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We theoretically investigate the supercontinuum generation (SCG) on the basis of modulational instability (MI)
in liquid-core photonic crystal fibers (LCPCF) with CS2-filled central core. The effect of saturable nonlinearity
of LCPCF on SCG in the femtosecond regime is studied using an appropriately modified nonlinear Schrödinger
equation. We also compare the MI induced spectral broadening with SCG obtained by soliton fission. To analyze
the quality of the pulse broadening, we study the coherence of the SC pulse numerically. It is evident from
the numerical simulation that the response of the saturable nonlinearity suppresses the broadening of the pulse.
We also observe that the MI induced SCG in the presence of saturable nonlinearity degrades the coherence of
the SCG pulse when compared to unsaturated medium.
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I. INTRODUCTION

The supercontinuum (SC) is the generation of intense
ultrafast broadband high coherent pulses spanning over a few
octaves which emerge as the technology of choice for a future
generation of broadband source [1,2]. With the rapid advance-
ment in photonic crystal fiber (PCF) technology, SC gains
momentum and evolves as one of the most elegant and dramatic
effect in optics with a wide range of potential applications
in various fields such as frequency metrology, biomedical
sensors, optical coherence tomography, wavelength division
multiplexing, etc. [3–7]. PCFs with a high degree of flexibility
in the designing of its micro-structured cladding endowed
with significantly tailorable modal properties like adjustable
zero dispersion, effective mode area, and nonlinear parameter
are a potential customer for generating SC [3,8]. Since the
first observation of supercontinuum generation (SCG) in PCF
by Ranka et al. [9], extensive experimental and theoretical
efforts have been devoted to identify the underlying spectral
broadening mechanisms. The effects of the input pulse such
as pulse energy, peak power, pulse duration, and central
wavelength on the SCG is the subject of high interest that
has been thoroughly investigated [1,2]. Also, the nonsilica
technology such as, AS2Se3, SF6, TF10, etc., has now emerged
as the most exciting prospects in the development of PCFs
[3], as they amount to increase the broadband generation.
The detailed physical aspects of SCG can be interpreted by
means of interplay of various nonlinear effects like self-phase
modulation, Raman scattering, and four wave mixing (FWM).
Among the various nonlinear phenomena, a key nonlinear
process known as a soliton was proposed by Hasegawa and
Tapert in [10], which arises through the balance of anomalous
dispersion and self-phase modulation, plays an essential role
in the SCG mechanism [10]. A complete theory of SCG by
making use of soliton related effects was proposed by Husakou
et al. [11], which has been confirmed by experiments and
numerical simulations in the femtosecond regime [4]. Among
the soliton related effects, two vital aspects of a high degree of
importance are: the soliton frequency shift induced by Raman
scattering and emission of dispersive radiation [12].

SCG, the means of generating an ultra broadband spectrum,
is typically achieved by two mechanisms, namely, soliton
fission and modulation instability (MI) [13]. The former leads
to the generation of an ultra broadband spectrum, where

pulse breaking arises mainly due to higher-order effects of
soliton-related dynamics such as higher-order linear dispersion
terms and nonlinear Raman scattering. A higher order soliton
with soliton order N breaks up into N constituent red shifted
solitons with varying group velocities. In principle, the energy
of the fundamental soliton does not change, but it emits blue-
shifted nonsolitonic radiation known as dispersive radiation
at a wavelength determined by phase matching condition as
a result of perturbation by third- and higher-order dispersion.
The distinct spectral fractions arise due to the existence of
multisolitons with different frequencies resulting in a broad
spectrum as a consequence of nonlinear interactions between
a soliton and blue shifted continuum [12,14,15]. The physical
phenomenon of soliton fission and spectral broadening of
pulse in fiber have been already investigated in detail. For
instance, in 1985, Dianov et al. [16] discovered the soliton
Raman self-scattering effect. The authors reported a Raman
self-pumping of the Stokes frequency spectral components of
the same pulse by a sufficiently powerful (capable of producing
N = 30 soliton) input into a single-mode quartz optical fiber
and a generation of the broad soliton supercontinuum during
the stimulated Raman self-scattering of N = 30 wave packet.
In 1986, Mitschke and Mollenauer reported an increasing red
shift of the center frequency of a sub-picosecond soliton pulse
with increasing power in standard single-mode, polarization
maintaining fiber [17]. Following the above theoretical pre-
diction and experimental realization of broadband continua
based on soliton effects, the latter part of the decade saw
extensive investigation of this mechanism for broadband
generation using a variety of pump laser sources and pump
durations.

