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Generalized theory of double-resonance optical pumping of 4He
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We present extensions to the theory of double-resonance laser pumping of 4He in the context of magnetometer
instrumentation. This extended theory allows for arbitrary optical polarization, magnetic resonance (H1) coil
orientation, and overall instrument orientation relative to the ambient magnetic field. Steady-state solutions are
presented for portions of the extended parameter space. These calculations are used to analyze the shot-noise-
limited sensitivities for helium magnetometers for selected parameter values, and we find that linearly polarized
light can have a relatively simple orientational dependence for a particular choice of angle between the H1 coils
and the light polarization vector. Calculations are also compared to experimentally measured magnetic resonance
curves, and a shot-noise limit on sensitivity of 6 fT/

√
Hz is determined for a particular magnetometer apparatus

using a cell 2.4 cm in diameter and 7.5 cm in length. This extended theory can be utilized to select optimal
operational parameter values and obtain ideal sensitivities for helium magnetometers.
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I. INTRODUCTION

The measurement of magnetic fields has a long history with
diverse applications [1], and one of the most precise types
of magnetic sensors is the optically pumped magnetometer,
which typically uses either an alkali-metal vapor or helium [2].
Helium is often used in space and military applications [3,4].

In this paper, we extend the model of McGregor [5] for
precision magnetometers to include arbitrary orientation of all
elements, arbitrary polarization of the light, the virtual light
shift [6,7], and the Bloch-Siegert shift [8] within the context
of laser pumping of the 4He D0 line. This theory allows the
optimization of a large number of parameter selections in the
present and next generation of magnetometer instruments and
applications. Finally, we present qualitative comparisons with
observations and quantitative comparisons with experiments.

The state evolution, governed by the Hamiltonian H =
H0 + HL + HR + HC + HM , is described by five contribu-
tions, given in [5]: the unperturbed helium Hamiltonian H0,
which describes the atoms to the level of fine structure; the
spontaneous emission HR from the 2 3PJ excited states m

(see Fig. 1) to the 2 3S1 metastable states µ with lifetime
τ ≈ 10−7s; the semiclassical loss HC of metastables through
processes such as collisions with walls or with free electrons;
the influence HL of the pumping beam on the helium atoms;
and the precession of the polarization of the metastable
atoms under the influence of both the oscillating field H1

and the ambient magnetic field H0, described by HM . The
resulting density matrix differential equation is amenable to a
steady-state solution.

The limited model presented by McGregor [5] assumed
left-circularly-polarized light propagating parallel to H0, with
the H1 coils perpendicular to this direction, and neglected the
rank-2 spherical tensors in the expansion of the density matrix.
Driven by current advances in instrument development, we
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have extended the evaluation of the Hamiltonian terms above
to include the dispersive line shape components, both rank-1
and rank-2 spherical tensors, arbitrary optical polarization
and orientation of the pumping light with respect to H0,
and arbitrary orientation of the H1 field. Beyond the features
described in [5], some of the additional effects that can
be modeled as a direct result of these extensions include a
quantitative treatment of the virtual light shift (the light shift
caused by virtual transitions) and the Bloch-Siegert shift, as
well as a proper treatment of the magnetic resonance curve in
the “dead zones” assumed by prior theory, which are known
experimentally to typically show nonzero signal amplitude.

This extended model is compared with the simpler model in
[5] for laser pumping. Additionally, experimental results with
linearly polarized pumping light are compared with the model,
basing the calculations on our best experimental knowledge of
the operating conditions.

II. BACKGROUND

A. Optical pumping and optically pumped magnetometers

One of the seminal works on magnetic resonance is [12],
which gave phenomenological equations generally applicable
to a variety of media. An outline of the methods involved
in the use of rotating coordinate systems was presented in
[13]. The transformation to a rotating coordinate system,
while itself exact, is nearly always followed in theoretical
magnetic resonance work by the approximation of neglecting
the counter-rotating components of the circular decomposition
of a linearly oscillating field. This approximation results in
an apparent shift in the magnetic resonance. An estimate
of this Bloch-Siegert shift incurred for a two-level system
is given in [8]. This shift is of practical concern in weak
fields under 1 µT, as found in the fly-by calibration of the
Cassini spacecraft [14]. We note that 4He has traditionally been
the medium of choice for optically pumped magnetometers
in space applications [2]. An accessible introduction to
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FIG. 1. (Color online) Relevant helium energy levels. Fine struc-
ture deltas come from [9,10], and other frequencies come from [11].
Radiative transitions between 2 3S1 and the ground state are strictly
forbidden.

magnetic resonance and many associated effects can be found
in [15].

A variety of optical techniques may be used to substantially
increase the typically small thermal population difference in
the 2 3S1 Zeeman sublevels, while simultaneously providing
a convenient means to detect the resonance condition via
changes in either the polarization or intensity of the light
leaving the sample. The first application of this double-
resonance optical pumping was in [16], and several subsequent
applications are reviewed in [17]. Optical pumping of the 2 3S1

metastable state of 4He was first reported in [18], and the first
helium magnetometer was demonstrated in [19].

The Larmor frequency may be shifted as a function of
light intensity, wavelength, metastable density, and ambient
field strength, and experimental measurements of these shifts
have been made in 2 3S1 metastable helium [7]. The shifts
were measured by reversing the handedness of the circular
polarization of the pumping light. Often considered is the
concept of a virtual light shift, which appears as an additive
output on top of the desired magnetic field [6]. This virtual
light shift is proportional to the product of the intensity of
the pumping beam and a dispersive function of wavelength
about each optical line center. A general classification scheme
for light shifts is presented in [20], framing the situation as a
Hamiltonian perturbed by a light shift operator, one component
of which corresponds to this virtual light shift.

Helium magnetometers had typically been pumped using
a helium lamp as the light source. A solid-state laser in
the vicinity of 1050–1080 nm was then reported in [21],
and several solid-state lasers around these wavelengths were
discussed in [22]. More recently, following theoretical work
by McGregor [5], laser-pumped helium magnetometers have
used tunable diode lasers operating at 1083 nm [23–26].

An alternate approach to optical pumping, optically driven
spin precession (OSP), modulates the light intensity at the
Larmor frequency, instead of using H1 magnetic modulation

[27], and a recent review of applications in 4He is presented
in [24].

