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Spectral shifts and switches in random fields upon interaction with negative-phase materials

Zhisong Tong and Olga Korotkova*

Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, Florida 33146 USA
(Received 26 February 2010; published 23 July 2010)

Spectral shifts in stochastic beam-like fields on interaction with layers of positive- and negative-phase materials
are examined on the basis of the ABCD-matrix approach and generalized Huygens-Fresnel principle. It is found
that boundaries between such materials may cause spectral switches. Effect of absorption of negative-phase
materials on the beam spectrum is discussed. Our results may find applications in connection with spectrum-
selection optical interconnects, spectrally encoded information transfer, image formation in systems involving
negative-phase materials, and geometrically tunable metamaterials.
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I. INTRODUCTION

Correlation-induced spectral changes in stochastic light
fields propagating in free space have been discovered by Wolf
[1] (see also [2]) and remained a subject of acute interest for a
number of years. In particular, it was found that shifts toward
both higher and lower frequencies are possible, which are
called blue shifts and red shifts, respectively. Similar spectral
changes were later found in more complex situations as well,
for instance, on propagation of light scattered from static
random media [3,4]. It was also demonstrated that spectral
changes can be used for solution of the inverse problems of
scattering [5].

Quite recently, so-called spectral switches were predicted
and confirmed experimentally on passing of a random light
beam through an aperture [6]. A spectral switch is a phe-
nomenon in which the alternation of spectral shifts might
occur: the light spectrum is first blue shifted and then red
shifted. Spectral switches were also found to be pertinent to
light propagation in image-forming optical systems, such as
combinations of thin lenses and mirrors [7]. The phenomenon
of such switches is explained by the fact that in a system
involving free-space propagation and passage through a lens,
the competing mechanisms of focusing and diffraction affect
the transverse coherence properties of the beam at different
planes, which, in their turn, influence the beam’s spectral
composition.

In this paper, we tackle the possibility of having spectral
switches interacting with stochastic light beams in optical
systems composed of several alternating layers of positive-
(PPMs) and negative-phase materials (NPMs) [8,9]. NPMs,
unlike PPMs, are still considered as anomalous media, in
which the dot product of a Poynting vector s and the wave
vector k is negative, that is, s · k < 0, and the energy flows in a
direction opposite to the direction of wave front’s evolution [9].

Recently, general aspects of propagation of random fields
in PPMs and NPMs were treated by the authors [10]. It was
found, in particular, that the major statistical properties, such
as spectral density, states of coherence, and polarization of
a beam may exhibit an anomalous evolution on interaction
with layered PPM/NPM media. For example, the degree of
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coherence of a beamlike field may decrease after passing
through the NPM/free space interface, unlike on propagation
in free space, where it usually grows with distance from the
source [11].

In this paper, we explore the subject of correlation-induced
spectral changes and switches in stochastic beams on passing
through several alternating layers of PPMs and NPMs. We
confine ourselves to scalar theory of beamlike stochastic fields
and demonstrate the results using Gaussian Schell-model
beams, being very broad class of such optical fields. Since
the materials that exhibit negative-phase phenomenon can be
practically synthesized so far only in the regime of quite signif-
icant absorption, we also include the relating mechanism in our
study.

We find that on propagation in a layer of either a PPM
or a NPM for a sufficiently long distance, the blue shift
of the beam spectrum is generated. However, if the beam
impinges on the PPM/NPM interface, the red shift is generated
but is gradually mitigated by propagation in the NPM layer,
until it eventually becomes blue again. The same is valid
for the NPM/PPM interface. We show that it is possible for
a given beam and layers to find a propagation distance at
which the spectrum, after being red-shifted by the interface
and blue-shifted by propagation, comes back to its original
state. If the absorption is present in the layers, a stronger
red shift is generated by the interface and the propagation-
induced blue shift becomes insufficient to compensate for it.
Under these circumstances, the spectrum can no longer be
reconstructed.