The latter is the MI induced SCG (MI-SCG), one of the
fascinating manifestations of MI is a way of achieving an ultra
broadband spectrum [18,19]. MI, an instability mechanism
driven by soliton dynamics, was first proposed by Hasegawa
and Brinkman in 1980 [20]. In principle, MI can be achieved
by a small modulation in amplitude or phase in the presence
of noise or some other perturbation. The MI can be interpreted
as a FWM process phase matched through nonlinear and
dispersive effects, resulting in the exponential growth of the
Stokes and anti-Stokes sidebands at the expense of a two
pump photon [21]. In addition to noise induced MI, it is also
possible to initiate the process by feeding with a countersignal
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at a frequency separation from the pump lying within the
gain window. This way of achieving MI by means of a
co-propagating signal was proposed by Hasegawa in 1984 [22]
and verified experimentally by Tai et al. [23]. This mechanism
is actually responsible for a controlled MI process that allows
manipulation and enhancement of the SCG process. Early
investigations of MI-SCG were realized through conventional
fiber in the region of low dispersion regime to enhance the
broadband spectrum; later the ideabecame effectively adopted
to achieve the same in PCF. For instance, it was shown
in 1983 that a continuum spectrum can be attributed by
the superposition of sequential stimulated Raman scattering
and FWM processes in a multimode fiber using two pump
wavelengths by reducing pump power [24]. Also, in 1987,
Serkin investigated the structure of the field characteristic
formed in the region of maximal self-compression of N -soliton
wave packet in a fiber. It was shown that the noise component
of the field leads to a decay of the bound states of the solitons,
to stochastic instability of the N -soliton pulse, and to the
so-called soliton noise generation. He examines the possibility
of an experimental realization of the decay of the output
pulses from a soliton laser into ‘colored’ envelope solitons:
‘long-lived’ (in comparison with length scale of the dispersive
spreading) nonlinear wave packets whose spectral center of
gravity undergoes a frequency shift [25,26]. This possibility
appears when an auxiliary fiber, with a chromatic-dispersion
spectrum shifted to the long-wave direction, is used. This
soliton compression, fragmentation, and spectral shifting are
important mechanisms contributing to the long wavelength
extension of SCG. Since most of the above investigations have
used soliton fission for inducing SCG, in this paper, we pursue
another possibility of SCG using MI.

The SCG process relies more on the optical nonlinearities
associated with the picosecond and sub-picosecond scale
pulses. Among the many nonlinear effects, stimulated Raman
scattering and parametric FWM play major contributions in
the SCG for pumping picoseconds and continuous wave in
the anomalous group velocity dispersion (GVD) regime [3].
For the case of ultrashort pulses typically in the femtosecond
regime, higher-order dispersion and higher-order nonlinear
effects such as third-order dispersion, fourth-order dispersion,
Raman effect, self-steepening, are measured to play an increas-
ingly important role in the spectral broadening process [1,12].
The Kerr nonlinearity is considered to be the decisive agent in
most of the common nonlinear phenomena such as self-phase
modulation, the significant contender of many of the spectral
broadening process observed in various domains. It is worth
noting that Kerr nonlinearity can only predict the nonlinear
response of the medium for low input power. But in reality,
for the case of higher input power, higher-order nonlinear
susceptibilities will inevitably come into play and eventually
saturate the nonlinear response of the medium [18,21]. Thus
at higher peak power Kerr nonlinearity is not solely going
to predict the associated nonlinear effects, but requires a
higher-order saturation effect to give a clear picture of the
evolution of the SC spectrum. From our extensive literature
review, in almost all the MI cases for SC, only the pure Kerr
nonlinearity has been exploited. But, so far no convincing
work has been reported yet about the impact of higher-order
nonlinearity in the SC spectrum.

