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Unified interpretation for second-order subwavelength interference based
on Feynman’s path-integral theory
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The second-order spatial subwavelength interference pattern is observed in a modified Michelson interferom-
eter with single-mode continuous-wave laser beams. By analyzing our subwavelength interference experiment
based on Feynman’s path integral theory, a unified interpretation for all the second-order subwavelength
interference is suggested.
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I. INTRODUCTION

The de Broglie wavelength of a particle is defined as λB =
h/p, where h is the Planck constant and p is the magnitude
of the particle’s momentum [1]. Based on the definition, the
de Broglie wavelength of a particle will decrease as its
magnitude of momentum increases. If, in certain specific
conditions, N identical but independent particles can be treated
as a whole, the de Broglie wavelength of this N -particle entity
is h/(Np), which is only one N th of the de Broglie wavelength
of a single particle.

Interference is a conventional way to measure de Broglie
wavelength, and subwavelength interference often indicates
that the de Broglie wavelength of several particles as a
whole is measured [2–5]. The second-order subwavelength
interference of light or two-photon de Broglie wavelength
was first observed by using entangled photon pairs generated
by Spontaneous Parametric Down-Conversion (SPDC) from
a nonlinear crystal [6–12]. It was thought that subwavelength
interference could be realized with entangled photons only.
However, subwavelength interference with pseudothermal
light [13–15] and coherent light [16–18] were also reported
later. Therefore, subwavelength interference of photons is not
a property for certain specific light only, but a general property
of photons which can be observed with appropriate detection
schemes.

The Hanbury Brown–Twiss (HBT) interferometer is usu-
ally employed to measure the second-order interference
pattern, in which there are two detectors to measure the
coincidence counts or correlations [19]. It is interesting to
notice that the second-order spatial subwavelength interfer-
ence can be observed when the two detectors are scanned
either in the same direction [8–11,17,18] or in opposite
directions [9,13–15].

From a mathematical point of view, the condition to observe
the second-order subwavelength interference is to find a way
to eliminate the first-order interference [3,20]. From a physical
point of view, there are many different ways to meet this
condition. Let us take Young’s double-slit interferometer as
an example, which is also employed in most of the reported
second-order subwavelength interference experiments. One
way to eliminate the first-order interference is to employ
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entangled photons to ensure that the measured two photons go
through the same slit to trigger the joint detection event [7–10],
or one can achieve the same condition by using a special
two-photon detector [21]. Another way is to use thermal
or pseudothermal light, in which the first-order interference
of light from different slits will disappear for a long time
average when these two slits are in different coherence areas
[13–15,22]. Laser light can also be employed by artificially
changing the relative phase of the fields at these two slits to
eliminate the first-order interference [17,23], which is also the
condition we used to observe the second-order subwavelength
interference pattern in our experiments.

The subwavelength interference experiments are explained
by different interpretations, which can be divided into
two categories: one is the multiphoton interference the-
ory based on Glauber’s quantum optical coherence theory
[7,9,10,13,15,24], the other one is the intensity fluctuation
correlation theory [14,17,18,25]. There is a hot debate about
the physics behind the second- and high-order interference
between these two different interpretations. For details about
the debate, please refer to Refs. [26–28] and references therein.
However, it is not the intention of this paper to enter this debate.
In this paper, by analyzing the observed second-order spatial
subwavelength interference of single-mode continuous-wave
(cw) laser beams in a modified Michelson interferometer,
we suggest a unified interpretation for all the second-order
subwavelength interference experiments based on Feynman’s
path integral theory.

This paper is organized as follows. We will first introduce
our subwavelength interference experiment in Sec. II, and
then interpret the experimental results based on Feynman’s
path integral theory in Sec. III. Applying our interpretation
to explain other second-order subwavelength interference
experiments can be found in Sec. IV. Our conclusions are
in Sec. V.