The paper is organized as follows: in Sec. II, we provide
the theory of propagation of spectral density in materials with
arbitrary refractive and absorptive properties and describe the
layered optical system that we use for illustrating spectral
shifts and switches; in Sec. III, we give a numerical example
dealing with a Gaussian Schell-model beam with initial narrow
Gaussian spectral composition; and in Sec. IV, we summarize
our findings and outline possible applications.

II. THEORETICAL ANALYSIS

We begin by a brief introduction of the media in which
spectral switches in optical fields are demonstrated. Suppose
that the layers of the PPMs and the NPMs are confined in
planes transverse to the direction z, coinciding with axis of
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FIG. 1. Illustrating the layered medium arrangement.

beam propagation. Although our theoretical analysis is valid
for any combination of layers, we are interested here in a
particular setup which was previously used by Pendry [12]
in his well-known paper on perfect imaging (see Fig. 1). For
our purposes, such a system contains enough layers, all having
proper width proportions, to illustrate various spectrum-related
phenomena.

The ABCD matrices for propagation in a medium at
distance l and for passage through a boundary with refractive
indexes n1 and n2 are well known [13]:[

A B

C D

]
a

=
[

1 l

0 1

]
, (1)

[
A B

C D

]
b

=
[

1 0
0 n1/n2

]
. (2)

Then a system in Fig. 1 in which the PPM of length l1,
NPM of length l2, and PPM of length l3 are combined can
be described as a product of corresponding matrices which,
after simplification, reduces to the form[

A B

C D

]
=

[
1 l1 + l3 + l2

np

nn

0 1

]
. (3)

Let us now assume that fluctuations in the beam generated
in the source plane z = 0 are statistically stationary in the
wide sense and hence may be described with the help of the
cross-spectral density function [11]

W (0)(x1,y1,x2,y2,z = 0; ω) = 〈E(0)∗(x1,y1,z = 0; ω)

×E(0)(x2,y2,z = 0; ω)〉, (4)

where ∗denotes complex conjugate and 〈〉 stand for the
average over the ensemble of monochromatic realiza-
tions [11]. Then, according to the generalized Huygens-
Fresnel principle, the cross-spectral density function at dis-
tance z from the source plane can be found from the
integral [14]

W (x1,y1,x2,y2,z; ω)

= |K|2
(2πB)2

exp (2Kiz)
∫ ∫ ∫ ∫

exp

{
− iA

2B

[
K

(
x ′2

1 + y ′2
1

)

−K∗(x ′2
2 + y ′2

2

)]}
exp

{
i

B
[K(x1x

′
1 + y1y

′
1)

−K∗(x2x
′
2 + y2y

′
2)]

}
exp

{
− iD

2B

[
K

(
x2

1 + y2
1

)

−K∗(x2
2 + y2

2

)]}
W (0)(x ′

1,y
′
1,x

′
2,y

′
2,z = 0; ω)

× dx ′
1dy ′

1dx ′
2dy ′

2. (5)

Here K = Kr + iKi is the wave number in the medium such
that Kr = knr , k being the wave number in free space, nr

being the real index of refraction, and Ki being the parameter
characterizing gain (Ki > 0) or absorbtion (Ki < 0). In what
follows, we will be interested in evaluation of the normalized
spectral density of the beam at distance z � 0 from the
source plane and at any transverse location (x,y) given by the
expression [11]

SN (x,y,z; ω) = W (x,y,x,y,z; ω)∫ ∞
0 W (x,y,x,y,z; ω)dω

. (6)

By substituting from Eq. (3) into Eq. (5) and using the
result in Eq. (6), one can trace the evolution of the spec-
tral density in the system of interest. Further, the shifted
central frequency of the beam can be found from the
expression

ω1 =
∫ ∞

0 ωW (x,y,x,y,z; ω)dω∫ ∞
0 W (x,y,x,y,z; ω)dω

. (7)

The difference ω1 − ω0 is called the spectral shift, which is
called blue shift if this value is positive and red shift if it is
negative.