In recent years, much attention has been drawn toward
liquid core photonic crystal fibers (LCPCF), due to the
enhanced nonlinear effects compared to the silica core PCFs.
The incorporation of liquids in the core region of PCF leads
to unique optical properties such as ultra-flattened dispersion,
broadband single-mode guidance, high birefringence, large
nonlinearity, etc. [27–29]. Since the nonlinearity of CS2 filled
LCPCF is nearly 100 times larger than that of silica core PCF,
the quintic nonlinearity manifests even at relatively lower peak
power and subsequently leads to its saturation. For instance,
Kong et al. [30] had investigated the quintic nonlinearity of the
liquid CS2, its apparent from their prediction that the quintic
nonlinearity plays a vital role in the femtosecond regime. Since
this quintic nonlinearity tends to saturate, one can expect
a rich variety of information about the impact of saturation
in the SCG mechanism and the subsequent influence on the
coherence of the spectrum using LCPCF. The scenario that has
not been addressed yet to our knowledge and thus seeds the
motivation “what would happen to SCG if the light propagates
in LCPCF with saturable nonlinear response?”

In this article, we have theoretically analyzed the mech-
anism of spectral broadening with the effect of saturable
nonlinear response for the case of ultrashort pulses. The
scalar effective index method (SEIM) has been employed
to calculate the system parameter such as dispersion and
nonlinearity of LCPCF. In order to investigate the MI-SCG in
CS2-filled LCPCF, we have utilized the well-known split-step
Fourier method (SSFM) to solve the modified nonlinear
Schrödinger equation (MNLSE). Further, considering LCPCF
in an anomalous-GVD regime, we have theoretically examined
the significance of a saturable nonlinear response in the
MI-SCG. For better exploration, we have also performed
coherence analysis and the quality of the generated spectrum is
compared for both saturated and unsaturated cases in LCPCF
through shot-to-shot noise perturbation in the pulse.

II. THEORETICAL MODEL

To understand the mechanisms leading to the SCG, wave
propagation in a single-mode fiber with higher-order disper-
sion and saturable nonlinearity (SNL) may be described by the
following MNLSE [18,21]:

∂U

∂z
+

4∑
n=2

βn

in−1

n!

∂nU

∂tn
− iγ |U |2

1 + �|U |2 U = 0, (1)

where U is the slowly varying amplitude of electrical-field
envelope, βn is the nth order of the dispersion parameter, γ is
the Kerr parameter, � = 1/Ps is the saturation parameter, and
Ps is the saturation power. In order to study the influence of
SNL on the MI-SCG for the case of the LCPCF, we consider
the fiber with a cross section consisting of a triangular lattice
of circular air holes in fused silica, with the pitch and hole
diameter take values 1.8 µm and 1.44 µm, respectively. One
of the holes is filled with the CS2 liquid, forming the core of
the fiber. The schematic diagram of LCPCF is shown in Fig. 1.
The fiber parameters are evaluated using the SEIM which is a
widely used numerical technique that provides a propagation
constant of the guided modes in PCF [8,28], with the
wavelength dependence of the refractive index of CS2 included
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FIG. 1. Schematic diagram of the liquid-core PCF with air hole
diameter d and pitch �. The core is filled with CS2 and has a diameter
equal to size of the air hole.

in the dispersion calculation. The wavelength dependence
of the refractive index of CS2 is given by [28] nCS2 (λ) =
1.580826 + 1.52389 × 10−2 × λ−2 + 4.8578 × 10−4 ×
λ−4 − 8.2863 × 10−5 × λ−6 + 1.4619 × 10−5 × λ−8, where
λ is wavelength in µm. The Kerr nonlinear coefficient γ

is calculated using the formula γ = n2ω0/cAeff , where c

denotes the speed of light, n2 is the nonlinear index coefficient,
Aeff is the effective core area, ω0 is the carrier frequency.
Numerically the effective area, Aeff , can be calculated as
in Ref. [8]. To investigate the pulse propagation in PCF,
we have numerically solved Eq. (1) using SSFM with an
initial envelope of the soliton at z = 0 given by U (0,t) =√

P0sech(t). Numerical simulations are carried out for the
input pulse at central wavelength λ0 = 1.06 µm and the pulse
width of 30 fs. The fiber parameters are β2 = −0.00041 ps2/m,
β3 = 0.00078 ps3/m, and β4 = 1.6 × 10−7 ps4/m and the
nonlinearity value is γ = 13.75 W−1m−1 for LCPCF.