II. SUBWAVELENGTH INTERFERENCE WITH
SINGLE-MODE CW LASER BEAMS

The experimental setup is shown in Fig. 1; it is a modified
Michelson interferometer similar to the one used in our previ-
ous experiments [29]. A 780-nm single-mode cw laser with a
200-kHz frequency bandwidth is employed. A convex lens F

with a focal length f = 3.8 mm is employed to focus the laser
beam to simulate a point source S. A piezoelectric mirror (PM)
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FIG. 1. (Color online) Modified Michelson interferometer. F :
lens. M: mirror. PM: piezoelectric mirror. BSj : nonpolarized 1:1
beam splitter (j = 1, and 2). Dj : single-photon detector (j = 1 and
2). CC: two-photon coincidence counting system. The inset shows
the equivalent Young’s double-point-source interferometer, where SA

and SB are the image sources of the point source S. The angle θ has
been enlarged to show the scheme clearly.

and a reflection mirror M are placed at the end of two arms
of the interferometer, respectively. The PM is perpendicular
to the light propagation direction. A 90-V, 100-Hz sinusoidal
voltage signal is applied on the PM to make it shift repeatedly
along the direction of light so that the phase shift between
photons in these two arms changes continuously between
−π and π . BSj and Dj (j = 1, and 2) are 1:1 nonpolarized
beam splitter and single-photon detector, respectively. CC is
a two-photon coincidence counting system which can record
the single-photon counting rates and the coincidence counting
rate of D1 and D2 simultaneously. Note that the angle between
M and PM is π/2 + θ with θ = 4.3 mrad, therefore, the whole
setup works as a Young’s double-point-source interferometer
shown in the inset of Fig. 1. The distance d between these
two virtual point sources SA and SB is 1.815 mm and the
distance L between the source and the detection planes
is 1862 mm.

The experimental results are shown in Figs. 2–4. The
single-photon counting rates of D1 and D2 in Figs. 2(a), 3(a),
and 4(a) show that the first-order interference patterns are not
observable, which has been confirmed by the measurement
of a CCD in our previous experiments [29]. The normalized
second-order coherence functions g(2) at various experimental
conditions are shown in Figs. 2(b), 3(b), and 4(b), where
the diamond dots are the measured results and the solid
curves are the theoretical simulations by employing the
equations below. The second-order interference pattern in
Fig. 2(b) is acquired by fixing D2 and scanning D1 along
x1 direction in the detection plane. The periodicity and
visibility are 800 µm and (46 ± 2)%, respectively. The
second-order interference pattern in Fig. 3(b) is acquired by
scanning D1 and D2 in opposite directions. The periodicity
and visibility are 400 µm and (48 ± 4)%, respectively. Note
that the periodicity � of the interference pattern, and the
inferred wavelength λB , are connected by λB = (d/L) · �

(see below). The measured two-photon wavelength λB in
Fig. 3(b) is 390 nm, which is exactly half of the wavelength of
the employed laser. Hence the results of Fig. 3(b) indicate the
appearance of second-order subwavelength interference. The

FIG. 2. (Color online) Normal second-order interference pattern
when D1 is scanned along x1 direction and D2 is fixed. (a) The black
square and red circle dots are single-photon counting rates of D1 and
D2, respectively. (b) The blue diamond dots are experimental results
of the measured normalized second-order coherence function and the
blue solid curve is a theoretical fit by using Eq. (9) with a periodicity
of 800 µm.

normalized second-order coherence function in Fig. 4(b) is
a constant, 0.55 ± 0.04, when these two detectors D1 and
D2 are scanned in the same direction. The measurements
show that the value of the normalized second-order coherence
function in this case is dependent only on the initial relative
positions of these two detectors, within a range approximately
from 0.5 to 1.5.

FIG. 3. (Color online) Second-order subwavelength interference
pattern when D1 and D2 are scanned in opposite directions. (a) The
black square and red circle dots are single-photon counting rates of
D1 and D2, respectively. (b) The blue diamond dots are experimental
results of the measured normalized second-order coherence function
and the blue solid curve is a theoretical fit by using Eq. (10) with a
periodicity of 400 µm.
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FIG. 4. (Color online) Constant second-order interference pattern
when D1 and D2 are scanned in the same direction. (a) The black
square and red circle dots are single-photon counting rates of D1 and
D2, respectively. (b) The blue diamond dots are experimental results
of the measured normalized second-order coherence function and the
blue solid line is a theoretical fit by using Eq. (11).

III. TWO-PHOTON INTERFERENCE BASED
ON FEYNMAN’S PATH INTEGRAL THEORY

In this section, we will calculate the two-photon probability
distribution based on Feynman’s path integral theory. How-
ever, before the formal calculation for our experiments, it is
important to point out the difference between the multiphoton
interference theory based on Glauber’s optical coherence
theory and that based on Feynman’s path integral theory.