Much of the literature on helium magnetometers has been
empirically driven, with treatments and results directed to
specific physical effects prevalent in the apparatus. While
useful and elucidating, a comprehensive treatment of this
instrument can also give a valuable perspective. Prior the-
ory of a somewhat general nature for circularly polarized
pumping beams with additional restrictions can be found in
McGregor [5]. However, some experimental effort in [28],
for example, has been devoted to the substitution of linearly
polarized pumping light. This reference serves as one of
many efforts that can benefit from comprehensive treatment of
arbitrary orientations and optical polarizations in simulation.
With goals such as this in mind, [5] serves as a guide for
theoretical development, having provided good experimental
agreement within the assumptions of the time. In this paper,
we take the same approach, but with fewer restrictions. The
generalizations made in this paper will become increasingly
useful in the next few generations of magnetometers.

B. 4He magnetometer concepts

Figure 2 is a block diagram of a generic double-resonance
laser-pumped 4He magnetometer. The sensing element is a
cylindrical cell containing 4He at a few Torr. A small fraction
of the helium is excited by a weak electrodeless rf discharge
into the 2 3S1 metastable state, shown in Fig. 1. This excitation
introduces unpolarized metastable atoms. Laser light near
1083 nm is collimated and directed into the cell, where
it selectively excites the D0 transition, with a tendency to
depopulate certain Zeeman states, depending on the optical
polarization. The excited 2 3P0 atoms spontaneously decay
unpreferentially to each Zeeman sublevel of the metastable
2 3S1 state. Thus the light establishes a longitudinal magnetic
polarization of the gas. The transmitted laser light is monitored
with an InGaAs or Si photodiode. A thermoelectric cooler
(TEC) holds the temperature of the single-mode diode laser in
a mode-hop-free operating region.

In typical double-resonance, longitudinally monitored mag-
netometers, small coils establish a weak oscillating magnetic
field H1 across the cell, nominally directed perpendicularly
to the ambient magnetic field H0. The frequency ω of the
magnetic resonance coils is swept across the Larmor frequency
γH0, where −γ ≈ −28.025 Hz/nT is the gyromagnetic ratio
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FIG. 2. Representative block diagram of a double-resonance 4He
magnetometer.
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of metastable 4He. The monitored light is synchronously
detected at the fundamental frequency of the FM H1 coils, and
the center frequency of the modulation is adjusted until the
fundamental vanishes from the detected output light, at which
point the center frequency of the input modulation equals
γH0, giving an absolute measurement of the ambient magnetic
field. A typical experimental approach to determining the
metastable density is to measure the percentage of light
absorbed when either the magnetic resonance coils’ frequency
ω is off resonance or the coils are deactivated.

An example of a commercial 4He magnetometer is the
Polatomic P-2000, which has a sensitivity of 200 fT/

√
Hz

from dc to 50 Hz, and this instrument is discussed, along with
other optically pumped magnetometers, in [2,25,26].

C. 4He considerations

Because the gyromagnetic ratio of the pumped 2 3S1
4He

metastable state is the highest of any relevant state used in an
optically pumped magnetometer, 4He magnetometers are rela-
tively insensitive to the angular velocities experienced in field
use. The lack of hyperfine structure in helium makes the energy
levels fairly simple, as shown in Fig. 1. Additionally, because
the density of the metastable states to be pumped is a function
of electronic rf excitation, rather than ambient temperature,
helium magnetometers function over wide temperature ranges
without the need for temperature stabilization of the atomic
sample. Scalar 4He magnetometers operate over a very wide
dynamic range, with one typical case being 25 000–75 000 nT,
which is bounded primarily by electronics constraints, rather
than the basic physics. The physical lower bound is on the
order of the magnetic resonance linewidth (about 100 nT). The
Larmor frequency is linearly related to the ambient magnetic
field strength by the well-known gyromagnetic ratio, providing
a simple absolute measurement.

Metastable 4He is particularly robust against loss of
coherence in atom-atom collisions because the 2 3S1 state has
no hyperfine structure and therefore only has one gyromagnetic
ratio, while the ground state 1 1S0 is a singlet and possesses
neither Zeeman splitting nor hyperfine structure. Thus no
particular restrictions need be made on the magnetometer
design to accommodate collisions.

Since the relaxation time τc of 4He is relatively short, the
longitudinal polarization responds quickly to magnetic field
transients. This, combined with the very low sensitivity to
rotations, has led to applications on dynamic platforms, such as
airplanes. It is therefore desirable to characterize the operation
of the magnetometer over all orientations.

Circularly polarized light is commonly used to pump
the helium, since the signal strength falls off approximately
as the square of the cosine of the angle between the
light beam and the ambient H0 field [29]. Adding the
signals from three orthogonal cells yields approximately
isotropic sensitivity. However, this arrangement is approximate
because the optical absorption changes with orientation, and
because it is experimentally known that there is a small
resonance curve visible even in the theoretically predicted
dead zone. The model we introduce demonstrates the transition
from the ordinary Lorentzian magnetic resonance line shape to
the double-trough curve more characteristic of pumping with

linearly polarized light. The rigorous evaluation of the effects
of orientation enables rapid evaluation of design ideas.

The laser wavelength is actively locked to a particular
absorption line. However, use of circularly polarized light
introduces errors associated with the virtual light shift: any
wavelength detuning introduces a deviation in the measure-
ment indistinguishable from a small change in the ambient
magnetic field. Therefore, the wavelength noise of the laser
and any wavelength modulation used to actively lock the laser
to the center of the absorption line both contribute nontrivially
to the noise floor of the magnetometer. We have extended the
theory to include these virtual light shifts.

Pumping with linearly polarized light avoids virtual light
shifts, and greatly reduces the magnetometer noise floor, but
at the expense of more complicated arrangements of cells
in order to achieve isotropic sensitivity. This, together with
analysis of the importance of imperfect polarizer and wave
plate alignment, motivates the extension of the theory to
arbitrary optical polarization. Moreover, it will be shown that a
nonintuitive choice of orientation of the H1 coils in the case of
linearly polarized pumping light reduces the overall variability
of shot-noise sensitivity of the magnetometer over orientation.

Finally, the broad dynamic range required in space appli-
cations includes low H0 fields, where the Bloch-Siegert shift
cannot be ignored. Therefore, we have accounted for this shift
in the theory developed herein.

