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In this article, a theoretical scheme is proposed to investigate the formation and propagation of three-wave
coupled vector optical solitons with ultraslow group velocities in a lifetime-broadened seven-state triple-� atomic
system under Raman excitation. We show that in the presence of a weak applied magnetic field that removes
the degeneracy of the corresponding sublevels of the atomic medium, three continuous-wave control fields
with circularly left or right polarized fields induce a quantum interference effect which can largely suppress the
absorption of the three low-intensity pulsed fields, that is, the circularly σ− (right), the linearly π , and the circularly
σ+ (left) polarized fields converted from one weak linear-polarized probe field. By means of the standard method
of multiple scales, we solve the equations of motion of atomic response and probe-control electromagnetic fields
and derive three-coupled nonlinear Schrödinger equations that govern the nonlinear evolution of the envelopes
of the probe fields in this scheme. We then demonstrate that because of the nonlinear coupling to one another, the
three probe fields can evolve into three-wave temporal, group velocity, and amplitude-matched optical solitons
under appropriate conditions, which are produced from the delicate balance of the dispersion effects and the self-
and cross-phase modulation effects. This scheme may thus pave the way to generate ultraslow vector optical
solitons composed of three field components in a highly resonant atomic medium and result in a substantial
impact on this field of nonlinear optics.
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I. INTRODUCTION

Vector solitons are solitons involving two and generally
N (N � 3) components [1–9], which can be generated as a
consequence of a delicate balance between dispersion, self-,
and cross-modulation (SPM and XPM) in all light components.
As a particular class of solitons, vector solitons formed
in each component of the optical field can remain almost
stable and propagate over relatively long distances without
spreading. Thus far, most vector optical solitons have been
produced in passive media, such as optical fibers [3–5], in
which there is no distinctive energy level structure. Therefore
high-powered lasers and far-off resonance excitation schemes
are generally employed in order to avoid unmanageable
optical field attenuation and distortion. As a consequence,
vector optical solitons produced this way require substantially
long propagation distances and generally travel with group
velocities very close to the speed of light in free space.

In the past few years, the propagation of optical fields
in highly resonant media has been extensively studied.
These works have opened up several significant features of
wave propagation in such a highly resonant medium such
as the remarkable reduction of the propagation group veloc-
ity, the dramatic modification of the dispersion properties,
and the large enhancement of the Kerr nonlinearities of the
optical medium [10–14]. Based on these techniques, many
nonlinear optical phenomena, including XPM [15–18], optical
bistability [19–22], quantum entanglement [23–30], and four-
wave mixing (FWM) [31–35] in highly resonant optical media,
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have been realized. Recently, following the report of ultraslow
optical solitons in a highly resonant atomic medium [36,37],
vector solitons consisting of two components of the optical
field have been demonstrated that can be also generated with
ultraslow group velocity in atomic systems [38,39]. These
vector solitons are produced from the nonlinear interaction
between two waves with the same frequency but belong to two
different polarizations, resulting in a proper balance between
dispersion, SPM, and XPM in two light components, and can
be described by two-coupled nonlinear Schrödinger (NLS)
equations. A natural question, then, may be asked: In an
atomic system, if three low-intensity pulsed electromagnetic
fields with the same frequency but different polarizations
interact with one another, can the dispersion, SPM, and XPM
effects achieve a perfect balance under certain conditions and
lead to three fields evolving into distortion-free three-wave
temporal vector optical solitons? Subsequently, we will present
a systematic study to address this question.

In this article, a theoretical scheme of a seven-level triple-�
atomic system under Raman excitation with large single-
and two-photon detunings is proposed to generate three-
wave temporal vector optical solitons with ultraslow group
velocities. For this purpose, one weak linear-polarized probe
field is converted into a circularly σ− (right), a linearly π , and
a circularly σ+ (left) polarized fields which drive, respectively,
three transitions in the seven-level triple-� atomic system
subject to an applied magnetic field (see Fig. 1). By using
three strong continuous wave (cw) control fields circularly
left or right polarized to couple the other three transitions,
we show that the absorption of three low-intensity polarized
pulsed probe fields (σ−, π , and σ+ polarized fields) can
be largely suppressed, while simultaneously, their linear as
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FIG. 1. (Color online) (a) Schematic of a cold seven-level triple-�
atomic system. A circularly σ− (right), a linearly π , and a circularly
σ+ (left) polarized field converted from one weak linear-polarized
probe field drive the transitions |0〉 ↔ |1〉, |0〉 ↔ |2〉, and |0〉 ↔ |3〉,
respectively, while the other transitions |1〉 ↔ |4〉, |2〉 ↔ |5〉, and
|3〉 ↔ |6〉 are induced, respectively, by three strong circularly left
polarized cw control fields with Rabi frequencies �c1,c2,c3. Variable
�s represents single-photon detuning, and �t1,t2,t3 are three separate
two-photon detunings. (b) Possible arrangement of experimental
apparatus. The probe field �p is converted into the circularly σ−, the
linearly π , and the circularly σ+ polarized fields which propagate in
the +z direction and are sent into the atomic medium to form ultraslow
three-wave coupled temporal vector optical solitons. The circularly
right- and left-polarized fields are obtained after the probe field �p

passing through the ±45◦-oriented λ/4 plates [40]. Three control
fields �c1,c2,c3 are all circularly left polarized in order to couple to the
corresponding transitions and propagate in the −y direction parallel
to the applied magnetic field B.