The starting point of Glauber’s optical coherence theory to
solve a problem is the famous definition of optical coherence
function based on the photon detection model [24]. With
further mathematical calculation by considering the field
operators and the wave function of the system, one may
conclude that the N th-order (N � 1) interference of light
is a result of N -photon interference. For instance, we have
done this job for thermal light [30]. This process may become
cumbersome when the wave function of the system is com-
plicated. However, based on Feynman’s path integral theory,
we can directly write out all possible ways to trigger photon
detection events and calculate the corresponding probability
distributions. The wave function of the system is not necessary
if the phase and number distributions of photons are known,
which may simplify some problems significantly. Of course,
both Glauber’s optical coherence theory and Feynman’s path
integral theory belong to quantum electrodynamics. There
should be no difference in principle between these two
interpretations. They are two different ways to reach the same
destination.

In the following, we will interpret the observed second-
order interference phenomena in Sec. II based on Feynman’s
path integral theory. In order to follow the tradition, we will
use the symbols defined by Glauber [24]. For simplicity, we
suppose that the two point sources, SA and SB , have equal
probability to emit photons. The emitted photons may be
correlated or independent, depending on what kind of light

is employed. Based on Feynman’s path integral theory, the
second-order coherence function can be expressed as [31]

G(2)(r1,t1; r2,t2) = 〈|eiϕAeiϕB gA1gB2 + eiϕAeiϕB gA2gB1

+ eiϕ′
Aeiϕ′′

AgA1gA2 + eiϕ′
B eiϕ′′

B gB1gB2|2〉,
(1)

where 〈...〉 means ensemble average, i.e., taking all possible
realizations of these different paths into account. For a station-
ary and ergodic process, the ensemble average is equivalent
to a time average over a long period [32]. (r1,t1) and (r2,t2)
are the space-time coordinates for the photon detection events
at D1 and D2, respectively. ϕα , ϕ′

α , and ϕ′′
α are initial phases

of different photons emitted by Sα (α = A and B). gαβ is
Feynman’s photon propagator that describes a photon emitted
by Sα and detected at Dβ(α = A and B, β = 1 and 2).

For the point source in our experiments, Feynman’s photon
propagator can be expressed as [33]

gαβ = exp [−i(kαβ · rαβ − ωαβtαβ)]

rαβ

, (2)

which is the same as the Green function for a point source in
classical optics [34]. kαβ and rαβ are the wave and position
vectors of the photon emitted by Sα and detected at Dβ ,
respectively. rαβ = |rαβ | is the distance between Sα and Dβ .
ωαβ and tαβ are the frequency and time for the photon that is
emitted by Sα and detected at Dβ , respectively. There are four
different yet indistinguishable ways for a measured photon
pair to trigger a two-photon joint detection event in Eq. (1).
For example, the first term on the right-hand side of Eq. (1)
represents the probability amplitude for a photon pair to trigger
a coincidence count when one of the photons has traveled from
SA to D1 while the other has traveled from SB to D2. The other
three terms in Eq. (1) are defined similarly.

In our experiments, within the coincidence time window
(4.88 ns), the phase relation can be approximated as [29]

ϕA = ϕ′
A = ϕ′′

A = 0,
(3)

ϕB = ϕ′
B = ϕ′′

B = ϕ,

where ϕ is the phase shift between the photons emitted by SA

and SB . For a long time interval, it satisfies the condition [29]

〈eiϕ〉 = 0. (4)

The frequency bandwidth of the single-mode cw laser is
200 kHz, thus it is proper to treat it as single frequency light.
Therefore we will drop the temporal parts of light related with
the term ωt in the following discussions.

Substituting Eqs. (2)–(4) into Eq. (1), it is easy to get

G(2)(r1,r2) = 4

r4

{
1 + 1

2
cos[(kA1 · rA1 − kB1 · rB1)

− (kA2 · rA2 − kB2 · rB2)]

}
, (5)

where the approximation rαβ ≈ rβ ∼ r (α = A and B, β = 1
and 2) has been employed to simplify Eq. (5), in which rβ is the
distance between the center of the two point sources and Dβ .
This approximation is valid when the distance d between the
two point sources is much smaller than the distance L between
the source and the detection planes [34].
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The normalized second-order coherence function,
g(2)(x1,x2), is related with the second-order coherence
function, G(2)(x1,x2), by [24]

g(2)(x1,x2) = G(2)(x1,x2)

G(1)(x1)G(1)(x2)
, (6)

where G(1)(xi) (i = 1 and 2) is the first-order coherence
function and can also be calculated based on Feynman’s path
integral theory [31]