III. THEORETICAL FORMULATION

A. Coordinates

To support degenerate perturbation theory, the system must
be expressed with the ambient magnetic field H0 fixed to
a coordinate axis. This direction is typically chosen as Ẑ.
However, there is usually not a fixed relationship between this
direction and the directions of other components, since H0

is frequently the magnetic field of some planetary body like
Earth. All other directions are fixed with respect to one another,
so we define two coordinate frames: local and world. These
are shown in Fig. 3. Capital X̂, Ŷ, and Ẑ denote the world
system, while the lower-case forms comprise the local system.
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FIG. 3. (Color online) Local and world coordinate systems.
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X̂ and Ŷ are not, and need not be, completely specified,
but must form a right-handed set. ẑ is along the direction of
propagation of the pumping beam, and, for non-circularly-
polarized light, x̂ is, up to a sign choice, along the direction of
the azimuth of polarization. ŷ is chosen to form a right-handed
set. The choice of x̂ is arbitrary for circular polarization. θ and
φ relate the two coordinate systems as shown in the figure, such
that x̂ · Ẑ = sin φ sin θ , ŷ · Ẑ = sin φ cos θ , and ẑ · Ẑ = cos φ.
Note that θ may be arbitrary when φ = 0. This is illustrated in
Fig. 3.

By definition, the Jones vector [30] of the pumping
beam in local coordinates is [ cos ε −i sin ε 0 ]T, where ε ∈
[−π/4,π/4] is the ellipticity of polarization, with negative
values corresponding to left-elliptically-polarized light, and 0
indicating linearly polarized light. Then the Jones vector in
world coordinates is

−→e =

⎡
⎢⎣

cos ε cos θ + i sin ε sin θ

cos ε sin θ cos φ − i sin ε cos θ cos φ

cos ε sin θ sin φ − i sin ε cos θ sin φ

⎤
⎥⎦ . (1)

Small coils generate the H1 field. Since the coils are rigidly
attached to the helium cell, their axial direction is fixed in
the local system: [sin η cos ξ sin η sin ξ cos η]T. The magnetic
field in that direction is 2H1 cos ωt , with the amplitude H1 in
nT and the frequency of the field ω in rad/s. We can then write
the total field

−→
H in world coordinates in terms of direction

cosines H ′
x , H ′

y , and H ′
z as

−→
H = 2H1 cos ωt[H ′

xX̂ + H ′
yŶ +

H ′
zẐ] + H0Ẑ. Defining 
 ≡ θ + ξ , we obtain the direction

cosines as⎡
⎢⎣

H ′
x

H ′
y

H ′
z

⎤
⎥⎦ =

⎡
⎢⎣

sin η cos 


sin η sin 
 cos φ − cos η sin φ

sin η sin 
 sin φ + cos η cos φ

⎤
⎥⎦ . (2)

We also define 2H± ≡ Hx ∓ iHy , where Hx , Hy , and Hz are
the world components of

−→
H .

B. Spherical basis for spin 1

The state equation will be formulated in terms of the
spin-1 angular momentum operators Jx , Jy , and Jz, and de-
rived operators, where J± ≡ Jx ± iJy , T(2)

±2 ≡ J2
±/(2h̄), T(2)

±1 ≡
∓(J±Jz/h̄) − (J±/2), T(2)

0 ≡ −h̄I
√

2/3 + (J2
z/h̄)

√
3/2, and I is

the identity operator.
Then the density operator ρ = ρµµ′ for the spin-1 space

corresponding to the three metastable sublevels µ can
be expressed as a linear combination of the preceding
operators:

ρ = 1

h̄2

(
〈Jz〉Jz

2
+ 〈J−〉J+

4
+ 〈J+〉J−

4

+ 〈
T(2)

0

〉
T(2)

0 + 〈
T(2)

2

〉
T(2)

−2 + 〈
T(2)

−2

〉
T(2)

2

− 〈
T(2)

1

〉
T(2)

−1 − 〈
T(2)

−1

〉
T(2)

1

)
+ I

3
. (3)

C. Optical pumping

The equation that includes the light interaction, the de-
cay of the excited states, and the base energy structure is
[5]

(
dρµµ′

dt

)
L

= (〈µ|−→e ∗ · −→
D |m〉〈m|−→e · −→

D |µ′′〉ρµ′′µ′f(ω′)

+ ρµµ′′ 〈µ′′|−→e ∗ · −→
D |m〉〈m|−→e · −→

D |µ′〉f ∗(ω′))

×
(−2π�ω′τ

h̄c

)
, (4)

where summation is assumed over repeated indices and all
three spectral lines (D0,D1,D2); ω′ is the optical frequency
of the light in rad/s;

−→
D is the dipole operator, with units

of statC cm; h̄ is the reduced Planck constant in erg s; c

is the speed of light in cm/s; � is the photon flux density
in photons/(cm−2s−1); f(ω′) ≡ [1 − iτ (ω′ − ω′

0)]−1; and ω′
0

is the transition frequency of each spectral line. A table of
the dipole operator’s matrix elements 〈m|−→D |µ〉 can be found
in [5].

In deriving Eq. (4), we first obtain a differential equation
governing the ρmµ density matrix by considering the unper-
turbed Hamiltonian (including fine structure) with energy sep-
arations of h̄ω′

0, the Hamiltonian governing optical absorption
of laser light at h̄ω′, and a phenomenological Hamiltonian for
spontaneous emission with time constant τ [5]. Then, using
the assumption that the laser (or lamp) only emits radiation
in the vicinity of the D0,1,2 lines, the differential equation was
solved. The approximation involved is small in this region of
operation. Again applying ih̄(dρ/dt) = [H,ρ], Eq. (4) results.
Since the sublevels are typically spaced around 1.4 MHz for
terrestrial fields, we neglect transitions between the metastable
Zeeman sublevels near twice 277 THz [5]. Polarization of
atoms in the 2 3P1 and 2 3P2 levels is also neglected; this
is justified by the use of laser light only in the vicinity
of the D0 line, as is the case in 4He apparatus of interest
today.

