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Direct Kerr electro-optic effect in noncentrosymmetric materials
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In materials lacking inversion symmetry, both Pockels and Kerr electro-optic effects are simultaneously present,
with the former effect generally dominating the latter one. The theoretical findings of this article provide the
crystal physics community with concrete tabulated evidence showing that it is possible in principle to selectively
bypass contributions from the linear effect(s) and directly obtain information only about the genuine (Kerr-like)
quadratic effects in 90% of the noncentrosymmetric point groups. The general idea and treatment used for
the electro-optic effect can be extended and adapted to other optical or non-optical (phenomenological) purely
quadratic effects in media lacking inversion symmetry.
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I. INTRODUCTION

The electro-optic effect [1–35] becomes manifest when an
electric field applied across a (dielectric) material induces
changes in the optical refractive index(es) of the respective
medium. In the most general case of an anisotropic biaxial
crystal, the magnitude of the optical index of refraction varies
with the direction in a material in such a way that its values
generate an ellipsoid of rotation called the index ellipsoid or
indicatrix, expressed, using Einstein’s summation convention,
as n−2

pq xpxq = 1, p,q = 1,2,3, and n−2
pq = 0 for p �= q. With

the application of an external vector field, the initial indicatrix
degenerates into a new index ellipsoid expressed in the
same initial system of principal axes as the quadratic form
n′−2

pq xpxq = 1. The relation between the index terms n′
pq and

npq constitutes the electro-optic effect:

n′−2
pq = n−2

pq + rpqbEb + RpqbdEbEd + · · · , (1)

where �E = E1x̂1 + E2x̂2 + E3x̂3 is the electric field and
rpqbEb, RpqbdEbEd are the Pockels and Kerr (electro-optic)
terms, respectively.

The methods of detection in standard electro-optics involve
the application of a low- or zero-frequency (DC) modulating
electric field while the crystal is probed with a low-intensity
polarized beam of light [2–21]. The usual electro-optical de-
tection techniques are interferometric (Mach-Zehnder, Jamin,
Michelson, and Fabry-Perot interferometers) [11–13,36],
polarimetric (amplitude or phase modulators) [2–9,11–21],
ellipsometric, and reflectometric [11]. In all these experimental
situations, the intersection between the transversal polarization
plane of the incident electromagnetic wave with the index
ellipsoid generates a two-dimensional index ellipse n−2

ppx2
p +

n−2
qq x2

q = 1 [Fig. 1(a)]. With the application of an electric field,
the new index ellipse n′−2

pp x2
p + n′−2

qq x2
q + 2n′−2

pq xpxq = 1 is
reshaped and rotated [Fig. 1(b)]; the index terms n′

pp,n′
qq,n

′
pq

are connected to the initial refraction indexes npp,nqq and
the Pockels and Kerr terms through the electro-optic effect
[Eq. (1)]. In the new proper system of orthogonal coordinates
x̂pq−,x̂pq+, the preceding quadratic form is reduced
(diagonalized) to n−2

pq+x2
pq+ + n−2

pq−x2
pq− = 1 [Fig. 1(c)], with

*mmeln@umich.edu

the new (eigen)indexes of refraction npq− and npq+ related to
n′

pp,n′
qq,n

′
pq by [21]

npq± =
[

1

2

(
n′−2

pp +n′−2
qq

)± 1

2

√(
n′−2

pp −n′−2
qq

)2+(
2n′−2

pq

)2
]− 1

2

.

(2)

The effect also usually produces a rotation of the new index
ellipse through an inclination angle θpq [Fig. 1(d)] connected
to n′

pp,n′
qq,n

′
pq by another exact formula [21]:

tan(2θpq) = 2n′−2
pq

n′−2
pp − n′−2

qq

; (3)

here θpq = −θqp and |θpq | � 45◦. In many cases, however, the
inclination angle happens to remain null even after the applica-
tion of the electric field. These special configurations could in
principle be relatively straightforward to detect because, as will
be shown in Sec. IV, in many of these relatively quite simple
situations, a probing electromagnetic wave, initially polarized
along one of the (eigen)axes, will maintain the direction of
its initial state of polarization even after a voltage has been
applied along a certain principal direction across the crystal.