G(1)(xi) = 〈|eiϕAgAi + eiϕB gBi |2〉. (7)

Substituting Eqs. (1)–(4) and (7) into (6) and with the
paraxial approximations d � L and xmax � L (xmax is the
maximum transverse position of the detector in the detection
plane), the normalized second-order coherence function in the
one-dimensional case can be simplified as [29,34]

g(2)(x1,x2) = 1 + 1

2
cos

kd

L
(x1 − x2), (8)

where k = |kαβ | is the magnitude of the wave vector and is
independent of the subscripts α and β. This is because both
of the two virtual point sources SA and SB originate from the
same point source S and therefore the photons are of the same
wavelength. x1 and x2 are the transverse coordinates of D1 and
D2 in the detection planes, respectively.

If we scan D1 along x1 and fix D2, i.e., x1 = a + x and
x2 = b, where a and b are the initial positions of D1 and D2,
respectively, Eq. (8) can be expressed as

g(2)(x) = 1 + 1

2
cos

kd

L
(x + a − b). (9)

The theoretical period of the interference pattern is 800 µm by
taking the experimental parameters into account. The maximal
theoretical visibility is 50%, which is consistent with the
observed interference pattern in Fig. 2(b).

If we scan the two detectors in opposite directions as x1 =
a + x and x2 = b − x, Eq. (8) can be simplified as

g(2)(x) = 1 + 1

2
cos

kd

L
(2x + a − b). (10)

The theoretical period of Eq. (10) is 400 µm, which is half
of the one in Eq. (9) and therefore indicates the appearance
of subwavelength interference. The maximum visibility of the
interference pattern is again 50%. Once again, the theoretical
simulation is in good agreement with the experimental results
in Fig. 3(b).

When the two detectors are scanned in the same direction
as x1 = a + x and x2 = b + x, the normalized second-order
coherence function becomes

g(2)(x) = 1 + 1

2
cos

kd

L
(a − b) ∼ const. (11)

The value of g(2)(x) is dependent only on the initial position
difference of the two detectors, as confirmed by the experi-
mental observations shown in Fig. 4(b).

IV. DISCUSSIONS

To take a deep insight about the second-order subwave-
length interference, one has to consider the general case of
second-order coherence, in which all 16 terms in Eq. (1) remain

after ensemble average. This can be achieved, for example,
when the phase relation satisfies

ϕA = ϕ′
A = ϕ′′

A = ϕB = ϕ′
B = ϕ′′

B, (12)

which can be realized experimentally, for instance, when the
two point sources are originated from the same single-mode cw
laser without introducing any phase shift between them. In the
following, we will show that, in all the reported second-order
subwavelength interference experiments (including ours), one
keeps only part of these 16 terms by satisfying some special
conditions, such as using entangled photon pairs [6–12],
employing pseudothermal light sources in different coherence
areas [13–15], or introducing phase changes between two point
sources in lasers [17,18].

Substituting Eqs. (2) and (12) into Eq. (1), we find (only
considering the spatial part)

G(2)(r1,r2) ∝ 4 + 4 cos(kA1 · rA1 − kB1 · rB1)

+ 4 cos(kA2 · rA2 − kB2 · rB2)

+ 2 cos[(kA1 · rA1 − kB1 · rB1)

− (kA2 · rA2 − kB2 · rB2)]

+ 2 cos[(kA1 · rA1 − kB1 · rB1)

+ (kA2 · rA2 − kB2 · rB2)]. (13)

The first term of the right-hand side of Eq. (13) is a constant
that gives the accidental two-photon coincidence counts. The
second and third terms are due to the first-order interference,
and the last two terms are the pure second-order interference
which can be used to realize the second-order subwavelength
interference. A more detailed analysis reveals that the fourth
term originates from the interference between gA1gB2 and
gA2gB1, while the fifth term is caused by the interference
between gA1gA2 and gB1gB2. There is no difference in principle
between the fourth and fifth terms on the right-hand side
of Eq. (13), for both of them are the superposition of two-
photon probability amplitudes corresponding to different yet
indistinguishable ways for a measured photon pair to trigger a
coincidence count event.

Within the same paraxial approximation as Eq. (8) and
considering the one-dimensional case, Eq. (13) can be further
simplified as

G(2)(x1,x2) ∝ 4 + 4 cos
kd

L
x1 + 4 cos

kd

L
x2

+ 2 cos
kd

L
(x1 − x2) + 2 cos

kd

L
(x1 + x2).