III. NUMERICAL EXAMPLES

In order to illustrate various possibilities for spectral
changes and shifts numerically, we employ, as the beam
model, the isotropic Gaussian Schell-model beams [11]. The
cross-spectral density matrix of the beam in such a source
plane z = 0 has the form

W (0)(x ′
1,y

′
1,x

′
2,y

′
2,0; ω) = I0(ω)exp

(
−x ′2

1 + y ′2
1 + x ′2

2 + y ′2
2

4σ 2

)

× exp

(
− (x ′

1 − x ′
2)2 + (y ′

1 − y ′
2)2

2δ2

)
,

(8)

where the values of the parameters must obey the beam condi-
tions [11]. We assume that the initial spectral composition is a
single Gaussian spectral line, that is,

I0(ω) = exp

(
− (ω − ω0)2

2ω̄2

)
, (9)

being centered at frequency ω0 and having rms width ω̄2. By
substituting from Eqs. (8) and (9) into Eq. (5) and evaluating
the integrals, we find that (see also Ref. [14])

W (x1,y1,x2,y2,z; ω)

= I0(ω)|K|2δ4e2Kiz

B2(4|g|2 − 1)
exp

[
− iD

2B

[
K

(
x2

1 + y2
1

)
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−K∗(x2
2 + y2

2

)]]
exp

[
− δ2K2g∗(x2

1 + y2
1

)
B2(4|g|2 − 1)

]

× exp

[
δ2|K|2(x1x2+y1y2)

B2(4|g|2−1)

]
exp

[
−δ2K∗2g

(
x2

2 +y2
2

)
B2(4|g|2−1)

]
,

(10)

where

g = 1

2
+ δ2

4σ 2
+ i

AKδ2

2B
. (11)

Finally, Eq. (10), if used in Eq. (6), provides the result for
the spectral density at any position within the beam which
passes through the layered medium of Fig. 1. We now evaluate
this result numerically and demonstrate it via a number of
curves. The following values of the parameters are chosen
(otherwise different values are indicated in figure captions):
np = 1, nn = nr + ini = −1, σ = 3 × 10−3 m, δ = 10−5 m,
ω0 = 1015 rad/s, and ω̄ = 0.1ω0.

To illustrate the typical switches in the spectrum, we show
in Fig. 2 the spectra of the propagating beam [see Eq. (6)],
on optical axis, at five transverse planes: z = 0, 0.5, 1, 1.5,
and 2 m from the source. One can clearly see from this figure
that the alternation of blue shift and red shift of the original
spectrum occurs after the beam passes through the interface
between the PPM and the NPM layers.

Figures 3 and 4 show the behavior of the central frequency
ω1 [see Eq. (7)] of the propagating Gaussian Schell-model
beam through the layered medium with different values of
rms beam width σ (Fig. 3) and of the rms coherence width
δ (Fig. 4). From these figures, we see that different values of
source parameters significantly influence the resulting values
of the central frequency when the beams passes through the
medium. In particular, lower values of the rms beam width σ

and the rms coherence width δ imply faster spectral changes
with propagation distance. Also, for the layered medium
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FIG. 2. Spectral changes in Gaussian Schell-model beams on
propagation in layers of PPM and NPM.
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FIG. 3. Spectral changes in Gaussian Schell-model beams on
propagation in layers of PPM and NPM for several values of rms
beam width.

of interest, it is possible to retrieve the original value of
the cental frequency of the propagating beams at certain
distances (z = 1 m, z = 2 m). As was shown by the authors
previously [10], other statistical properties of such beams (for
instance, the degrees of coherence and polarization) may also
be reconstructed in such optical arrangement.

