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Light in materials with periodic gain-loss modulation on a wavelength scale
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We analyze light-wave dynamics in artificial materials characterized by periodically modulated gain or loss on
the wavelength scale. The study of the temporal dispersion in one-dimensionally modulated materials predicts
mode-locked states and superluminal light propagation regimes in the parameter regions close to the locking
regions. The study of spatial dispersion for a two-dimensional gain-loss modulation predicts nontrivial beam
propagation effects such as self-collimation, angle-sensitive gain, and negative diffraction in such gain-loss-
modulated materials.
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I. INTRODUCTION

It is well known that light propagation through materials
with periodically modulated indexes of refraction on the
wavelength scale, the so-called photonic crystals (PCs), shows
unusual properties. The best-known effects in PCs are related
to modification of the temporal dispersion: the appearance
of band gaps in the frequency domain and the subluminal
propagation close to the band gaps [1]. The spatial propagation
of monochromatic beams is also affected in PCs and results
in recently discovered effects such as self-collimation [2],
superrefraction [3], focalization [4], and spatial filtering [5]
in at least two-dimensional (2-D) PCs, that is, in materials
with a 2-D modulation of the refraction index.

Curiously, the seemingly analogous artificial materials,
where not the refraction index but rather the gain-loss profile is
periodically modulated on the wavelength scale, do not enjoy
considerable attention compared with PCs, although such
materials have become more and more technologically acces-
sible [6]. The light propagation in gain-loss-modulated (GLM)
materials has been studied only in the case of modulation in
one spatial dimension (1-D), in relation with the so-called
distributed feedback lasers [7]. Recently, wave dynamics in
1-D parity-time-invariant potentials has been considered [8],
which are models for photonic systems with a combined gain
and refraction index modulation. Only very recently, some
of us initiated a study of the GLM for 2-D modulation [9],
which even in the simplified paraxial approximation predicted
interesting properties of beam propagation.

Here we initiate a systematic study of such 1-D and 2-D
GLM artificial materials using the plane wave expansion
(PWE) method as a basic tool. The PWE method is widely
used to calculate the band structure of photonic crystals—here
we adapt this method to the specifics of GLM materials. The
method allows calculating the temporal and spatial dispersion
curves as well as the angular gain profiles without any
approximation and any restriction; that is, it is valid for
modulation periods of the order of the wavelength since it
is based on the full Maxwell equations.

First, we present the model based on the Maxwell equations
with a modulated gain-loss function and derive the PWE
model. Next, we perform an analytical treatment on a simple
approximation (with one spatial dimension, truncated to two

modes) and show the basic behavior reported. Finally, we make
full plane wave expansions, calculate the band diagrams in
both 1-D and 2-D cases, and prove the predicted effects: the
mode locking and superluminal light dynamics for the 1-D
case and beam self-collimation, angle-sensitive gain, and beam
focalization for the 2-D case.

II. MODEL

We start from the wave equation as directly obtained from
the Maxwell equations, which, in terms of the electric field,
reads

�∇ × �∇ × �E = −ε(�r)
1

c2

∂2 �E
∂t2

. (1)

Here ε(�r) is the relative electric susceptibility of the material,
which consists of a real part (corresponding to the refractive
index) and an imaginary part (corresponding to the gain or
loss). In general, the ratio between the real and imaginary parts
of such susceptibility depends on the materials and conditions.
However, in order to report the basic effects, we restrict the
analysis to the GLM case, where ε(�r) = 1 + im(�r). We note
that the effects reported persist also for a small modulation
of the refractive index. Moreover, we consider here, without
loss of generality, the case of balanced mean gain or loss:∫

m(�r)d�r = 0. The general case (e.g., with gain) can be
obtained from the balanced case by adding the corresponding
net gain exponent.

We consider a 2-D modulation of the gain-loss profile and
expand the susceptibility in terms of multiples of the two in-
verse lattice vectors �q1 and �q2. From Eq. (1), we directly obtain
the equations for the expansion coefficients of the unipolarized
electric field E(�r,t) = e−iωt+i�k�r ∑

j

∑
l
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ajl

[
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c2

]
= −i
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∑
p

∑
s

aj−p,l−smps,

(2)

which is the main system of equations to be solved. We
note that Eq. (2) is analogous to the PWE for PCs; however,
the coupling coefficients are imaginary in the case of GLM
materials.
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The solvability condition of Eq. (2) allows us to calculate
the dispersion relations: ω(k). As the coupling coefficients
in Eq. (2), contrary to the PC case, are not real valued,
the coupling matrix is non-Hermitian, and the eigenvalues
of the problem are not necessarily real valued. The real parts
of the eigenfrequencies, as in the case of PCs, correspond to
the frequencies of the Bloch modes, and the imaginary part
of the frequency is the net gain or loss of the corresponding
Bloch mode.