well as nonlinear dispersion is dramatically enhanced. Then
a perfect balance between dispersion, SPM, and XPM is
achieved under appropriate conditions, which leads to the
Maxwell’s equations for describing the propagation of three
weak polarized pulsed probe fields evolving into three-coupled
NLS equations that have solutions describing various types
of three-wave temporal vector optical solitons. Besides, we
have noticed other reports on the formation of scalar optical
solitons [41–43], optical soliton pairs [44–46], and two-wave
vector optical solitons [47] in highly resonant media with
different configurations of levels. Also, there are a number
of theoretical works on three-wave coupled vector solitons as
the solutions of three-coupled NLS equations in biophysics,
optical fibers, multicomponent Bose-Einstein condensates,
Kerr-like photorefractive media, and so on [48–54]. However,
to the best of our knowledge, the investigation of the formation
of ultraslow three-wave coupled vector optical solitons in such
an atomic system has rarely been touched up to now.

The rest of our article is organized as follows. Section II
mainly focuses on describing the theoretical model proposed
here. We derive the corresponding Hamiltonian and the
differential equations governing the dynamics of the atomic
system and the propagation of the three low-intensity pulsed

fields. The linearized dynamics of this model is briefly
discussed in this section. In Sec. III, we solve the dynamics
equations of this system by means of the standard method
of multiple scales and derive three-coupled NLS equations
governing the time evolution of the circularly σ−, the linearly
π , and the circularly σ+ polarized fields converted from
the probe field. Then three-wave coupled temporal vector
optical solitons like bright-bright-bright, bright-bright-dark,
bright-dark-bright, bright-dark-dark, and dark-dark-dark vec-
tor solitons with ultraslow group velocities have been proved
to exist stably in this atomic system. We end the article with
conclusions and a discussion in Sec. IV.

II. MODEL AND LINEARITY RESULTS

The system under investigation is lifetime-broadened
seven-level atoms driven in a triple-� configuration of energy
levels labeled as |j 〉(j = 0 − 6), as shown in Fig. 1(a). Here
three upper atomic sublevels |1〉, |2〉, and |3〉 as well as the
sublevels |4〉, |5〉, and |6〉 are Zeeman splits because of the
applied magnetic field B. The frequency difference between
adjacent sublevels is given by �1 = µBg1B/h̄ for levels |1〉,
|2〉, |3〉 and by �2 = µBg2B/h̄ for levels |4〉, |5〉, |6〉, where
µB is the Bohr magneton and g1(2) is the gyromagnetic factor
of the corresponding state with g2 ≈ 3g1 [55]. One weak
linear-polarized probe field �p with optical frequency ωp

and wave vector �kp is converted into a circularly σ−, a
linearly π , and a circularly σ+ polarized field [see Fig. 1(b)]
to drive the transitions |0〉 ↔ |1〉, |0〉 ↔ |2〉, and |0〉 ↔ |3〉,
respectively. A strong circularly left or right polarized control
field with optical frequency ωc1 (ωc2, ωc3) and wave vector �kc1

(�kc2, �kc3) couples the atomic transition |1〉 ↔ |4〉 (|2〉 ↔ |5〉,
|3〉 ↔ |6〉) with Rabi frequency �c1 (�c2, �c3). Obviously, the
seven-level system consists of three � configurations under
Raman excitation, all of them sharing the ground-state level
|0〉 [36]. In order to generate three-wave coupled temporal
vector optical solitons experimentally, one may choose the
hyperfine-split levels for the D lines of cold Na atoms trapped
in a magneto-optical trap at sufficiently low temperature as
an experimental candidate for the proposed system. Thus
the designated states are chosen as follows: 3 2S1/2, F = 1,
MF = 0 as |0〉; 3 2P1/2, F = 2, MF = −1 as |1〉; 3 2P1/2,
F = 2, MF = 0 as |2〉; 3 2P1/2, F = 2, MF = 1 as |3〉;
3 2S1/2, F = 2, MF = −2 as |4〉; 3 2S1/2, F = 2, MF = −1
as |5〉; and 3 2S1/2, F = 2, MF = 0 as |6〉 [55]. Then the
control fields �c1, �c2, and �c3 should be circularly σ+ (left)
polarized. Figure 1(b) is shown as the corresponding possible
arrangement of experimental apparatus.

Suppose the electric fields of the three low-intensity
polarized pulsed probe fields (σ−, π , and σ+ polarized fields)
have the forms �Ep1,p2,p3 = �eσ−,π,σ+Eσ−,π,σ+exp(−iωpt +
i�kp · �r) + c.c. and three strong circularly σ+ polarized cw
control fields can be written as �Ecj = �ecjEcj exp(−iωcj t +
i�kcj · �r) + c.c.(j = 1,2,3), with c.c. being the complex con-
jugate and �eν being the corresponding unit vectors of
these fields. If the free Hamiltonian of the system is
defined as Ĥ0/h̄ = ωp|1〉〈1| + ωp|2〉〈2| + ωp|3〉〈3| + (ωp −
ωc1)|4〉〈4| + (ωp − ωc2)|5〉〈5| + (ωp − ωc3)|6〉〈6|, then un-
der electric-dipole and rotating-wave approximations, the

013836-2



FORMATION AND PROPAGATION OF ULTRASLOW THREE- . . . PHYSICAL REVIEW A 82, 013836 (2010)

interaction Hamiltonian of the system in the interaction picture
can be obtained as follows:

Ĥ int

h̄
= −(�s + �1)|1〉〈1| − �s |2〉〈2| − (�s − �1)|3〉〈3|

−�t1|4〉〈4| − �t2|5〉〈5| − �t3|6〉〈6|
− (�p1e

i�kp ·�r |1〉〈0| + �p2e
i�kp ·�r |2〉〈0|

+�p3e
i�kp ·�r |3〉〈0| + �c1e

i�kc1·�r |1〉〈4|
+�c2e

i�kc2·�r |2〉〈5| + �c3e
i�kc3·�r |3〉〈6| + H.c.), (1)

where the symbol H.c. stands for Hermitian conjugate. In this
expression, �s = ωp − ω20 is defined as single-photon detun-
ing and �t1 = ωp − ωc1 − ω40, �t2 = ωp − ωc2 − ω50, and
�t3 = ωp − ωc3 − ω60 represent three separate two-photon
detunings with ωj0 = (εj − ε0)/h̄ being the resonant transition
frequency, with (ε0) εj being the energy of the atomic state (|0〉)
|j 〉(j = 1 − 6). The frequency difference �2 = µBg2B/h̄ for
levels |4〉, |5〉, and |6〉 is incorporated in the resonant transi-
tion frequencies ω40, ω50, and ω60 with ω60 = ω50 + �2 =
ω40 + 2�2. Besides, 2�p1,p2,p3,c1,c2,c3 = ( �µ10,20,30,14,25,36 ·
�eσ−,π,σ+,c1,c2,c3)Eσ−,π,σ+,c1,c2,c3/h̄ denote the Rabi frequencies
for the respective transitions, with �µlm being the dipole
moment for the transition between levels |l〉 and |m〉.

Defining the state of the atomic system
as |
〉 = A0(t)|0〉 + A1(t)ei�kp ·�r |1〉 + A2(t)ei�kp ·�r |2〉 +
A3(t)ei�kp ·�r |3〉 + A4(t)ei�kp ·�r−i�kc1·�r |4〉 + A5(t)ei�kp ·�r−i�kc2·�r |5〉 +
A6(t)ei�kp ·�r−i�kc3·�r |6〉, we then obtain from the Schrödinger
equation ih̄∂|
〉/∂t = Ĥ int |
〉 in the interaction picture the
evolution equations for the probability amplitudes Aj (t), as
follows:

∂A1

∂t
= i(�s + �1 + iγ1)A1 + i�c1A4 + i�p1A0, (2a)

∂A2

∂t
= i(�s + iγ2)A2 + i�c2A5 + i�p2A0, (2b)

∂A3

∂t
= i(�s − �1 + iγ3)A3 + i�c3A6 + i�p3A0, (2c)

∂A4

∂t
= i(�t1 + iγ4)A4 + i�c1

∗A1, (2d)

∂A5

∂t
= i(�t2 + iγ5)A5 + i�c2

∗A2, (2e)

∂A6

∂t
= i(�t3 + iγ6)A6 + i�c3

∗A3, (2f)

where we have introduced the decay rate of the state
|k〉 2γk(k = 1 − 6) phenomenologically and A0 can be
determined by the relation

∑6
j=0 |Aj |2 = 1, while three

time-dependent low-intensity polarized pulsed probe fields
�p1,p2,p3 (σ−, π , and σ+ polarized fields) satisfy the equa-
tions

∂�p1

∂z
+ 1

c

∂�p1

∂t
= iκ10A1A0

∗, (3a)

∂�p2

∂z
+ 1

c

∂�p2

∂t
= iκ20A2A0

∗, (3b)

∂�p3

∂z
+ 1

c

∂�p3

∂t
= iκ30A3A0

∗, (3c)

which can be gotten from Maxwell’s equations
under the slowly varying envelope approximation. In

Eqs. (3a)–(3c), κ10 = Nωp| �µ10 · �eσ−|2/(2h̄ε0c), κ20 =
Nωp| �µ20 · �eπ |2/(2h̄ε0c), and κ30 = Nωp| �µ30 · �eσ+|2/(2h̄ε0c),
with N being the concentration and ε0 being the vacuum
dielectric constant.

Before seeking the three-wave coupled vector optical
solitons in a seven-level triple-� atomic system, we begin to
study the weak probe absorption and dispersion behavior of
the system by solving Eqs. (2) and (3) in the linear regime.
This may be useful for understanding the robust balance
between the dispersion effect and nonlinearity resulting in the
formation of three-wave solitons in this system, which will be
shown in the next section, where a weak nonlinear theory is
developed to obtain three-coupled NLS equations. Now under
the initial conditions, Aj (t = 0) = δj0; that is, all atoms are
initially pumped into the ground state |0〉 before the three weak
polarized probe fields enter the medium at t = 0; we outline the
solutions of Eqs. (2) and (3) in the low-density approximation,
where the intensities of the σ−, π , and σ+ polarized pulsed
probe fields are much weaker than those of the control fields.
In the low-density approximation, the ground state |0〉 is not
depleted. Thus we can make the nondepleted ground state
approximation and take A0(t) � 1, which is always adapted in
describing the phenomenon of EIT and EIT-related multiwave
mixing and soliton phenomena [10–14,33–37,56–59]. We use
the Fourier transform technique with respect to the time t

by taking the Fourier transform of Eqs. (2) and (3) and then
obtaining three branches of the linear dispersion relation for
the σ−, π , and σ+ polarized pulsed probe fields:

Kj (ω) = ω

c
+ κj0

ω + dj+3

Dj (ω)
=

2∑
k=0

1

k!
Kjkω

k + O(ω3), (4)

where Dj (ω) = |�cj |2 − (ω + dj )(ω + dj+3)(j = 1,2,3),
with d1 = �s + �1 + iγ1, d2 = �s + iγ2, d3 = �s − �1 +
iγ3, d4 = �t1 + iγ4, d5 = �t2 + iγ5, and d6 = �t3 + iγ6.
In Eq. (4), we have expanded the linear dispersion relations
Kj (ω) into a rapid conversion power series around the center
frequency ωp with Kjk = [∂kKj (ω)/∂ωk]|ω=0(k = 0,1,2).
The coefficients Kjk in Eq. (4) have rather clear physical
interpretation. The imaginary parts of Kj0 give the absorption
coefficient αj = 2Im(Kj0), while the corresponding real parts
describe the phase shift φj = Re(Kj0) per unit length of
the σ−, π , and σ+ polarized pulsed probe fields; the group
velocities of the three polarized pulsed probe fields are given
by Kj1 = 1/Vgj = 1/c + κj0(|�cj |2 + dj+3

2)/Dj
2, with

Dj = |�cj |2 − djdj+3, and Kj2 = 2κj0(2|�cj |2dj+3 +
dj+3

3 + |�cj |2dj )/Dj
3 represent the group-velocity

dispersions which contribute to the corresponding probe
pulse spreading and additional field intensity loss.

To illustrate the linear properties of this model, we plot in
Fig. 2 the absorption and dispersion spectra of the σ− (dashed
line), π (solid line), and σ+ (dash-dotted line) polarized probe
fields. For simplicity, we have set �s � �t1 � �t2 � �t3 = 0
and γ4 � γ5 � γ6 = γ . The other parameters are all in units of
γ and chosen as �1 = 4.0 × 103, γ1 � γ2 � γ3 = 6.0 × 103,
and κ10 � κ20 � κ30 = 1.0 × 105. As shown in Fig. 2(a), in the
presence of three control fields with intensities �c1 � �c2 �
�c3 = 1.0 × 104, the absorptions of three polarized pulsed
probe fields are almost completely suppressed, accompanied
by the steep and approximately linear slope of the dispersions
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FIG. 2. (Color online) Absorption and dispersion spectra, in
arbitrary units, for the σ− (dashed line), π (solid line), and σ+

(dash-dotted line) polarized pulsed probe fields in the presence
of an applied magnetic field (� = 4.0 × 103γ ) and three control
fields with intensities (a) �c1 � �c2 � �c3 = 1.0 × 104γ and (b)
�c1 � �c2 � �c3 = 0. The other parameters are explained in the
text.

in the vicinity of ω = 0, where the known effect of EIT is
attained in the system. For comparison, we turn off the three
control fields (�cj = 0,j = 1,2,3) and plot the absorption
and dispersion spectra of the three polarized pulsed probe
fields in Fig. 2(b), and we find that the absorption peaks
appeared near ω = 0 within the corresponding absorption lines
where the EIT effect is held back. The differences between
two figures show that it is exactly the three strong control
fields that induce a quantum destructive interference effect
which makes the three pulsed polarized probe fields propagate
transparently with almost no absorption in this atomic system.
Besides, we have noticed that because of the nonvanishing
group-velocity dispersions Kj2, three polarized pulsed probe
fields may suffer pulse spreading and intensity attenuation

as the distance z increase. Therefore, to cancel the detrimental
dispersion effects for the sake of producing three-wave coupled
temporal vector optical solitons in this seven-level triple-�
atomic system, it is necessary to find an effective remedy
to balance the rapid increase in pulse width in the time
domain. This is the main objective of the next section: to
find and take the SPM and XPM effects as the effective
remedy to balance the pulse spreading where three-coupled
NLS equations describing the envelope evolution of the σ−,
π , and σ+ polarized probe fields are derived by means of the
standard method of multiple scales.

III. MULTIPLE SCALE METHOD APPLIED AND
THREE-COUPLED NLS EQUATIONS

A detailed analysis of the dispersion properties of this
seven-level triple-� atomic system shows that not only the
quantities Kj2 but also Kj1 obtained from Eq. (4) contribute to
the group velocities and pulse spreading of the corresponding
fields. It is noteworthy that Kj2 introduces a z dependence to
the group velocities and the pulse width in the time domain.
These dispersion effects are harmful for optical information
processing but are always observed in the propagation of
ultraslow waves in highly resonant media. Therefore it is
necessary for the formation of the vector optical solitons to use
nonlinear effects (SPM, XPM) to balance dispersion effects.
In the remainder of this section, we will demonstrate that
a delicate balance between SPM, XPM, and group-velocity
dispersion effects of the σ−, π , and σ+ polarized pulsed
probe fields can be achieved and lead to the generation and
propagation of ultraslow three-wave coupled temporal vector
optical solitons in our system.