III. MI INDUCED SCG IN LCPCF

Before our investigations of MI-SCG in LCPCF, it is
customary to switch off the effect of SNL for a better
understanding of the MI spectrum. For instance, our discussion
begins in such a way that the effect of SNL has been ignored,
so as to give a comprehensible picture of MI spectrum
in LCPCF. For the MI-SCG analysis, we have considered
the amplitude perturbed soliton pulse with a peak power
P0 = 400 W. Figure 2 depicts the MI-SCG spectrum for
a propagation distance of L = 0.8 cm. It is observed that
the pulse gets modulated due to noise perturbation which
is signified by the emergence of the spectral sidebands at
the initial stage of propagation due to MI process, followed
by further spectral broadening and the appearance of soliton
structure on the long wavelength edge of the spectrum after
0.5 cm. This implies that MI acts directly from the beginning
on the high-order soliton and leads to the generation of a
Stokes and an anti-Stokes component. Because of perturbation
such as higher-order dispersion and/or noise, the dynamics
departs from the recurrent behavior and results in pulse
breaking. The fascinating point to observe from Fig. 2 is
that the Stokes components emerge at shorter distances of
pulse propagation with low power, overwhelming the fact
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FIG. 2. (Color online) The SCG through MI of 30 fs pulse width
in CS2 filled LCPCF at 1.04 µm. The fiber parameters are β2 =
−0.00041 ps2/m, β3 = 0.00078 ps3/m, and β4 = 1.6 × 10−7 ps4/m
and the nonlinearity γ = 13.75 W−1m−1. The propagation length
L = 0.8 cm.

that nonlinear and dispersion values of CS2 filled LCPCF are
very large in comparison to the ordinary solid core PCF. It is
also evident from Fig. 2 that the pulse does not experience
a notable asymmetric spectral broadening, which reflects the
negligible role of higher-order effects in the chosen parameter
region which is in agreement with Demircan et al. [31]. The
evolution of such primary spectral side bands at the initial
stage of propagation will be accompanied by the emergence
of secondary sidebands after a distance z = 0.25 cm. Then
the subsequent spectral broadening is accomplished through
FWM seeded by phase matching explosively exciting new
frequencies and thus broadening the spectrum. Thus, one can
achieve a broad spectrum typically SC at a relatively short
distance of propagation using low input power in LCPCF
rather than silica core PCF. Simultaneously, we have also
analyzed the evolution of MI dynamics in time domain frome
Fig. 3. It is obvious from Fig. 3, as there is no phase matching
between linear and nonlinear effects at the beginning, that
pulse breaking is limited at the initial stage. For a relatively
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FIG. 3. (Color online) The pulse propagation through CS2 filled
LCPCF. The fiber parameters are β2 = −0.00041 ps2/m, β3 =
0.00078 ps3/m, and β4 = 1.6 × 10−7 ps4/m and the nonlinearity
γ = 13.75 W−1m−1. The propagation length L = 0.8 cm.
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higher distance typically z = 0.5 cm and above, the required
phase matching can be satisfactorily achieved and thus the
pulse breaking starts which results in the formation of ripples
in the temporal intensity profile. These ripples get spread out
with further propagation thus covering the whole spectrum,
resulting in the fine structure on the waveform.

IV. MI-SCG IN THE PRESENCE OF SATURABLE
NONLINEARITY

Here in this context, we shift our attention toward the prime
objective of the work, the effect of SNL in the MI spectrum.
Considering the PCF structure as in the preceding section,
we begin to explore the effect of SNL in the SC spectrum.
The process of MI leading to SC can be understood by the
weak perturbation of the steady state solution. The steady state
solution of Eq. (1) can be written as [14]

U =
√

P 0 exp[iφ(z)], (2)

where P0 is the input pump power and φ is the nonlinear phase
shift which can be defined as

φ(z) = γP0z

1 + �P0
. (3)

To examine the stability of the steady state solution, insert-
ing a time-dependent weak perturbation a(z,t) of frequency 	

and wave vector K , which satisfies the a � P0 and linearizing
in a(z,t), one will arrive into the dispersion relation. The
corresponding gain spectrum is given by

G(	) = 2 Im(K) = 4

√
γ̃ 2P 2

0 −
(

γ̃ P0 + β2
	2

2
+ β4

	4

24

)2

(4)

where γ̃ = γ /(1 + �P0)2. It is quite interesting to observe
that, as in the case of unsaturated nonlinearity, the third-order
dispersion is merly insignificant and does not play any role in
the gain of the spectrum. The equation offers a rich variety
of information which could be efficiently exploited in many
ways.