In conventional electro-optics—which will be considered
throughout this article—obtaining information about single
or combinations of electro-optic terms is done through the
determination of changes in the new optical phase(s) accumu-
lated by the probing beam(s) of light when passing through
or reflecting off a crystal; these (eigen)phases are directly
proportional to the (eigen)indexes of refraction, which in turn
are related through Eqs. (1)–(3) to the electro-optic effect. The
present article will show that through a selective and simul-
taneous combination of three factors—crystal symmetry type,
orientation and magnitude of the applied electric field, and
propagation direction of the probing polarized light—it is pos-
sible in principle to detect only pure Kerr contributions in many
noncentrosymmetric point groups generally exhibiting a si-
multaneous presence of both Pockels and Kerr effects with the
linear (first-order) effect usually being the predominant one.

II. PRACTICAL APPROXIMATIONS

In practical applications, the (eigen)indexes of refraction
are hardly ever used in their exact form(s) [Eq. (2)]; their
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FIG. 1. (Color online) The two-dimensional geometry of
the electro-optic effect. The probing light propagates normal (in)to
the plane of the (article’s) page. (a) The initial index ellipse of the
unperturbed crystal; its intersection with the two Cartesian axes x̂p,x̂q

generates the two initial (eigen)indexes of refraction npp,nqq . (b) The
new index ellipse induced by the application of an external electric
field; its intersection points n′

pp,n′
qq with the principal Cartesian axes

x̂p,x̂q are related to npp,nqq through the electro-optic effect [Eq. (1)].
(c) The new index ellipse in its proper system of orthogonal coordi-
nates x̂pq+,x̂pq−; its intersections generate the new (eigen)indexes of
refraction npq+,npq−. (d) The three (in-plane) geometrical changes
that quantitatively characterize the existence of an electro-optic effect:
�npp = n′

pp − npp , �nqq = n′
qq − nqq , and θpq . If at least one of

these three parameters is nonzero, then the particular configuration
indicates a potentially detectable electro-optic effect.

approximate expressions are mostly used instead because these
usually happen to reveal important information concerning
the net (overall) orders of magnitude of certain contributing
electro-optic terms. In this section is provided a general
approximation analysis of the (eigen)indexes of refraction for
all three optical categories of noncentrosymmetric crystals,
biaxial, uniaxial, and anaxial. In all anaxial and one-third of
the uniaxial crystal configurations, the natural birefringence is
zero (npp = nqq = no); in the rest, two-thirds of the uniaxial
and all biaxial cases, the natural birefringence is nonzero
(npp,nqq = ne,no; npp �= nqq for p �= q simultaneously). Here
no and ne represent the ordinary and extraordinary indexes of
refraction, respectively, of the unperturbed crystal.

All approximations that follow are based on two
approximations related to the expression in Eq. (2). The
first and commonly used one in electro-optics [2–21],
n−2

f = n−2
i + [∂(n−2)/∂n]|i(nf − ni) + · · ·, is a Taylor

expansion of the (eigen)index(es) of refraction. By truncating
it up to the first order and rearranging it, one gets the
following: nf − ni

∼= −(n3
i /2)(n−2

f − n−2
i ) ∝ rE + RE2.

The approximation is justified by the fact that the differences

between the final (new) (eigen)index(es) of refraction (nf )
and the initial (old) principal refraction index(es) (ni) are
of the order of the electro-optic terms rE or RE2. The
r and R coefficients usually vary between 10−12 mV−1

and 10−9 mV−1 for Pockels and between 10−24 m2 V−2

and 10−15 m2 V−2 for Kerr (in mostly centrosymmetric
materials) [2–9,11–13,22]. For an arbitrary electric field
of the order 106 Vm−1, the electro-optic contributions to
the final (eigen)indexes of refraction will take values from
around 10−6 to 10−3 for the Pockels terms and 10−12 to
10−3 for the Kerr terms, respectively, with the first-order
(linear) terms always being relatively (much) greater than
the second-order (quadratic) terms for the same type of
noncentrosymmetric crystal. The second approximation,√