In order to demonstrate how the σ−, π , and σ+ polarized
pulsed probe fields evolve into three coupled stable shape-
preserving wave forms, we employ the standard method of
multiple scales [4] to analyze the interaction of the three weak
polarized pulsed probe fields and the triple-� atomic system.
Thus, owing to the weak nonlinear effect, we should consider
corrections to the nondepleted ground state approximation,
allowing a small population depletion of the ground state,
which is characterized by a small parameter λ. Then we can
introduce the perturbation expansion, as follows:

�pj = λ�
(1)
pj + λ2�

(2)
pj + λ3�

(3)
pj + · · · , j = 1,2,3, (5a)

Ak = A
(0)
k + λA

(1)
k + λ2A

(2)
k + · · · , k = 0 − 6, (5b)

with A
(0)
k = δk0 and A

(1)
0 = 0. Following the standard pro-

cedure of multiple scales perturbation analysis, we write z

and t in multiple scale forms z0 = z,z1 = λz,z2 = λ2z and
t0 = t,t1 = λt , which can be temporarily treated as indepen-
dent variables. Thus, instead of determining the quantities
�

(m)
pj (m = 1,2,3, · · ·) and A

(n)
k (n = 0,1,2, · · ·) in Eqs. (5) as

the functions of (z; t), we determine �
(m)
pj (m = 1,2,3, · · ·) and

A
(n)
k (n = 0,1,2, · · ·) as the functions of (z0,z1,z2; t0,t1). Using

a chain rule, we have

∂

∂z
= ∂

∂z0
+ λ

∂

∂z1
+ λ2 ∂

∂z2
, (6a)

∂

∂t
= ∂

∂t0
+ λ

∂

∂t1
. (6b)
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Substituting Eqs. (5) and (6) into Eqs. (2) and (3), we obtain
(j = 1,2,3)(

i
∂

∂t0
+ dj

)
A

(l)
1 + �cjA

(l)
j+3 + �

(l)
pj = P

(l)
j , (7a)(

i
∂

∂t0
+ dj+3

)
A

(l)
j+3 + �cj

∗A(l)
j = P

(l)
j+3, (7b)

i

(
∂

∂z0
+ 1

c

∂

∂t0

)
�

(l)
pj + κj0A

(l)
j = Q

(l)
j , (7c)

where the explicit expressions of P
(l)
j , P

(l)
j+3, and Q

(l)
j can be

systematically and analytically obtained and will be given
subsequently. In addition, the relation

∑6
j=0 |Aj |2 = 1 gives

the condition A
(2)
0 + [A(2)

0 ]∗ = −(A(1)
1 [A(1)

1 ]∗ + A
(1)
2 [A(1)

2 ]∗ +
A

(1)
3 [A(1)

3 ]∗ + A
(1)
4 [A(1)

4 ]∗ + A
(1)
5 [A(1)

5 ]∗ + A
(1)
6 [A(1)

6 ]∗) and
higher orders of A

(l)
0 (l � 3) are not needed and thus neglected.

The analytic solutions of Eqs. (7a)–(7c) can be obtained
straightforwardly and denoted symbolically as the following
forms:

A
(l)
j = 1

κj0

[
Q

(l)
j − i

(
∂

∂z0
+ 1

c

∂

∂t0

)
�

(l)
pj

]
, (8a)

A
(l)
j+3 = 1

�cj

[
P

(l)
j −

(
i

∂

∂t0
+ dj

)
A

(l)
j − �

(l)
pj

]
, (8b)

L̂j�
(l)
pj = R

(l)
j , (8c)

with L̂j = i[|�cj |2 − (i∂/∂t0 + dj )(i∂/∂t0 + dj+3)](∂/

∂z0 + c−1∂/∂t0) + κj0(i∂/∂t0 + dj+3) and R
(l)
j = κj0[(i∂/

∂t0 + dj+3)P (l)
j − �cjP

(l)
j+1] + [|�cj |2 − (i∂/∂t0 + dj )(i∂/

∂t0 + dj+3)]Q(l)
j . We can solve Eqs. (8a)–(8c) order by order,

as shown subsequently.
At the leading order (l = 1), we have P

(l)
j = P

(l)
j+3 = Q

(l)
j =

0. It is easy to find the first-order approximation solutions in
the linear regime (j = 1,2,3):

�
(1)
pj = �je

iz0Kj (ω)−iωt0 , (9)

with Kj (ω) being the linear dispersion relations (4) and the
envelope function �j being yet to be determined by variables
(z1,z2; t1).

At the second order (l = 2), the explicit expressions of P
(2)
j ,

P
(2)
j+3, and Q

(2)
j can be obtained using the solutions at first order

and denoted as P
(2)
j = −i∂A

(1)
j /∂t1, P

(2)
j+3 = −i∂A

(1)
j+3/∂t1

and Q
(2)
j = −i(∂/∂z1 + c−1∂/∂t1)�(1)

pj . Then we obtain the
solvability conditions for obtaining a divergence-free solution
for �

(2)
pj by eliminating secular terms:

∂�j

∂z1
+ 1

Vgj

∂�j

∂t1
= 0, (10)

with Vgj = 1/Kj1 being the group velocities of the wave
packets �j .

To form the three-wave coupled temporal vector optical
solitons in this atomic system, it is necessary to find the
effective nonlinear effect to balance the second-order disper-
sion effect that causes pulse spreading. To this end, we go to
the asymptotic expansion to the third order (l = 3) with the
preceding results. In this order, we have P

(3)
j = −i∂A

(2)
j /∂t1 −

�
(1)
pj A

(2)
0 , P

(3)
j+3 = −i∂A

(2)
j+3/∂t1, and Q

(3)
j = −i(∂/∂z1 +

c−1∂/∂t1)�(2)
pj − i∂�

(1)
pj /∂z2 − κj0A

(1)
j [A(2)

0 ]∗. Then the solv-
ability conditions of eliminating secular terms in this order
yield the coupled differential equations governing the spatial-
temporal evolution of �j (j = 1,2,3) :

i
∂�j

∂z2
− Kj2

2

∂2�j

∂t12

= κj0
dj+3

Dj

(
3∑

k=1

e−α̃kz2
|�ck|2 + |dk+3|2

|Dk|2 |�k|2
)

�j, (11)

where K12, K22, and K32 characterize the group-velocity dis-
persion of the σ−, π , and σ+ polarized pulsed probe fields, re-
spectively, and α̃1,2,3 = λ2α1,2,3, with α1,2,3 = 2Im(K10,20,30).