III. TWO-MODE CASE

Before starting the numerical study of the complex dis-
persion in 1-D and 2-D, let us get some insight into what
can be expected by maximally simplifying Eq. (2), that is,
by only retaining two interacting modes. This case can be
mathematically rigorously derived from Eq. (2) for a 1-D
harmonic and weak gain-loss modulation: m(�r) = m0 cos(qx),
expanding by smallness parameter |m0| = O(ε), ε � 1. Close
to degeneracy point k0 = q/2, the amplitudes a0 and a1 of the
field components with propagation wave vectors �k and �k − �q
fulfill (

�k − �ω

c

)
a0 − i

m0k0

2
a1 = 0, (3a)

(
−�k − �ω

c

)
a1 − i
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2
a0 = 0, (3b)
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FIG. 1. (Color online) (a) Dispersion curves (real part of the
frequency) and (b) gain-loss profiles (imaginary part of the frequency)
at the vicinity of the cross-point of the dispersion curves of two
dissipatively coupled eigenmodes (the dispersions of uncoupled
modes are shown by the dashed lines). The parameters used are
q = 1 and m0 = 0.15.(c–f) Mode modulus A (bold line) and phase
ϕ (thin line) of the two eigenmodes (solid and dashed lines) for
different parameters for k/q = 0.42; k/q = 0.46, that is, in unlocked
area but close to the locking boundary (kl = k0 − m0k0/2 = 0.426q);
k/q = 0.48; and k/q = 0.5, that is, at the middle of the locking area,
respectively.

where �k = k − k0 and �ω = ω − ω0 (ω0 = qc/2) are devi-
ations from the degeneracy point.

The set of equations (3) has a simple analytic solvability
condition:

�ω = ±c

√
�k2 − m2

0k
2
0

4
, (4)

which is the temporal dispersion curve, as represented in
Figs. 1(a) and 1(b). It differs crucially from those typically
appearing in the theory of PCs: the dispersion curves of the
uncoupled modes (dashed curves) do not “push” mutually and
do not form the band gap around their cross-points but rather
pull one another and lock to some common frequency. The
width of the locking area is m0q/2, as follows from Eq. (4),
and the maximal net gain that takes place for �k = 0 is
ωIm = cm0q/4. Two different Bloch modes exist for each k, as
shown in Figs. 1(c)–1(f). At the degeneracy point, the intensity
profiles of the corresponding Bloch modes are mutually shifted
by a half period: The maxima of the field intensity of the
amplifying (decaying) mode falls into the gain (loss) region of
the gain-loss profile [see Fig. 1(f)]. The phase shift between
Bloch modes decreases moving away from the degenerated
point. We note [see also Fig. 1(e)] that the Bloch modes are
not orthogonal in all the mode-locking area (except for at the
degeneracy point).

We note that outside but close to the locking region, the
dispersion curves are strongly tilted, with the local slopes
approaching infinity at the boundary of the locking area.
This means that the light propagation (in a group velocity
sense) becomes superluminal for particular frequencies. The
eigenmodes present steep phase variations in a stairwise
manner close to the boundary of the locking area [see Fig. 1(d)]
and smoothly far away from the boundary [Fig. 1(c)]. Inside the
locking region, the phase makes π jumps, indicating formation
of standing waves [Fig. 1(e)].

The described behavior is universal at the vicinity of
the cross-point of two dispersion curves, when the coupling
between the modes is of dissipative character. The coupling of
modes in GLM materials is indeed dissipative, in contrast to the
reactive coupling of modes in the case of PCs, as follows from
Eq. (2). Next, we check this generic mode interaction figure
with the full PWE method, that is, without any simplifications
or approximations.

IV. ONE-DIMENSIONAL GLM

We used stepwise gain-loss geometry, as illustrated in the
inset in Fig. 2. We took care that the net gain was equal to zero;
therefore we chose equal gain and loss in two subsequent
layers. The dispersion diagram, including the lowest four
photonic bands, is shown in Fig. 2.

The dissipative coupling of modes, as expected, results
in mode-locking areas (instead of band gaps, as in the PC
case). The width of the corresponding mode-locked regions
corresponds well to the value evaluated analytically in the two-
mode approximation, that is, to the corresponding coefficient
in the harmonic expansion of the gain-loss profile mi . For
example, the locking between the first and second photonic
bands follows from m1, the locking region between the third
and fourth bands follows from m3, and so forth. The locking
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FIG. 2. (Color online) Dispersion curves of a 1-D GLM material
consisting of alternating layers of gain m = −0.3 and loss m = 0.3 of
equal length, a/2, as shown in the inset. (a) Real part of the frequency
of the first four Bloch modes. (b) Imaginary part of the frequency of
the same modes. Calculations are obtained by PWE using 1001 plane
waves. Frequency is expressed in reduced ω/qc units, where q is
2π/a.

between the second and third bands does not occur for the
particular gain-loss profile chosen (where the gain and loss
areas are of equal thickness) since m2 = 0.

FIG. 3. (Color online) Dispersion curves of a 2-D GLM consist-
ing of a square lattice of lossy cylinders of radius R, separated by a dis-
tance a, embedded in a background medium with gain; see the inset.
(a) Real part of the frequency of the lowest six modes in TM
polarization. (b) M point zoom with the first four modes. (c)
Imaginary part of the frequencies of the modes depicted in (b).
Calculations are obtained by PWE using 361 plane waves in the
expansion. The parameters used are as follows: loss m = 0.3 for the
cylinders, gain otherwise m = −0.118, R = 0.3a (balanced gain and
loss). Frequency is in terms of ω/qc.

