop the bar above R). At the order O(ν2), we
have,

∂2
Z a2 + |γ |2a2 = 2s(σ )g(P 2Q∗e3i|γ |Z + Q2P ∗e−3i|γ |Z) − 2|γ |

[
i ∂Z2P + 1

2

2∑
m,n=1

∂̄m,nµ̃1 ∂̃m,nP + s(σ )g(|P |2 + 2|Q|2)P

]
ei|γ |Z

+ 2|γ |
[
i ∂Z2Q + i

ν
(∇̄µ̃2 − ∇̄µ̃1) · ∇̄Q + 1

2

2∑
m,n=1

∂̄m,nµ̃2 ∂̃m,nQ + s(σ )g(|Q|2 + 2|P |2)Q

]
e−i|γ |Z.

Note that the terms with the phase ei|γ |Z or e−i|γ |Z are
secular terms. By removing secular terms yields two equations,

i ∂Z2P + 1

2

2∑
m,n=1

∂̄m,nµ̃1 ∂̃m,nP + s(σ )g(|P |2 + 2|Q|2)P = 0,

i ∂Z2Q − 2i

ν
∇̄µ̃1 · ∇̄Q − 1

2

2∑
m,n=1

∂̄m,nµ̃1 ∂̃m,nQ

+ s(σ )g(|Q|2 + 2|P |2)Q = 0,

where we have used the fact that ∇̄µ̃1 = −∇̄µ̃2 and ∂̄m,nµ̃1 =
−∂̄m,nµ̃2.

For instance, at the � point, we have the system:

i ∂Z2P + ρl2

4

(
∂XX + 2ρ + 1

3
∂YY

)
P

+ s(σ )g(|P |2 + 2|Q|2)P = 0,

i ∂Z2 Q − ρl2

4

(
∂XX + 2ρ + 1

3
∂YY

)
Q

+ s(σ )g(|Q|2 + 2|P |2)Q = 0.

The preceding system is a defocusing-focusing coupled NLS
system. When Q = 0, the system reduces to Eq. (43); similarly,
the system reduces to Eq. (44) if P = 0. Thus, this is consistent
with the single envelope analysis in Sec. IV B.

We note that the previous system in the 1D case was also
derived in fiber communications [29]. Zakharov and Schulman
found properties, which suggest the previous system is not
integrable in the 1D case [30], but there still exist bright-dark
soliton solutions [29]. However, there are apparently few,
if any, results, known that regard the earlier 2D coupled
NLS system. This system requires detailed analysis, which
is outside the scope of this paper.

V. COUPLED CONTINUOUS NONLINEAR DIRAC SYSTEM

In the preceding sections, we only consider the case that the
envelope is associated with one value of k. On the other hand,
sometimes input envelopes can be composed of components
that belong to different values of k but with the same
propagation constant µ. If the group velocities for different
components are different, there will be no significant nonlinear
interactions. However, if their group velocities happen to
satisfy a further restriction so that they are nearly equal, and
the values of k are well away from the Dirac points, usually
the coupled NLS equation would be expected [e.g., one can

consider envelope approximation equation Eq. (20) at two
values of k]. In this section, we consider two components
associated with the two Dirac points K and K′ at the same value
of µ ∼ E + c0. Namely, the leading-order discrete envelope
would have the form

ψ ∼
{∑

v

[avφ1(r − v) + bvφ2(r − v)]eiK·v
}

+
{∑

v

[a′
vφ1(r − v) + b′

vφ2(r − v)]eiK′ ·v
}

. (46)

However, we will see that under evolution, a new compo-
nent will be generated due to four-wave mixing [31]. So, under
propagation, the envelope takes the more general form

ψ ∼
{∑

v

[av(Z)φ1(r − v) + bv(Z)φ2(r − v)]eiK·v
}

e−i(E+c0)z

+
{∑

v

[a′
v(Z)φ1(r − v) + b′

v(Z)φ2(r − v)]eiK′·v
}

e−i(E+c0)z

+
{∑

v

[uv(Z)φ1(r − v) + vv(Z)φ2(r − v)]

}
e−i(E+c0)z,

(47)

By following the same method as in the one component
case in the earlier sections, we find two discrete equations,[

εi
dap

dZ
+ CL−bp + σg(|ap|2 + 2|a′

p|2)ap

]
eiK·p

+
[
εi

da′
p

dZ
+ CL′−b′

p + σg(|a′
p|2 + 2|a′

p|2)a′
p

]
eiK′ ·p

+ εi
dup

dZ
+ CL̄−vp + gσ

[
a2

pa
′∗
p ei(2K−K′)·p

+ ap(a′∗
p )2ei(2K′−K)·p] = 0,

and [
εi

dbp

dZ
+ CL+ap + σg(|bp|2 + 2|b′

p|2)bp

]
eiK·p

+
[
εi

db′
p

dZ
+ CL′+a′

p + σg(|b′
p|2 + 2|bp|2)b′

p

]
eiK′ ·p

+ εi
dvp

dZ
+ CL̄+up + gσ

[
b2

pb
′∗
p ei(2K−K′)·p

+ bp(b′∗
p )2ei(2K′−K)·p] = 0,
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where the operator groups (L+,L−) and (L′+,L′−) are defined
in the previous sections and are associated with K and K′,
respectively, while L̄+, L̄− are associated with k = 0.