Due to the fact that in practice the materials that induce
negative refraction of light are highly absorptive, it is necessary
to investigate how absorption might affect the spectral shifts
and switches. As we demonstrate by all of the following
numerical examples, the absorption in the NPM material
induces stronger red shifts compared to a lossless NPM
material with the same nr . In particular, in Fig. 5 we show
the behavior of the central frequency ω1 of a typical Gaussian
Schell-model beam propagating through the layered medium
with absorptive NPM layer for several values of ni . In
this case, in the interval z ∈ [0.5, 1 m] the beam’s spectrum
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FIG. 4. Spectral changes in Gaussian Schell-model beams on
propagation in layers of PPM and NPM for several values of rms
coherence width.
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FIG. 5. Influence of absorption in layers of PPM and NPM on
spectral changes in Gaussian Schell-model beams.

exhibits red shifts faster for greater values of ni due to two
mechanisms acting at the same time: focusing induced by
the PPM-NPM interface and absorption of the NPM. After
reaching a minimum turning point, the central frequency
of the beam recuperates and reaches its second maximum
point somewhere in the interval z ∈ [1, 1.5 m]. The value of
the second maximum is lower than that of the first, since
diffraction and absorption now compete. Then in the interval
z ∈ [1.5, 2 m], the central frequency continues to decrease but
with a slower rate since only focusing caused by the NPM-PPM
interface matters.

In Fig. 6, we show the on-axis spectra at the five transverse
planes of our setup, z = 0, 0.5, 1, 1.5, and 2 m from the source,
for the case when ni = −10−6. We can see that in the presence
of absorption only single spectral switch (from blue shift to
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FIG. 6. Spectral changes of Gaussian Schell-model beams on
propagation in layers of PPM and NPM with absorption.

red shift) is present; the other one is suppressed because of
absorption. This result is in striking difference with that shown
in Fig. 2 where the beam passes through the lossless NPM layer
and its spectral direction switches twice and has the ability to
reconstruct.

IV. CONCLUDING REMARKS

In summary, we have studied the effect of the NPMs on
the spectral changes in stochastic beamlike fields. For our
study, we employed the perfect lens arrangement with two
layers of PPM and one layer of NPM. Such configuration
provides a very convenient mechanism for analysis of beam
propagation in PPM and NPM and its interaction with both
interfaces, that is, PPM/NPM and NPM/PPM. We have found
that on propagation in either PPM or NPM a blue shift is
always introduced, but the boundary between the PPM and
NPM always introduces a spectral switch; that is, at that plane,
the spectrum changes the direction of the spectral shift from
blue to red. The turning points of the spectral changes closely
depend on the parameters of the source. In the situation when
the NPM medium is lossless, it is possible to recover the
original spectral composition of the beam.

We have also investigated the effect of absorption in the
NPM layer on the spectral changes and switches, finding that
absorption can suppress and eliminate some of the switches.
This phenomenon is due to the fact that increasing absorption
in the NPM material helps in producing the strong blue shift
and that the red shift due to the interface cannot compensate
for it.

There are several potential applications of our findings.
First of all, the very possibility of spectral recovery entails
useful practical implementation. In a typical optical system,
light propagates through free space between optical elements.
Even though free-space propagation always induces blue
shift, it appears possible to turn the spectrum back to its
original value by putting a NPM between the two optical
elements. By adjusting the position or the width of the
NPM, we may retrieve the original spectrum, at least in the
case when absorption is not significant. For example, with
NPM with absorption ni = 10−4, we may retrieve the original
spectral composition at around z = 1.9 m (see Fig. 5). More
generally, the fact that the spectrum of light changes in NPM
in a predictable fashion and can be controlled, to a large
extent, via the choice of the source parameters and widths
of PPM/NPM layers may be very helpful for development
of spectrum-selection optical interconnects [15], spectrally
encoded information transfer [16], and image formation [17].
Moreover, an entirely new class of tunable metamaterials [18]
may be introduced based on our study, in which tuning is
performed entirely via the geometry of the layers. For instance,
the order and the thickness of the layers with fixed refractive
and absorptive properties can be chosen for fine-tuning of
the spectral density, hence layers of different homogeneous
metamaterials can be viewed as an effective heterogeneous
metamaterial.
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