The interpretation is that metastable atoms are preferen-
tially depopulated from Zeeman sublevels as a function of
the light polarization, spend τ ≈ 10−7s in the 2 3PJ levels,
and return equally to the three metastable sublevels, thereby
depopulating one or more Zeeman sublevels and polarizing
the ensemble. An optical linewidth related to τ is established
in the process, as described by the function f(ω′), although
this is nearly three orders of magnitude narrower than Doppler
broadening at room temperature, making the precise value of τ

immaterial. The typical linewidths of diode lasers (a few MHz)
are of the same order of magnitude as the natural linewidth
due to τ .

We define F(ω′) as the convolution of f(ω′) + f ∗(ω′) with
the (Gaussian) Doppler profile, and F ′(ω′) as the convolution
of f(ω′) − f ∗(ω′) with the Doppler profile. F(ω′) is a Voigt
profile, and both F and F ′ are unitless.
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To shorten later expressions, we define symbols for the following traces:

Qβ = 〈µ|−→e ∗ · −→
D |m〉〈m|−→e · −→

D |µ′〉〈µ′|T(2)
β |µ〉 for β → ±2, ±1,0,

Qβ = 〈µ|−→e ∗ · −→
D |m〉〈m|−→e · −→

D |µ′〉〈µ′|Jβ |µ〉 for β → z, ± ,

h̄Qββ = 〈µ|−→e ∗ · −→
D |m〉〈m|−→e · −→

D |µ′〉〈µ′|T(2)
−βT(2)

β + T(2)
β T(2)

−β |µ〉 for β → 2,1,

h̄Qzz = 〈µ|−→e ∗ · −→
D |m〉〈m|−→e · −→

D |µ′〉〈µ′|J2
z |µ〉, h̄Q00 = 〈µ|−→e ∗ · −→

D |m〉〈m|−→e · −→
D |µ′〉〈µ′|(T(2)

0 )2|µ〉,
h̄Q+− = 〈µ|−→e ∗ · −→

D |m〉〈m|−→e · −→
D |µ′〉〈µ′|J−J+ + J+J−|µ〉, QI = 〈µ|−→e ∗ · −→

D |m〉〈m|−→e · −→
D |µ〉h̄.

A canonical set of these traces may be evaluated as

Q0 = h̄D2
0

24
√

6
[1 + 3 cos 2φ + 3 (1 − cos 2φ) cos 2ε cos 2θ ][2 −3 1 ], Q+ = −ih̄D2

0

6
sin φ sin 2ε[2 3 −5],

Q1 = h̄D2
0

24
[2 cos 2ε sin 2θ sin φ − i (cos 2ε cos 2θ − 1) sin 2φ] [2 −3 1], Qz = h̄D2

0

6
cos φ sin 2ε[2 3 −5], (5)

Q2 = h̄D2
0

12
[(cos θ cos φ + i sin θ )2 sin2 ε − (cos θ + i sin θ cos φ)2 cos2 ε][2 −3 1], QI = h̄D2

0

3
[1 3 5],

where the three elements of each array correspond to the D0,
D1, and D2 spectral lines, respectively, and D0 ≈ 2.5312qaB

[5]. Here, q is the electron charge in statcoulombs and aB is
the Bohr radius in centimeters. All of the other traces can be
expressed as linear combinations of these six traces and/or
their complex conjugates.

Rather than treat the 3 × 3 matrix ρ as the state, as in
Eq. (4), one can instead take the expectation values of the
operators in Eq. (3) as the state, or, rather, the rotating form,
defined by J̃± ≡ J±e∓iωt , T̃(2)

k ≡ T(2)
k e−kiωt , for k = −2, −

1,0,1,2, and J̃z ≡ Jz. The rotating form will be advantageous
since a Fourier series for each of the expectation values will
then contain the largest components at dc. We explicitly write
the state vector as

−→v ≡[〈J̃+〉,〈J̃z〉,〈J̃−〉,〈T̃(2)
2

〉
,
〈
T̃(2)

1

〉
,
〈
T̃(2)

0

〉
,
〈
T̃(2)

−1

〉
,
〈
T̃(2)

−2

〉]T
. (6)

Then Eq. (4) becomes

(
d−→v
dt

)
L

= π�ω′

24ch̄2 (A1′ + A2′ ) −→v − 2π�ω′

3ch̄
−→a p, (7)

where A1′ and A2′ are system transition matrices due to optical
interactions, and −→a p is a column vector representing forcing
(pumping), all of which are multiples of ekiωt , for k = −2, −
1,0,1,2, determined solely by ω′ and the Q traces given above.
These matrices are given in the Appendix.

In typical 4He magnetometers, one primarily monitors
longitudinal polarization, 〈J̃z〉 and 〈T̃(2)

0 〉, with the other
components contributing little to the measured signal. In the
case described by McGregor [5], a particular orientation with
ε = −π/4, and also in the case of one orientation with ε = 0,
the other components do not contribute at all, but, in the interest
of generality, the solution presented in this analysis does not
discard any of these components.

D. Magnetic interactions

Reference [15] gives the magnetic perturbation to the
Hamiltonian, HM = γ

−→
H · −→

J , where −γ is the gyromagnetic
ratio. Applying ih̄(dρ/dt) = [H,ρ], as was done in the
derivation of Eq. (4), and substituting Eq. (3) gives

(
d−→v
dt

)
M

= i(γH0 − ω + 2H1γH ′
z cos ωt)A3

−→v

+ iγH1

2
A4′−→v , (8)

where, as a check, it can be shown tha thte rank-1 portion of
this equation, expressed without the rotating coordinates and
with H ′

x = 1, reduces to (d〈J〉/dt)M = γ H × 〈J〉, as given
in [5]. As shown in the Appendix, A3 is a diagonal constant
matrix, and A4′ is a matrix containing multiples of ekiωt , for k =
−2,0,2, determined by H ′

x and H ′
y . Only k = 0 contributes if

one neglects the Bloch-Siegert shift [8].
Here, the H0 field establishes an energy difference between

the Zeeman sublevels, a corresponding Larmor frequency at
which transitions are most likely to occur, and a preferred
direction for atomic polarization in the absence of H1 exci-
tation, although the latter was already necessarily assumed in
the definition of the axis Ẑ. Attention is called to the detuning
of the H1 frequency, γH0 − ω, by the use of the rotating
coordinate system in the state vector definition. The H1 field,
when near resonance, tends to pull the atomic polarization
away from the H0 direction and causes it to precess in a cone
that opens toward H0.