Then, as done previously, we consider the continuous limit
of the earlier systems. To introduce the envelope scale R and
to take the maximal balance ε = Cν = |σ | yields (note that
K′ = −K)[

i∂Za +
√

3 l

2
(∂X + ζ i∂Y )b + s(σ )g(|a|2 + 2|a′|2)a

]
eiK·r

+
[
i∂Za′ +

√
3 l

2
(∂X − ζ i∂Y )b′ + s(σ )g(|a′|2 + 2|a|2)a′

]

× eiK′ ·ri∂Z u + gs(σ )[a2a′∗ei(3K)·r + a(a′∗)2ei(3K′)·r] = 0,

and[
i∂Zb +

√
3 l

2
(−∂X + ζ i∂Y )a + s(σ )g(|b|2 + 2|b′|2)b

]
eiK·r

+
[
i∂Zb′ +

√
3 l

2
(−∂X − ζ i∂Y )a′ + s(σ )g(|b′|2 + 2|b|2)b′

]

× eiK′ ·r + i∂Zv + gs(σ )[b2b′∗ei(3K)·r + b(b′∗)2ei(3K′)·r] = 0.

In the foregoing equations, we have highly oscillatory
phases eiK·r and eiK′ ·r as well as their higher harmonics. To
average over the fast scale r implies the following coupled
nonlinear Dirac system,

i∂Zu +
√

3 l

2
(∂X + ζ i∂Y )b + s(σ )g(|a|2 + 2|a′|2)a = 0,

(48a)

i∂Zb +
√

3 l

2
(−∂X + ζ i∂Y )a + s(σ )g(|b|2 + 2|b′|2)b = 0,

(48b)

i∂Za′ +
√

3 l

2
(∂X − ζ i∂Y )b′ + s(σ )g(|a′|2 + 2|a|2)a′ = 0,

(48c)

i∂Zb′ +
√

3 l

2
(−∂X − ζ i∂Y )a′ + s(σ )g(|b′|2 + 2|b|2)b′ = 0,

(48d)

while the four-wave mixing components satisfy

i∂Zu + gs(σ )[a2a′∗ei(3K)·R/ν + a(a′∗)2ei(3K′)·R/ν] = 0,

(49a)

i∂Zv + gs(σ )[b2b′∗ei(3K)·R/ν + b(b′∗)2ei(3K′)·R/ν] = 0.

(49b)

Usually, the u(Z,R),v(Z,R) are zero initially, and the
forcing terms have highly oscillatory phases. The resulting
four-wave components are generated, but u(Z,R) and v(Z,R)
are small compared to a,a′,b,b′. Detailed analysis is omitted
here. Interested readers can refer to Ref. [31].

The preceding coupled nonlinear Dirac system describes
the conical diffraction phenomena in honeycomb lattices when
the envelope contains two components that correspond to the
two conjugate Dirac points.

VI. CONCLUSION AND DISCUSSION

In this paper, discrete and continuous Bloch-mode
envelopes that propagate in generalized honeycomb lattices
are studied. Similar to simple lattices, the dispersion relation
plays a key role in both discrete and continuous dynamics.

In the TB limit, an analytical description of the dispersion
relation can be obtained in terms of elementary functions.
Unlike simple lattices [13], the dispersion relation for honey-
comb lattices is not, in general, represented in a Fourier-series
form. The lowest band of the dispersion relation has two
branches, and there may exist Dirac points where two branches
touch each other. Away from the Dirac points, the dispersion
surfaces are smooth.

In general, a discrete approach is employed to find the
dynamics of the wave envelope. We first derive a unified
nonlinear discrete system and then consider its various contin-
uous limits as a means to further elucidate the results. From
discrete to continuous systems, the underlying mechanism and
all parameters are very clear. Since honeycomb lattices contain
more than one site per unit cell, the discrete approach used in
this paper is different from the one that has been applied in
simple lattices [13]. It is found that a unified discrete system
can describe the dynamics of the wave envelope associated
with any wave number k in the first band. When k is chosen to
be a Dirac point, this is considered to be a nonlinear discrete
Dirac system. However, it is interesting that the corresponding
continuous systems for different k can take different forms.
Near the Dirac points, the continuous governing system is
a (continuous) nonlinear Dirac system. Away from Dirac
points, in certain cases, the governing equations are scalar NLS
equations. Coupled NLS equations can also be obtained if the
input envelope contains two components that correspond to
two different branches but with a small group velocity in each
component. Similarly, a coupled Dirac system can be obtained
when the envelopes are associated with conjugate Dirac points.