(14)

It is evident that the fourth term on the right-hand side of
Eq. (14) will give subwavelength interference when the two
detectors are scanned in opposite directions, and the fifth term
will give subwavelength interference when the two detectors
are scanned in the same direction. The remaining problem
to observe the second-order subwavelength interference is to
keep one of these two terms by eliminating the other unwanted
terms with proper arrangements.

Armed with Eq. (14) and the discussions above, we are
ready to give a unified interpretation for the second-order
spatial subwavelength interference based on Feynman’s path
integral theory. Taking the experiments in Ref. [9] as an
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example, they observed subwavelength interference patterns
with entangled photon pairs when the two detectors were
scanned either in the same direction or in opposite directions by
changing the profile of the pump beam for SPDC. As already
pointed out by Fonseca et al. in Ref. [9], with a wire in the pump
beam, it is possible to force an entangled photon pair to go
through the same slit and to trigger a coincidence count event.
Therefore, only the last two terms in Eq. (1), which result in the
fifth term on the right-hand side of Eq. (14), contribute to the
second-order interference. In this case, the two detectors must
be scanned in the same direction to observe the subwavelength
interference, which is consistent with the experimental results
in Ref. [9]. Other experiments with entangled photon pairs in
Refs. [7,10,11] also achieved the same condition with different
methods.

When there is no wire in the pump beam, most of the
measured photon pair will not go through the same slit, which
means the fourth term on the right-hand side of Eq. (14) will
dominate the second-order subwavelength interference. In this
case, the subwavelength interference can be observed only
when the two detectors are scanned in opposite directions,
which is also consistent with the experimental results in
Ref. [9]. All experiments with pseudothermal light [13–15]
and our experiments with single-mode laser beams belong to
this situation.

There is no such requirement for the two detectors to be
scanned in opposite directions to observe the subwavelength
interference for thermal or laser light. Similar to the case of
entangled photon pairs, if there is a way to make the only
possible ways to trigger a joint detection event be the last
two terms in Eq. (1) or make the first two terms on the
right-hand side of Eq. (1) have a π -phase difference, the
subwavelength interference with thermal or laser light will
also be observed when the two detectors are scanned in the
same direction. For instance, the subwavelength interference
patterns observed by Bentley et al. [17] and Pe’er et al. [18],
respectively, are equivalent to scanning the two detectors
in the same direction. The reason why we emphasize the
case for the two detectors scanning in the same direction to get
the subwavelength interference is that it can be used to increase
the resolution of the lithography by using two-photon sensitive
materials [3,10,17,18,21], while the case for the two detectors
scanning in opposite directions cannot. However, there is no
difference in principle between these two different situations
as discussed above.

The second-order temporal subwavelength interference ex-
periments can also be understood in the same way as the spatial
ones. For instance, the second-order temporal subwavelength

interference in a Mach-Zehnder interferometer was observed
only when the entangled photons were forced to follow the
same path [6,7]. To the best of our knowledge, the second-order
temporal subwavelength interference has been observed with
entangled photon pairs only. By analogy to the second-order
spatial subwavelength interference, it is reasonable to expect
that the second-order temporal subwavelength interference can
also be realized with thermal and laser light.

The discussions for the second-order subwavelength in-
terference above can be easily generalized to the third- and
higher-order subwavelength interference [17,35–38]. Further-
more, the multiphoton interference theory based on Feynman’s
path integral theory can also be used to discuss the interference
of massive particles by using the proper Feynman’s propaga-
tors [39–42].

V. CONCLUSION

In conclusion, we have reported a second-order spatial
subwavelength interference experiment with single-mode cw
laser beams in a modified Michelson interferometer. The
measured two-photon de Broglie wavelength in our experiment
is 390 nm, which is exactly half of the wavelength of the
employed single-mode cw laser light. Two-photon interference
theory based on Feynman’s path integral theory has been em-
ployed to interpret the observed second-order subwavelength
interference.

Furthermore, we have suggested that all the second-order
subwavelength interference experiments, no matter what kind
of light is employed, can be interpreted by the two-photon
interference theory based on Feynman’s path integral theory.
Therefore the subwavelength interference of light is a general
property of photons, and can be realized with proper arrange-
ments. Both the spatial and temporal second-order subwave-
length interferences can be realized with all kinds of light by
employing appropriate arrangements. There is no difference in
principle between the cases when the two detectors are scanned
in the same direction and in opposite directions to observe the
second-order subwavelength interference.
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