V. TWO-DIMENSIONAL GLM

We considered a periodic lattice of circular areas of gain,
with a square symmetry, as illustrated in the inset in Fig. 3.
The lossy cylinders are embedded in a background with gain
which is chosen to preserve zero mean net gain in the unit
cell of the crystal. The band diagram, including the lowest six
Bloch modes, is shown in Fig. 3. We adapt the conventions
from the theory of 2-D photonic crystals; that is, we plot
the eigenfrequencies along the �XM� path. We chose TM
polarization; however, we note that TE polarization leads to
qualitatively similar mode-locking behavior.

The basic picture in the 2-D case is that the modes with
the wave vectors lying at the boundaries of the Brillouin zones

FIG. 4. (Color online) (a) Two-dimensional plot of the isofre-
quency lines of two lowest Bloch modes for 2-D GLM, as described
in Fig. 3. The doted curves display the first Bloch mode and the solid
curves display the second Bloch mode. The isolines correspond to real
reduced frequency values of ωRe/qc = 0.55,0.60,0.665 (where the
latter is the self-collimation frequency). The inset shows the isofre-
quency lines of the first Bloch mode for ωRe/qc = 0.65,0.665,0.68,
corresponding to negative, zero, and positive diffraction, respectively.
(b) Gain-loss profile (imaginary part of the reduced frequency) of the
first Bloch mode. (c) Angular gain profile of the lower order mode
for three values of the wavevector modulus: 0.5q (solid blue curve),
0.51q (dotted green curve), 0.525q (long-dashed green curve), 0.6q

(short-dashed orange curve), and
√

2q/2 (red solid curve).

013828-3



MURIEL BOTEY, RAMON HERRERO, AND KESTUTIS STALIUNAS PHYSICAL REVIEW A 82, 013828 (2010)

mutually lock and that the net amplification occurs in the
locking regime. The effect is extremely strong at the edges of
the Brillouin zones, where several (in our case four) modes are
in resonance, and lock to a common frequency, as shown in
Fig. 3(b). This means that the gain becomes highly directional
and is concentrated around particular angles corresponding to
the symmetry directions of the structure.

Figure 4 represents a complete 2-D plot of the frequency as
well as of the gain profile for the lowest Bloch modes in the
area around the corner of the Brillouin zone. The isofrequency
lines belonging to the first and second photonic bands nearly
touch one another; that is, different from the case of PCs, no
angular band gaps appear.1 The angular gain area shows a sharp
peak, which means that radiation with a particular frequency,
represented by the isofrequency line crossing the corner
of the Brillouin zone, shows a high angular directionality
of the gain. The radiation on the other, higher or lower
frequencies shows two high-gain regions placed symmetrically
with respect to the diagonal direction M [Fig. 4(c)]. We
note that the spatial dispersion curves k||(k⊥) can become
straight between the areas of high gain, which indicates
self-collimation [inner dotted line in Fig. 4(a)], or even convex,
which indicates negative diffraction [inset in Fig. 4(a)]. The
latter case can result in focalization of the beam behind the
GLM media.

VI. CONCLUSIONS

We considered 1-D and 2-D modulations of the gain-loss
profile on the wavelength scale and calculated the dispersion

1The isofrequency lines of the neighboring bands touch when two
modes are interacting (at the boundaries of the Brillouin zone), in
accordance with Eq. (4) At the corners of the Brillouin zone, where
several modes are in resonance and in efficient interaction, a small
split is observed–the effect is beyond the scope of the present study.

characteristics of the system. The general result is drastically
different from that in PCs: Whereas in PCs, the interaction
deforms the dispersion so that there appear well-known band
gaps, in the case of GLM, the band gaps do not appear, but
instead, frequency-locked areas do. The dispersion curves,
either temporal or spatial, deform therefore in a different way
than in PCs. As a result, in 1-D GLMs appear superluminal
regimes (in PCs, subluminal). In 2-D cases, similar to pho-
tonic crystals, also self-collimation regimes appear. However,
unlike photonic crystals, in the 2-D GLM case, highly
directional gain is possible. In our investigated geometries,
the high-gain directions are along the diagonals of the square
lattice.

We note one more interesting result following from the
isolines in 2-D (Fig. 4): The isofrequency lines close to the
maximum angular gain area can develop positive or negative
curvatures [see Fig. 4(a)]. The case of positive curvature
(frequency slightly larger than that of self-collimation fre-
quency) is especially interesting as the positive curvature
corresponds to negative diffraction. This means that the
radiation with corresponding frequencies, after amplification
in the GLM, can focalize behind. This effect can be of
large technological importance and is to be investigated
separately.

We did not calculate the band diagrams in 3-D; however,
the main conclusions are expected to remain: the appearance
of narrow-gain areas around the corners of the 3-D Brillouin
zone.
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