While the A4′ term depends only on the projection of the
H1 field perpendicular to H0, one notes that a small oscillatory
contribution is present in the factor multiplying A3. While this
is included in the model and solution below for completeness,
numerical tests indicate that this parallel component H ′

z has
no discernible effect on the measured light intensity.
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E. Atomic polarization relaxation

Equations (7) and (8) can be added and combined with
an exponential loss of metastable polarization due to loss of
the metastables themselves, without regard to the present state
of atomic polarization, by including an additional relaxation
contribution, denoted by the subscript C:(

d−→v
dt

)
C

= − 1

τc

−→v . (9)

Together, the three contributions given in Eqs. (7)–(9) describe
the time evolution of the density matrix for the metastable
states.

The assumption that the metastables are lost without
regard to polarization is justified because diffusion out of
the light beam and into the cell walls, as well as electron
excitation out of the metastable states, each dominate Penning
ionization in conditions of interest by at least two orders of
magnitude. Therefore, the relaxation time constant τc depends
primarily on cell geometry, pressure, and metastable density.
One would expect a slight anisotropy if this approximation
were not made, together with a substantial increase in model
complexity. τc is typically 0.1–1 ms [18], which yields a fast
enough response to H0 transients to compete with narrower-
line vapors, without resorting to monitoring the transverse
polarization.

F. Transmission monitoring

The state vector −→v itself cannot be directly observed.
Consequently, we define a photon flux density gain (al-
ways negative) per length increment along the cell α(z) ≡
nSTr(dρµµ′/dt)L, giving d� = α(z)dz, where nS is the 2 3S1

metastable density, in atoms/cm3. At low absorption levels,
the approximate solution is �(�) = �(0)e�α/�, neglecting
spatial variation in α, where � is the cell length [5]. The
trace in the definition of α is proportional to �, so spatial
variation of � is not a significant perturbation. Regardless
of whether or not this approximation is applied, we can
expand α(z) as

α(z) = −π

6ch̄3 nS�ω′(C1′−→v + h̄Cp), (10)

where the elements of the 1 × 8 matrix C1′ are multiples of
ekiωt , for k = −2, −1,0,1,2, determined by ω′ and the Q
traces, much like A1′ . Cp is of a similar form, but scalar with
k = 0.

IV. STEADY-STATE SOLUTION

The state equation formed by the sum of Eqs. (7), (8), and
(9) has homogeneous (transient) solutions with time constants
on the order of τc. When the magnetometer design allows
the limitation of the rate of change of external influences or
parameters such as ω and θ to be much slower than this, each of
the eight state variables can be written as constant-coefficient
Fourier series in ω and t , thereby ignoring the transients. This
approximation is appropriate for some applications, and avoids
the need to solve a system of differential equations.

In this work, we consider the dc component of α(z), and
note that this is a common experimental configuration due to
the practicalities of low-frequency measurement techniques.

The maximum slope of the resonance curve is chosen to
be a figure of merit for the magnetometer performance, since
it is the conversion factor between shot noise and the shot-
noise contribution to the magnetometer noise floor. Therefore,
in a locked-loop magnetometer, where the H1 frequency is
frequency modulated across γH0, it is desirable for the ω

sweep to dwell as long as possible on the inflection points.
The positions of these inflection points are one measure

of the linewidth and in this paper are expressed in terms of
the detuning H0 − ω/γ . The variability of the positions of the
inflection points allows one to decide which sweep parameters
can be set a priori for a system design, and which must be
determined at run time.

A. Comparison with prior theory

In the cases considered below, the laser wavelength is
assumed to be on (and substantially narrower than) the D0

line center, and to uniformly fill a 3.61-cm-inside-diameter,
4.88-cm-inside-length cell filled with 4He to 1.5 Torr. The
metastable level is chosen in each case such that, at any large
magnetic detuning |γH0 − ω| � 2πτ−1

c , 15% of the light
is absorbed. In the plots where H1 strength and/or optical
power are independent variables (Figs. 5, 6, 7, and 8), the
metastable density is changed, as described, at every point.
In the other plots, both the H1 amplitude and the metastable
density are held fixed, with H1 always chosen optimally for
one orientation, and the metastable density chosen using the
same orientation. In this section, as well as in the section on
circular polarization, optimization occurs for θ = φ = ξ = 0◦,
and η = 90◦.

Some checks were made to ensure that the present model
reduces to the previous model, given in [5], where experimental
measurements were compared to theory on the basis of
the shot-noise sensitivity limit. This limit is the photodiode
shot noise in A/

√
Hz, divided by the slope of the magnetic

resonance curve, in A/T, at the inflection point. Figure 4 shows
this as a function of the detuning of the H1 frequency ω from
the precession frequency in the ambient field, but later plots
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FIG. 4. (Color online) Shot-noise sensitivity limit for typical
circularly polarized configuration at 0.5 mW input power.
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circularly polarized configuration over laser power and H1 strength.
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will display the sensitivity only at a minimum of such a curve.
To the printed precision, the curves are symmetric, so we will
display the positive inflection point.

Observe in Fig. 4 that the optimum sensitivity prediction
for a typical configuration agrees to about 3%, although the
required detuning predicted in order to achieve this differs by
closer to 25%.

Figure 5 shows the dependence of sensitivity on laser power
and H1 amplitude. Each grid point has a corresponding point in
Fig. 6 showing the frequency detuning at the positive inflection
point. Each power level has a separate metastable density
chosen to ensure 15% nominal absorption. One sees in Fig. 5
that there is an optimal H1 amplitude for each power, displayed
separately in Fig. 7. If this optimal H1 amplitude is overlaid
across Fig. 5, a simpler plot of sensitivity as a function of
power results, shown in Fig. 8. The prior results of [5] are
shown on this plot, as well.