After combining Eqs. (10) and (11) and returning to the
original variables, we obtain the three-coupled NLS equations
aroused from SPM and XPM [3] (j = 1,2,3):

∂Fj

∂z
+ δj

∂Fj

∂τ
+ iKj2

2

∂2Fj

∂τ 2
= −i

(
3∑

k=1

e−αkzGjk|Fk|2
)

Fj ,

(12)

where Fj = λ�j , τ = t − z/Vg2, δj = 1/Vgj − 1/Vg2, and

G1j = κ10d4
(|�cj |2 + �tj

2 + γj+3
2
)

D1|Dj |2 , (13a)

G2j = κ20d5
(|�cj |2 + �tj

2 + γj+3
2
)

D2|Dj |2 , (13b)

G3j = κ30d6
(|�cj |2 + �tj

2 + γj+3
2
)

D3|Dj |2 . (13c)

We note that the coefficients Gjj characterize the SPM, and
Gjk(j 	= k,j,k = 1,2,3) characterize the XPM of the σ−, π ,
and σ+ polarized pulsed probe fields, respectively.

Through inspection of Eqs. (13a)–(13c), we find that
nonlinear evolution Eqs. (12) generally have complex coef-
ficients and hence do not allow soliton solutions. However,
because of the contribution of three strong control fields,
the imaginary parts of these complex coefficients may be
much smaller than their corresponding real parts, while
simultaneously, the absorption of the probe fields can be
almost completely suppressed under appropriate conditions,
which results in Gjk = Gjkr + iGjki � Gjkr , Kj2 = Kj2r +
iKj2i � Kj2r , and exp(−αjL) � 1, with |Gjkr | 
 |Gjki |,
|Kjkr | 
 |Kjki |, and L being the length of the atomic medium.
These important properties lead Eqs. (12) to be solved by the
F -expansion method [53], which has proven to be a very useful
method for building periodic and soliton solutions of some
nonlinear partial differential equations, and hence three-wave
coupled temporal vector soliton solutions are possible that
can propagate for an extended distance without significant
deformation in this system. For this purpose, we adopt the
dimensionless coordinates and variables s = z/(2Ld ), σ =
τ/τ0, and qj = Fj/U0 by defining the characteristic dispersion
length Ld = τ 2

0 /|K22r | and the characteristic nonlinear length
Ln = 1/(|G22r |U 2

0 ), with τ0 and U0 being the characteristic
pulse length and the typical Rabi frequency of the probe fields,
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respectively. In this situation, Eqs. (12) can be reduced to the
dimensionless three-coupled NLS equations as

i
∂qj

∂s
+ iβδj

∂qj

∂σ
− βj

∂2qj

∂σ 2
− 2

(
3∑

k=1

βjk|qk|2
)

qj = 0,

(14)

where we have set Ld = Ln to achieve the proper balance be-
tween dispersion, SPM, and XPM, which leads to the genera-
tion of three-wave coupled temporal vector optical solitons that
traverse this triple-� atomic system with ultraslow matched
group velocities. Here we also define βδj

= 2sgn(δj )Ld/Lδj
,

βj = Kj2r/|K22r |(j = 1,2,3), and βjk = Gjkr/|G22r |(j,k =
1,2,3), with Lδj

= τ0/|δj | characterizing the walk-off length
which results from the group-velocity mismatch (GVM), that
is, the difference between the group velocities of the involved
waves in a dispersive medium. If one ignores the XPM
nonlinear effects among interacting waves, the walk-off length
will lead three pulsed fields to separate from one another after
propagating a distance. It is noteworthy that the existence
of GVM terms βδj

in Eqs. (14) is the major obstacle to the
generation of ultraslow three-wave coupled temporal vector
optical solitons in this system. Fortunately, solitons can shift
their frequencies (wavelengths) that slow down the faster-
moving pulse while simultaneously making the slower-moving
one speed up to three polarized pulsed fields continuing
to overlap indefinitely, which is the main mechanism for
generating vector optical solitons in nonlinear system under
a GVM. Therefore, in order to obtain soliton solutions from
Eqs. (14), we suppose the solutions of this equations have the
forms of qj (s,σ ) = Qj (s,σ )exp[−iβδj

(sβδj
− 2σ )/(4βj )] and

then obtain the ordinary differential equation for Qj (s,σ ):

i
∂Qj

∂s
− βj

∂2Qj

∂σ 2
= 2(βj1|Q1|2 + βj2|Q2|2 + βj3|Q3|2)Qj ,

(15)

which may admit solutions describing the bright-bright-
bright, bright-bright-dark, bright-dark-bright, bright-dark-
dark, and dark-dark-dark vector solitons [53], depending
on the choice of parameter values in this triple-� atomic
system.