For the case of large negative β2 values, the higher order
dispersion effects are relatively negligible. In this dispersion
domain the SNL leads to a critical modulational frequency
as 	c = [ 4γP0

|β2|(1+�P0)2 ]1/2. In the typical operating condition of
unsaturated PCF, the required phase matching to acquire MI is
achieved through the compensation of second-order dispersion
with Kerr nonlinearity. Quite interestingly in LCPCF, the
incorporation of SNL of the medium encounters additional
phase shift to achieve the phase matching. Such a condition
leads to behaviors that qualitatively differ depending on
the magnitude of dispersion and saturation power. Thus
emphasizing the sensitivity of MI toward the saturation power
and dispersion on the MI spectrum. Since the MI bandwidth
increases as � decreases, the effect of MI can become very
strong for high saturation power. In the vicinity of the near
zero-dispersion regime, the fourth-order dispersion enters
inevitably into play. Hence in the fourth-order dispersion
dominant system, the critical modulational frequency is given
by 	opt = [ 48γP0

|β4|(1+�P0)2 ]1/2. For � = 0, it is noteworthy that the
MI gain and critical frequencies coincide exactly with the case
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FIG. 4. (Color online) The MI-SCG with saturable nonlinearity
for 30 fs of pulse width in CS2 filled LCPCF at 1.04 µm. β2 =
−0.00041 ps2/m, β3 = 0.00078 ps3/m, and β4 = 1.6 × 10−7 ps4/m
and the nonlinearity γ = 13.75 W−1m−1 with saturation power Ps =
2000 W. The propagation length L = 0.8 cm.

of unsaturated nonlinearity as discussed in Ref. [31]. Since,
the prime focus of the paper is to investigate the influence
of SNL, we have considered the PCF parameter with large
β2 value. Although the higher-order dispersion coefficients
are momentous in PCF, the role of sixth-order dispersion is
literally insignificant for MI in the given PCF structure. Hence
we limit ourselves up to fourth-order dispersion. In order to
investigate the dynamical behavior of the MI process with the
effect of SNL, we consider the same PCF parameters as in the
preceding section.

From our numerical simulation, we have obtained the
results as depicted in Figs. 4 and 5 which show the effect of
SNL for fixed saturation power Ps = 2000 W. The inclusion
of SNL, the evolution of the MI significantly changes as
illustrated in Fig. 4. As per the critical frequency condition,
due to the saturation effects, the phase matching can only
be achieved at longer distance in comparison to that of the
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FIG. 5. (Color online) The pulse propagation through CS2 filled
LCPCF with saturable nonlinearity. The fiber parameters are β2 =
−0.00041 ps2/m, β3 = 0.00078 ps3/m, and β4 = 1.6 × 10−7 ps4/m
and the nonlinearity γ = 13.75 W−1m−1 with saturation power Ps =
2000 W. The propagation length L = 0.8 cm.
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FIG. 6. (Color online) The evolution of MI phenomena for 30 fs
pulse in LCPCF with different saturable powers.

unsaturated nonlinearity. Thus the SNL certainly suppresses
the MI process as illustrated in Fig. 4. Hence, the spectral
broadening can only be obtained at longer distance when
compared to unsaturated fiber. The corresponding dynamics
of pulse breaking in time domain is portrayed in Fig. 5.
Since the phase matching between linear and nonlinear effects
is influenced by the SNL, the pulse breaking can only be
achieved at comparatively longer distance than the unsaturated
LCPCF. For better insight into the picture of MI-SCG, we
have investigated the evolution of MI for various saturation
power as in Fig. 6. In the operating conditions of saturated
nonlinearity, the optical modulational frequency not only
varies with the input power of pulse but also saturation power
as illustrated in Fig. 6. It is observed that the evolution of MI in
LCPCF is certainly suppressed by decreasing saturation power,
which means that while increasing the SNL the MI-SCG gets
suppressed. Figure 7 depicts spectral evolution of MI-SCG
in the presence of SNL with different saturation power. It is
obvious from Fig. 7 that the saturable LCPCF also shows flat
spectrum, where the spectral density at the peak varies merely
less than 10 dB over a bandwidth 800–1500 nm. It is also

800 1000 1200 1400 1600 1800
−100

−80

−60

−40

−20

0

wavelength (nm)

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

 

 

P
s
=500 W

P
s
=2000 W

FIG. 7. (Color online) SCG using MI for for different saturation
power.

observed that the spectral broadening quantitatively gets
suppressed with a decrease in the saturation power.