Figure 4 corresponds to a point at the far left of Fig. 8. The
models agree less well at higher powers, and this is relevant
in light of recent advances in high-power 1083 nm lasers.
Figures 7 and 8 are important from an instrument design
perspective, since the former allows one to quickly determine
how accurately the laser power must be adjusted for a given
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FIG. 6. (Color online) Detuning of magnetic (H0 − ω/γ ) inflec-
tion point (nT), circularly polarized light, over laser power and H1

strength.
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FIG. 7. (Color online) Optimal H1 amplitude as a function of
laser power, circularly polarized light.

sensitivity tolerance, and the latter is a guide to choosing the
H1 amplitude afterward. It is interesting to note that, at low
power, a vertical slice of Fig. 6 shows that optimal detuning
is approximately a linear function of H1 amplitude, but at the
upper end of the displayed power scale, the optimal detuning
is not even a monotonic function of H1 amplitude. This gives
an indication of the value of this rigorous theoretical analysis
in designing magnetometer instruments.

In Figs. 7 and 8, the metastable densities are chosen
identically to those in Figs. 5 and 6, which, in turn, use all
the terms added to the model presented here. This means that
the “prior theory” traces have the same metastable density
for a given power level as the “all terms” traces, but not
the same absorption level. The metastable density is a more
fundamental quantity, since the optical absorption depends not
only on the metastable density nS , but also, indirectly through
the metastable polarization −→v , on the light intensity �.

A common technique [15] in magnetic resonance is to treat
the experimental oscillating field as a rotating field, which is
mathematically equivalent to keeping only the constant terms
of A4′ . The magnitude [8] of the first-order apparent shift for
a spin-1/2 system is H 2

1 /(4H0), in our notation. Applying
this to typical values of H1 ≈ 17 nT and H0 ≈ 50 µT, the
calculations in Fig. 9 show good agreement.
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FIG. 8. (Color online) Shot-noise sensitivity limit for typical cir-
cularly polarized configuration over laser power, with H1 amplitude
picked optimally as a function of laser power.
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FIG. 9. (Color online) Virtual light shift and Bloch-Siegert (BS)
shift, at 0.5 mW optical power. The shifts are about 18.5 and 1.4
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0.832 244 3, chosen to make the scale legible. “L” indicates left-
circular polarization, and “R” indicates right-circular polarization.
The traces labeled (BS) assume the more realistic oscillating field,
rather than a rotating field.

Shown in Fig. 9 are the troughs of the four magnetic
resonance curves for the two circular polarizations, with and
without accounting for the Bloch-Siegert shift. Comparing
the curves with and without the Bloch-Siegert shift gives an
estimate of 1.4 pT for that effect. For terrestrial applications,
the Bloch-Siegert shift is small. However, the Bloch-Siegert
shift is of interest in space applications, where the H0 field is
low enough for the effect to have a greater impact on absolute
magnetometer accuracy than in Fig. 9.

Also shown in Fig. 9 is the virtual light shift. The numerical
value of the virtual light shift can be calculated from this plot
because the sign of the light shift reverses when the direction
of the circular polarization reverses [7]. The minimum of the
resonance curve for right-handed polarization is at −19.8 pT.
Similarly, the minimum of the resonance curve for left-handed
polarization is at 17.1 pT. Thus, the virtual light shift in this
example is ≈18.5 pT. The virtual light shift is important in any
system pumped with circularly polarized laser light, because it
transforms laser relative intensity noise (RIN) into a magnetic
noise that slightly degrades magnetometer sensitivity.

Despite the fact the laser is tuned to the center of the D0

line in Fig. 9, the virtual light shift is nonzero. This is due to
residual contributions from the neighboring D1 and D2 lines.
For the orientation and optical polarization considered in this
section, the three contributions cancel at a point approximately
5 × 10−4 cm−1 larger than the D0 wave number.

Often, in the case of circularly polarized pumping light,
a larger contribution to magnetometer sensitivity degradation
results from the conversion of laser frequency noise by the
virtual light shift into a transmitted optical amplitude noise.
Figure 10 shows this conversion factor for several input optical
powers. For most H1 amplitudes, the factor grows in strength
slightly sublinearly with respect to input laser power. This
figure illustrates that, in order to yield an acceptably low virtual
light shift noise, it is desirable to choose an H1 amplitude above
the value that optimizes other constraints, such as shot-noise
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FIG. 10. (Color online) Derivative of virtual light shift with
respect to laser frequency, as a function of H1 strength. Each trace
was evaluated at a different input laser power level.

sensitivity. This trade-off is more important in magnetometers
where the light shift noise plays a more dominant role, such
as when magnetometers are miniaturized.

B. Extensions

We consider the cases of left-circularly-polarized (ε =
−π/4) light and linearly polarized (ε = 0) light separately,
although the model is capable of a continuous variation of
ε. We continue using the same cell size and pressure, and
we restrict consideration to 0.5 mW optical power input at
the D0 line center. H1 amplitude and the metastable density
are chosen for a particular orientation and held fixed. The
independent variables are θ and/or φ, as shown in Fig. 3.

1. Left-circular polarization

To first order, the shot-noise floor of a magnetometer
using circularly polarized light is proportional to sec2 φ,
leading to simple arrangements of multiple cells to achieve
isotropic sensitivity. This is a good approximation away
from the equator (φ = 90◦), although some sensitivity re-
mains around most of the equator. We have observed
this qualitatively. Figure 11 shows a contour plot of
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FIG. 12. (Color online) Shot-noise sensitivity limit for selected
values of θ , at 0.5 mW optical power, circularly polarized light.

sensitivity over all orientations, and Fig. 12 shows select
slices thereof. The places where the shot-noise floor be-
comes infinite are the points where H1 becomes aligned
with H0.

As mentioned previously, the sensitivities were extracted
at the points of maximum slope (i.e., strongest inflection
points) on each resonance curve, so, for completeness, the
detuning levels where sensitivities were extracted are shown
in Figs. 13 and 14. As expected, θ has no effect when the
light propagation is parallel or antiparallel to H0, as symmetry
dictates. While not shown, it should be noted that, close to
φ = 90◦, the resonance curves possess four inflection points,
not two, something that is usually only seen with the resonance
curves for linearly polarized light and is not predicted by earlier
theory.

2. Linear polarization

In this section, the metastable density and optimal H1

amplitude are chosen for θ = φ = η = 90◦. η and ξ do not
affect the choice of metastable density, but they do affect the
optimal H1 amplitude, so plots with ξ = 90◦ have a different
optimal H1 amplitude than plots with ξ ≈ 54.7◦. This is
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FIG. 13. (Color online) Detuning of magnetic (H0 − ω/γ ) in-
flection point (nT), at 0.5 mW optical power, circularly polarized
light.
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reasonable for the particular orientation in question, since, to
a first approximation [ignoring the H ′

z component in Eq. (8)],
the effective H1 amplitude is the amount of H1 perpendicular
to H0, and so the actual H1 amplitude must be increased for
the latter choice of ξ .