Following Ref. [53], we attempt to obtain bright-bright-
bright, bright-bright-dark, bright-dark-bright, bright-dark-
dark, and dark-dark-dark vector soliton solutions of Eqs. (15)
when disregarding the small imaginary parts of the coeffi-
cients. The bright-bright-bright vector soliton solution is given
by

Q1(s,σ ) = C1sech(Aσ + Bs)exp(iF11σ + iF12s), (16a)

Q2(s,σ ) = C2sech(Aσ + Bs)exp(iF21σ + iF22s), (16b)

Q3(s,σ ) = C3sech(Aσ + Bs)exp(iF31σ + iF32s), (16c)

which indicates that the σ−, π , and σ+ polarized pulsed probe
fields all evolve into bright solitons. Here we have defined
B = 2AFj1βj (j = 1,2,3), F12 = β1(F2

11 − A2), F22 =
β2(F2

21 − A2), F32 = β3(F2
31 − A2), C2

1 = A2[β2(β13β32 −
β12β33) + β3(β13β22 − β12β23)]/[β31(β12β23 −β22β13)], C2

2 =
A2(β1β23β31 + β3β11β23)/[β31(β12β23 − β22β13)], and C2

3 =

A2[β1β22β31 − β2(β12β31 −β11β32) + β3β11β22]/[β31(β12β23

− β22β13)].
The bright-bright-dark vector soliton solution can be

deduced from Eqs. (15), in which two bright solitons appear
in the σ− and π polarized pulsed probe fields and the dark one
appears in the σ+ polarized pulsed probe fields:

Q1(s,σ ) = C1sech(Aσ + Bs)exp(iF11σ + iF12s), (17a)

Q2(s,σ ) = C2sech(Aσ + Bs)exp(iF21σ + iF22s), (17b)

Q3(s,σ ) = C3tanh(Aσ + Bs)exp(iF31σ + iF32s), (17c)

where B= 2AFj1βj (j = 1,2,3), F12 = β1(F2
11 −A2) −

2C2
3β13, F22 =β2(F2

21 −A2) − 2C2
3β23, F32 = β3F2

31 −
2C2

3β33,C2
1 =A2[β2(β13β32 −β12β33) − β3(β13β22 − β12β23)]/

[β31(β12β23 − β22β13)], C2
2 =A2(β1β23β31 − β3β11β23)/

[β31(β12β23 − β22β13)], and C2
3 =A2[β1β22β31 − β2(β12β31 −

β11β32) − β3β11β22]/[ − β31(β12β23 − β22β13)].
The bright-dark-bright vector soliton solution of Eqs. (15)

reads as

Q1(s,σ ) = C1sech(Aσ + Bs)exp(iF11σ + iF12s), (18a)

Q2(s,σ ) = C2tanh(Aσ + Bs)exp(iF21σ + iF22s), (18b)

Q3(s,σ ) = C3sech(Aσ + Bs)exp(iF31σ + iF32s), (18c)

which shows that the σ− and σ+ polarized pulsed probe
fields evolve into bright solitons and the π polarized pulsed
probe field evolves into a dark one. The corresponding
parameters are given by B = 2AFj1βj (j = 1,2,3), F12 =
β1(F2

11 − A2) − 2C2
2β12, F22 = β2F2

21 − 2C2
2β22, F32 =

β3(F2
31 − A2) − 2C2

2β32, C2
1 = A2[β2(β13β32 − β12β33) −

β3(β13β22 − β12β23)]/[β31(β12β23 −β22β13)], C2
2 =A2(β1β23

β31 − β3β11β23)/[−β31(β12β23 − β22β13)], and C2
3 = A2[β1

β22β31 − β2(β12β31 − β11β32) − β3β11β22]/[β31(β12β23 −
β22β13)].

One can also obtain the bright-dark-dark vector soliton
solution from Eqs. (15):

Q1(s,σ ) = C1sech(Aσ + Bs)exp(iF11σ + iF12s), (19a)

Q2(s,σ ) = C2tanh(Aσ + Bs)exp(iF21σ + iF22s), (19b)

Q3(s,σ ) = C3tanh(Aσ + Bs)exp(iF31σ + iF32s), (19c)

which describe the σ− polarized pulsed probe field that
evolves into a bright soliton and the π and σ+ po-
larized pulsed probe field that evolve into dark soli-
tons in the triple-� atomic system. Here we have
B = 2AFj1βj (j = 1,2,3), F12 = β1(F2

11 − A2) − 2C2
2β12 −

2C2
3β13, F22 = β2F2

21 − 2C2
2β22 − 2C2

3β23, F32 = β3F2
31 −

2C2
2β32 − 2C2

3β33, C2
1 = A2[β2(β13β32 − β12β33) − β3(β13β22

− β12β23)]/[β31(β12β23 − β22β13)], C2
2 = A2(β1β23β31 − β3

β11β23)/[−β31(β12β23 − β22β13)], and C2
3 = A2[β1β22β31 −

β2(β12β31 − β11β32) − β3β11β22]/[−β31(β12β23 − β22β13)].
A dark-dark-dark vector soliton solution is given by

Q1(s,σ ) = C1tanh(Aσ + Bs)exp(iF11σ + iF12s), (20a)

Q2(s,σ ) = C2tanh(Aσ + Bs)exp(iF21σ + iF22s), (20b)

Q3(s,σ ) = C3tanh(Aσ + Bs)exp(iF31σ + iF32s). (20c)

In this situation, the σ−, π , and σ+ polarized pulsed
probe fields all evolve into dark solitons. Here we define
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B = 2AFj1βj (j = 1,2,3),F12 = β1(F2
11 + 2A2),F22 = β2