In this paper, the dynamics of the envelope associated only
with the lowest band is studied. The dynamics associated
with higher bands follows a similar approach. It is also noted
that the dynamics of the envelope near the Dirac points
changes significantly if the honeycomb lattice is deformed.
The associated linear dispersion relation changes its structure,
and new governing equations arise. We will report on this in a
future communication.
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APPENDIX

In this appendix, we give explicit formulas for all the
parameters in our analysis when using the TB approximation.
A 2D (quantum) harmonic oscillator is given by the eigenvalue
problem,

[∇2 − d0(c2x2 + y2)]η(r) = −εη(r),

where d0 is the intensity, c > 0 is the anisotropy ratio, and the
energy (eigenvalue) is denoted by ε. The associated normalized
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eigenfunction is

ηm,n(x,y) =
√

1

2m+nm!n!

(cd0)1/4

π1/2
e−(

√
d0/2)(cx2+y2)

×Hm((c2d0)1/4x)Hn

(
d

1/4
0 y

)
,

where the corresponding energy (eigenvalue) is given by
εm,n = √

d0(c + 2mc + 1 + 2n).
In the TB limit, the potential has a very deep well at

each site. Thus, the Bloch mode is mainly determined by
the behavior of the potential near the site. In this paper, the
potential we are dealing with is locally harmonic, that is,

V (r) ≈ V0{k̂2[c2(x − x0)2 + (y − y0)2] − 1}, (A1)

where c2 = (4η2−1)
3 and k̂2 = 9k2

0
4(1+2η)2 for the potential Eq. (2).

For the low bands, V1(r) and V2(r) in Eq. (8) can
usually be approximated by rapidly decaying functions. This
approximation does not significantly alter the Bloch modes
or the associated dispersion relation in the TB limit (via
WKB theory), and it leads to detailed analytical results. This
technique has been successfully implemented in simple lattices
[13]. An elementary rapidly decaying function that has the
asymptotic expansion Eq. (A1) is

Vs(r) ≈ −V0
(
ek̂2[c2(x−x0)2+(y−y0)2]

)
.

The potential Eq. (2) now is approximated by a sum of
Gaussian functions. All these Gaussian functions are centered
at all of the different sites (minima) and have the same local
structure.

We only study the lowest band dynamics, so only the ground
state of the harmonic oscillator is considered. The orbitals are
then

φ1(r) = (c2k̂2V0)1/4

π1/2
e(−k̂2V0/2)‖r−A0‖2

1 ,

φ2(r) = (c2k̂2V0)1/4

π1/2
e(−k̂2V0/2)‖r−B0‖2

1 ,

and the orbital energy is

E = ε0,0 − V0 = (1 + c)k̂2
√

V0 − V0,

where ‖r‖1 =
√

cx2 + y2 is a weighted norm and we also
define ‖r‖2 =

√
c2x2 + y2.

From the symmetries, we can easily obtain that (s = 1,2)

c0 = λ11(0) = λ22(0),

c1 = κ12(0) = κ21(0) = 1

ρ1
κ12(−vs) = 1

ρ1
κ21(vs),

c2 = λ12(0) = λ21(0) = 1

ρ2
λ12(−vs) = 1

ρ2
λ21(vs).

After some elementary but tedious calculations, we get (only
leading terms are kept)

c0 ≈ −V0

2∑
m=0

e−k̂2‖dm‖2
2 ,

c1 ≈ e(−k̂
√

V0/4)‖d0‖2
1 ,

c2 ≈ −V0e
−(k̂

√
V0/4)‖d0‖2

1e(−k̂2/4)‖d0‖2
2 ,

ρ1 ≈ e(−k̂
√

V0/4)(‖d1‖2
1−‖d0‖2

1),

ρ2 ≈ e(−k̂
√

V0/4)(‖d1‖2
1−‖d0‖2

1)e(−k̂2/4)(‖d1‖2
2−‖d0‖2

2).

If we only keep the leading-order terms under the limit V0 � 1,
we get the key parameters we used in this paper:

C = V0e
(−k̂

√
V0/4)‖d0‖2

1

(
e(−k̂2/4)‖d0‖2

2 −
2∑

m=0

e−k̂2‖dm‖2
2

)
,

ρ = e(−k̂
√

V0/4)(‖d1‖2
1−‖d0‖2

1) e
(−k̂2/4)‖d1‖2

2 − ∑2
s=0 e−k̂2‖ds‖2

2

e(−k̂2/4)‖d0‖2
2 − ∑2

s=0 e−k̂2‖ds‖2
2

,

g = k̂
√

cV0

2π
.

For the undeformed lattice (η = 1), ρ = 1 and C ≈
0.3V0e

−2
√

V0π
2/9k0 .
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