For ε = 0,Q0 vanishes when 3 sin2 φ sin2 θ = 1. This is one
of the primary areas where the shot-noise floor is very high, as
shown in both Figs. 15 and 16. For φ = 90◦, 90 − θ ≈ 54.7◦.
Now Fig. 16, with ξ = 90◦, puts H1 parallel to H0 in an area
where the magnetometer would otherwise be sensitive, while
Fig. 15 places this point of insensitivity inside the already
insensitive ring just described, allowing a more straightforward
description of the effects of system orientation on sensitivity.
Notice the “bulge” in Fig. 15 around φ = 90◦ and θ =
35.3◦; this is where the sharp peak at the center of Fig. 16
moved to.

The most sensitive area for linearly polarized light is with
φ = 90◦ and θ = ±90◦, where the light polarization vector is
along H0, as shown in Figs. 15 and 16. However, a reasonably
sensitive region of operation is also available with φ = 0 or
180◦, and, at least in the ξ ≈ 54.7◦ case, the θ = 0, 180◦ slices
also remain flat and sensitive. The comparison of Figs. 17 and
18 illustrates even better that much stays the same with the
change in ξ , but that the θ = 0 slice becomes rather flat in the
former. In contrast, a comparison of the region from φ ≈ 60◦ to
120◦ in Figs. 17 and 18 merely indicates a further degradation
in performance for θ = 30◦.

Finally, the levels of magnetic detuning required to achieve
the best sensitivity in each orientation appear in Figs. 19
and 20. Note that the “low-detuning” areas shift with the
orientation of H1, rather than with the orientation of the
optical polarization, unlike the areas of high sensitivity,
shown previously, which remained aligned with the optical
polarization. Figures 19 and 20 also show that the resonance
is slightly broader in the ξ ≈ 54.7◦ case, but, from Figs. 15
and 16, one finds that the sensitivity is nevertheless similar.
Many omnidirectional designs require multiple cells, and these
curves argue that using ξ ≈ 54.7◦ will facilitate the devel-
opment of an omnidirectional sensor design using linearly
polarized light.
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V. EXPERIMENTAL DATA

We have collected resonance curves from a 2.44-cm-inside-
diameter, 7.52-cm-inside-length Pyrex cell filled to 1.5 Torr,
using the θ = φ = η = ξ = π/2, ε = 0 configuration. The
measurements took place in a nonmagnetic test facility oper-
ated by Polatomic and routinely used for the characterization
of commercial and advanced magnetometers. The apparatus
was arranged such that the error in declination was below 4◦,
and the error in the dip angle was less than 1◦. The 4.05 mW
laser light was swept in a ∼10 kHz triangle wave across
the D0 absorption line and locked to the line center, and the
photodiode data was logged at a 1 kHz sampling rate using
a custom preamplifier with a 2000 V/A transimpedance. The
photodiode sensitivity was 0.815 A/W.

The experimental configuration follows Fig. 2, and the
measurements were taken with the coil control open loop.
The H1 frequency ω was swept linearly across the Larmor
frequency γH0 at a rate of 2 kHz/s. One of the measured
resonance curves is shown in Fig. 21. The “cell off” trace
comes from a dc voltmeter measurement of the photodiode
preamp output while the cell is extinguished; the actual ac
signal (not shown) is significantly shorter than the vertical
deviation on the measured resonance curve. The “exper” trace
was logged in LABVIEW as a voltage measurement out of the
photodiode preamp.

Also shown in Fig. 21 is the theoretical calculation of the
magnetic resonance curve based on the treatment presented
in Sec. IV. In calculating the theoretical curve in Fig. 21, we
have used our best independent estimates of the experimental
values for the parameters required by the model.

Of particular note in this comparison of theory to experi-
ment is the treatment of the laser beam shape and size. The
laser beam has an uncorrected astigmatism that, after passing
through the various beam splitters, wave plates, and lenses,
causes the profile entering the cell to resemble a capital letter
“I.” This is partially corrected for in the model by assuming
a fill factor, or effective beam radius, where only the atoms
within that cylindrical cross section are assumed to be pumped.
A previous experiment has been used to estimate the effective
beam radius by measuring the light broadening of the magnetic
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FIG. 21. (Color online) Comparison of theoretical and experi-
mental magnetic resonance curves at H1 ≈ 52 nT. The photocurrent
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resonance line as the laser intensity was varied, and we found
an approximate beam radius of 1.3 cm. This 53% fill has been
used in the plots below, and was not fitted to the logged data
set shown here. We have used our best experimental estimates
of the various model parameters, known to have substantial
uncertainty in some cases, to generate the theoretical curves in
Figs. 21 and 22.

The experiment was repeated for 19 different H1 amplitudes
in the range 12–237 nT. In Fig. 22 are plotted the slopes
at the inner and outer inflection points of the experimental
magnetic resonance curves. The theoretically calculated slopes
versus H1 amplitude are also plotted in Fig. 22, again using
the best independent estimate of the experimental values
for the parameters required by the model. In this light, the
agreement between theory and experiment is reasonable, given
the uncertainty in the experimental conditions.

From these data, approximate shot-noise sensitivities can be
obtained by dividing the photocurrent shot noise (30 pA/

√
Hz)

by each slope. This suggests an experimental optimum shot-
noise contribution to the sensitivity of around 6 fT/

√
Hz,

which is within 1% of the theoretical optimum.

VI. CONCLUSIONS AND APPLICATIONS

We have presented extensions to the theory of double-
resonance optical pumping of 4He allowing for arbitrary
optical polarization, H1 coil orientation, and overall system
orientation, as well as a steady-state solution method for the
resulting equations. The model allows for a better estimate of
the optimum sensitivity at the higher laser powers currently
available. For circularly polarized light and the cell geometry
considered in Sec. IV, the shot-noise limit on sensitivity
is around 15 fT/

√
Hz, slightly larger than the 10 fT/

√
Hz

predicted by earlier work. Steady-state solutions were pre-
sented over portions of the extended parameter space, and
we found that linearly polarized light can have a simpler
orientational dependence for a particular choice of angle
between the H1 coils and light polarization vector. The
first-order Bloch-Siegert correction, known to be important
in space applications, was found to agree well with the theory
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presented. Finally, we presented a comparison with experiment
using linearly polarized light as the H1 amplitude was varied.