V. QUALITY ANALYSIS OF MI-SCG IN LCPCF

We now turn our attention to explore the quality of the
pulse, which is considered to be the essence of all broadband
generations. It is an interesting point to note that the quality
in this context has been customized to mean the coherence
of the obtained SCG spectrum. Although we limit ourselves
to investigate the MI-SCG, there exists another well known
mechanism known to our knowledge as the soliton fission,
which has been recognized as the ultimate choice of achieving
a supreme quality broadband spectrum with the highest
degree of spectral purity. For a better understanding of the
coherence and the associated spectral purity of the SCG, we
have numerically investigated SCG through soliton fission
with the same parameter as the preceding section with the
inclusion of SNL, as illustrated in Fig. 8. From Figs. 7 and 8 it
is observed that the spectral broadening in the presence of SNL
in LCPCF is almost similar in both cases. Further, for better
insight into the quality of the SCG spectrum, we have studied
the shot-to-shot coherence analysis for the generated SC to
compare the quality of the pulse. The degree of coherence
of the SC which is the measure of spectral phase stability
is qualitatively calculated by the following expression as in
Ref. [32]:

∣∣g(1)
12 (λ)

∣∣ =
∣∣∣∣ 〈E∗

1 (λ)E2(λ)〉
[〈|E1(λ)|2〉〈|E2(λ)|2〉]1/2

∣∣∣∣ . (5)

Here, the ensemble average over independently generated
SC pairs [E1(λ),E2(λ)] is represented by the angle brackets.
We applied the ensemble average of SC pairs obtained from
MI with different random quantum noise. The coherence
analysis of the SCG spectrum obtained through both mech-
anisms results in rich class of information about the quality
means of generating SCG. From our detailed numerical
analysis, we figure out the following results which govern
the entire coherence cum quality of the SCG obtained through
two well-known mechanisms, namely MI and soliton fission,
with and without SNL.
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FIG. 8. (Color online) SCG using soliton fission for different
saturation power
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The coherence of the spectrum in the absence of SNL, such
as the one indicated in Fig. 8 for the case of soliton fission
induced SCG, is 0.93, and inclusion of SNL is 0.91. It also
observed that the coherence of MI-SCG in LCPCF with the
effect of saturable nonlinear response is only 0.47, while the
unsaturable case leads to 0.5. Since the MI process is highly
sensitive to input noise, the obtained SC pulses are severely
affected by spectral phase instabilities during the propagation.
Hence, the coherence of the MI-SCG degrades significantly in
comparison to SCG generated by soliton fission. Also, we have
observed through numerical simulation that the coherence still
lowers with the incorporation of saturable response medium.

VI. CONCLUSION

In conclusion, we have investigated the dynamics of SC
pulse in CS2 filled LCPCF based on MNLSE which includes
the combined effects of Kerr-type nonlinearity and SNL in
the femtosecond regime. We have organized our investigation
of MI-SCG phenomenon by first considering the influence
of LCPCF in the MI mechanism by ignoring the saturable
response of the medium. We have compared our results with
silica core PCF and confirmed that MI-SCG in LCPCF can be

achieved at relatively short distance and at low input power.
Then the subsequent investigation proceeds in such a way to
explore exclusively the impact of SNL in the MI spectrum with
proper theoretical prediction. It is evident from our numerical
simulation that the SNL suppresses the spectral broadening
and the associated pulse breaking to achieve SCG. Also, we
have analyzed MI-SCG for different saturation power, the
obtained results show that SCG qualitatively gets suppressed
with an increase in the saturation power. To examine the quality
of the obtained MI-SCG, we have performed shot-to-shot
noise coherence analysis and compared our results with the
SCG through soliton fission. Finally, we have arrived at
a conclusion that the coherence of the broad pulse in the
presence of SNL is low in comparison to the unsaturated
PCF.
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