(F2
21 + 2A2),F32 = β3(F2

31 + 2A2), C2
1 = A2[−β2(β13β32 −

β12β33) + β3(β13β22 − β12β23)]/[β31(β12β23 − β22β13)],C2
2 =

A2(−β1β23β31 + β3β11β23)/[−β31(β12β23 − β22β13)], and
C2

3=A2[−β1β22β31+β2(β12β31−β11β32)+β3β11β22]/[β31(β12

β23 − β22β13)].
It is worthwhile to point out that these three-wave coupled

temporal vector optical solitons described by Eqs. (16), (17),
(18), (19), and (20) are generated from the delicate balance of
the dispersion, SPM, and XPM effects and are allowed in this
seven-level triple-� atomic system with matched ultraslow
group velocity. In the preceding equations, the coefficients
A and B are two free parameters (A 	= 0). And to obtain
these equations, we have made use of the relation GjjGkk =
GjkGkj (j,k = 1,2,3; j 	= k), which can be seen from the
definition expressions of the SPM and XPM coefficients shown
in Eqs. (13a)–(13c).

To generate the ultraslow three-wave coupled temporal
vector optical solitons, we now consider a practical example for
a realistic atomic medium driven in a triple-� configuration
of energy levels. We consider a cold Na atomic vapor
with the decay rates 2γ1 � 2γ2 � 2γ3 � 1.2 × 108s−1 and
2γ4 � 2γ5 � 2γ6 � 2.0 × 104s−1. We take κ10 � κ20 � κ30 �
1.0 × 109cm−1s−1, 2�c1 � 2�c2 � 2�c3 = 2.0 × 108s−1,
�t1 � �t2 � �t3 = 2.0 × 106s−1, �s = −1.0 × 109s−1, and
�1 = 2.0 × 106s−1. Then, with the preceding parameters,
we obtain K10 � K20 � K30 � 0.167 + 0.003icm−1, K11 �
(6.953 + 0.127i) × 10−8cm−1s, K21 � (6.948 + 0.127i) ×
10−8cm−1s, K31 � (6.944 + 0.127i) × 10−8cm−1s, K12 �
(−1.153 + 0.038i) × 10−14cm−1s2, K22 � (−1.154 +
0.038i) × 10−14cm−1s2, K12 � (−1.155 + 0.038i) ×
10−14cm−1s2, G11 � (1.159 + 0.016i) × 10−17cm−1s2,
G22 � (1.157 + 0.016i) × 10−17cm−1s2, G33 � (1.156 +
0.016i) × 10−17cm−1s2, G12 � G21 � (1.158 + 0.016i) ×
10−17cm−1s2, G13 � (1.157 + 0.016i) × 10−17cm−1s2,
G31 � (1.158 + 0.016i) × 10−17cm−1s2, and G23 �
G32 � (1.157 + 0.016i) × 10−17cm−1s2. Notice that the
imaginary parts of these quantities are indeed much smaller
than their relevant real parts, and thus we can ignore
the small imaginary parts to obtain the dimensionless
three-coupled NLS Eqs. (14). With these quantities, we have
Ld � 0.555 cm, Lδ1 � 1727.8 cm, and Lδ2 � 1729.5 cm,
with the negligible absorption α1 � α2 � α3 � 0.0047 cm−1,
τ0 = 8.0 × 10−8 s, and U0 � 3.95 × 108 s−1. The group
velocities of the σ−, π , and σ+ polarized pulsed probe fields
are given by Vg1/c � 4.794 × 10−4, Vg2/c ≈ 4.797 × 10−4,
and Vg3/c ≈ 4.800 × 10−4, respectively, which means
that the σ−, π , and σ+ polarized pulsed probe fields
of the vector optical solitons propagate with nearly
matched, ultraslow propagating velocities compared
with c.

IV. DISCUSSION AND CONCLUSION

Before concluding, it is worthwhile to point out some
important differences between the theoretical scheme pro-
posed in this article and the system proposed in Ref. [54].
First, the present system is a triple-� atomic system in which
three control fields operate in a stimulated Raman emission
mode and a powerful and sophisticated perturbative method of
multiple scales [4] is applied to solve equations of motion of
the system. Second, although the nonlinear equations derived
in this article and easier work are of similar form, they appear
in two different physical situations. In fact, this work deals
with the nonlinear coupling between three pulsed waves with
the same frequency but belonging to different polarizations,
and therefore, in substance, this differs from the nonlinear
interaction between three waves with different frequencies.
Last but not the least, this work gives systematically all types
of possible three-wave vector solitons which may be generated
via our system because of the wide parameter regimes of the
triple-� atomic system, while the previous model [54] only
gives the type of bright-bright-bright vector solitons.

In conclusion, we have analyzed the nonlinear dynamics of
a circularly σ−, a linearly π , and a circularly σ+ polarized field
converted from one weak linear-polarized probe field in a cold
seven-level triple-� atomic system under Raman excitation. In
the presence of three coherent driving control fields, the linear
as well as nonlinear dispersion are dramatically enhanced,
while simultaneously, the absorptions of the σ−, π , and σ+
polarized probe fields are suppressed in the medium. By means
of the multiple scales technique, we derive three-coupled
NLS equations which admit three-wave vector optical soliton
solutions describing bright-bright-bright, bright-bright-dark,
bright-dark-bright, bright-dark-dark, and dark-dark-dark
vector solitons. We have shown that the three-wave vector
optical solitons are produced from the perfect balance of the
group-velocity dispersion, SPM, and XPM effects and can
propagate through this atomic system with nearly matched,
ultraslow propagating velocities compared with the speed of
light in a vacuum.
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