Many of these results have practical applications to magne-
tometers. Using the model, one can optimize laser power, H1

amplitude, H1 orientation, metastable density, and ω deviation
for a given cell geometry at design time, reducing the costs
required for experimental verification and validation. The
improved understanding of behavior using circularly polarized
light when H0 is oriented near the cell’s equator allows
our model to more fully account for variations that will be
encountered in practical magnetometer applications, and the
simplification available with linearly polarized light when
ξ ≈ 54.7◦ allows more accurate arrangements to compensate
this static dependence. This may also allow more compact
magnetometer configurations using fewer cells in exchange
for more signal processing.

The ability to include arbitrary optical polarization
opens the door to theoretical research into the effects of

polarization noise on the behavior of optically pumped helium
magnetometers. Finally, the framework presented can be
numerically integrated without the steady-state approximation,
incorporating dynamic system motion and fast modulation of
parameters.
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APPENDIX: LARGE MATRICES

In moving from Eq. (4) to Eq. (7), we introduced a
vector −→a p and two matrices A1′ and A2′ . The vector is
given as

−→a p =
∑
ω′

0

τF(ω′ − ω′
0)[Q+e−iωt Qz Q−eiωt |Q2e

−2iωt Q1e
−iωt Q0 Q−1e

iωt Q−2e
2iωt ]T.

Note the summation over the three spectral lines of frequency ω′
0, and that the Q’s are functions of this frequency, even though it is

not explicitly shown. Due to space constraints, we separately introduce the matrix that transforms the transition matrices to rotating
coordinates:

A12 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 e−iωt e−2iωt eiωt 1 e−iωt e−2iωt 0

eiωt 1 e−iωt e2iωt eiωt 1 e−iωt e−2iωt

e2iωt eiωt 1 0 e2iωt eiωt 1 e−iωt

e−iωt e−2iωt 0 1 e−iωt e−2iωt 0 0

1 e−iωt e−2iωt eiωt 1 e−iωt e−2iωt 0

eiωt 1 e−iωt e2iωt eiωt 1 e−iωt e−2iωt

e2iωt eiωt 1 0 e2iωt eiωt 1 e−iωt

0 e2iωt eiωt 0 0 e2iωt eiωt 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

along with the nonrotating forms of the optical transition matrices:

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−6Q+− 24Q1 −24Q2 −24Q− 24Qz 4
√

6Q+ 0 0

−12Q−1 −24Qzz 12Q1 0 12Q− −8
√

6Qz −12Q+ 0

−24Q−2 −24Q−1 −6Q+− 0 0 4
√

6Q− −24Qz −24Q+

−6Q+ 0 0 −24Q22 24Q1 −8
√

6Q2 0 0

6Qz 6Q+ 0 −24Q−1 24Q11 4
√

6Q1 −24Q2 0
√

6Q− −4
√

6Qz

√
6Q+ −8

√
6Q−2 −4

√
6Q−1 −48Q00 −4

√
6Q1 −8

√
6Q2

0 −6Q− −6Qz 0 −24Q−2 4
√

6Q−1 24Q11 −24Q1

0 0 −6Q− 0 0 −8
√

6Q−2 24Q−1 −24Q22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12Qz −12Q+ 0 48Q−1 −24
√

6Q0 24
√

6Q1 −48Q2 0

−6Q− 0 6Q+ −48Q−2 24Q−1 0 −24Q1 48Q2

0 12Q− −12Qz 0 −48Q−2 24
√

6Q−1 −24
√

6Q0 48Q1

−12Q1 −24Q2 0 24Qz 12Q+ 0 0 0

−6
√

6Q0 −12Q1 −12Q2 12Q− 12Qz 6
√

6Q+ 0 0

−6
√

6Q−1 0 −6
√

6Q1 0 6
√

6Q− 0 6
√

6Q+ 0

−12Q−2 12Q−1 −6
√

6Q0 0 0 6
√

6Q− −12Qz 12Q+

0 24Q−2 −12Q−1 0 0 0 12Q− −24Qz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Using these three, we can express the two desired matrices as A1′ = ∑
ω′

0
τF(ω′ − ω′

0)[A12(.∗)A1] and A2′ = ∑
ω′

0
τF ′(ω′ −

ω′
0)[A12(.∗)A2], where (.∗) is element-by-element matrix multiplication.
If we define the operator diag to turn a vector into a diagonal square matrix with that vector on its diagonal, we obtain the

magnetic transition matrices introduced in Eq. (8):

A3 = diag[1 0 −1 2 1 0 −1 −2]

and

A4′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2(−H ′
x − iH ′

y) 0 0 0 0 0 0

−H ′
x + iH ′

y 0 H ′
x + iH ′

y 0 0 0 0 0

0 2(H ′
x − iH ′

y) 0 0 0 0 0 0

0 0 0 0 2(H ′
x + iH ′

y) 0 0 0

0 0 0 2(H ′
x − iH ′

y) 0
√

6(H ′
x + iH ′

y) 0 0

0 0 0 0
√

6(H ′
x − iH ′

y) 0
√

6(H ′
x + iH ′

y) 0

0 0 0 0 0
√

6(H ′
x − iH ′

y) 0 2(H ′
x + iH ′

y)

0 0 0 0 0 0 2(H ′
x − iH ′

y) 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

A4′ is displayed here without the Bloch-Siegert shift, but the shift can be included by multiplying the superdiagonal elements by
1 + e−2iωt , and multiplying the subdiagonal elements by 1 + e2iωt .

Finally, for the transmission monitoring of Eq. (10), we obtain

C1′ =
∑
ω′

0

τF(ω′ − ω′
0)[3Q−eiωt 6Qz 3Q+e−iωt 12Q−2e

2iωt −12Q−1e
iωt 12Q0 −12Q1e

−iωt 12Q2e
−2iωt]

and Cp = ∑
ω′

0
4QI τF(ω′ − ω′

0).
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