1 + ε ∼= 1 + ε/2 for 0 � ε < 1, involves the truncated
(binomial) expansion up to the first order of the square
root in Eq. (2)

√
(n′−2

pp − n′−2
qq )2 + (2n′−2

pq )2; depending on
which of the two terms inside the square root is relatively
larger, (n′−2

pp − n′−2
qq )2 = [(n−2

pp − n−2
qq ) + (rppb − rqqb)

Eb + (Rppbd − Rqqbd )EbEd ]2 or (2n′−2
pq )2 = 4(rpqbEb +

RpqbdEbEd )2, the ε is either [(2n′−2
pq )2]/[(n′−2

pp − n′−2
qq )2] =

tan2(2θpq) or [(n′−2
pp − n′−2

qq )2]/[(2n′−2
pq )2] = tan−2(2θpq),

respectively. Aside from the extreme cases when ε is either 0
or 1, and based on what can be inferred from the electro-optics
literature [2–9,11–13,22], ε usually varies in magnitude from
10−24 to 10−2.

In the zero-natural-birefringence situations, for |2n′−2
pq | �

|n′−2
pp − n′−2

qq | or |θpq | � 22.5◦, Eq. (2) can be approximated
by

npq+/− ∼= no − n3
o

2

(
n′−2

pp/qq − n−2
o + / − n′−4

pq

n′−2
pp − n′−2

qq

)
, (4)

and for |n′−2
pp − n′−2

qq | < |2n′−2
pq | or 22.5◦ < |θpq | � 45◦, by

npq± ∼= no − n3
o

4

[
n′−2

pp + n′−2
qq − 2n−2

o ± 2n′−2
pq

±
(
n′−2

pp − n′−2
qq

)2

4n′−2
pq

]
. (5)

In the two preceding expressions, we take (n′−2
pp − n′−2

qq )2 =
[(Rppbd − Rqqbd )EbEd ]2 and n′−4

pq = (RpqbdEbEd )2, with
npp = nqq = no (p �= q); as a rule, only cases containing
overall Kerr-like (genuine) quadratic dependencies (10−12–
10−3) will be considered in this article. If, however, in a
hypothetical scenario, either one of index terms n′−2

pp ,n′−2
qq ,n′−2

pq

happens to contain at least one Pockels term, then Eqs. (4)
and (5) show that this term will reveal itself conspicuously
in the new (eigen)indexe(s) of refraction. Therefore the only
consistent way of having just net quadratic contributions in
the zero-natural-birefringence situations is that the preceding
index terms all be simultaneously free of any Pockels terms.

In the nonzero-natural-birefringence cases (npp,nqq =
no,ne, npp �= nqq , p �= q), the difference term n−2

pp − n−2
qq

∼=
n′−2

pp − n′−2
qq = n−2

pp − n−2
qq + (Rppbd − Rqqbd )EbEd is, for all

practical purposes, much greater than any electro-optic effect
contributions (>10−3 � 10−12); this leads to the only realistic
situation(s) for these types of cases: |2n′−2

pq | � |n′−2
pp − n′−2

qq | or
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|θpq | < 22.5◦. The (eigen)indexes of refraction given in Eq. (2)
are now approximated by

npq+/− ∼= npp/qq

− n3
pp/qq

2

(
n′−2

pp/qq − n−2
pp/qq + / − n′−4

pq

n′−2
pp − n′−2

qq

)
.

(6)

As in the previous paragraph, if any of the homogeneous
index terms n′−2

pp ,n′−2
qq contains at least one Pockels coefficient,

then the corresponding linear (electro-optic) term(s) associated
with them will automatically be revealed prominently in the
(eigen)indexes of refraction [Eq. (6)]. The same is no longer
valid here for the inhomogeneous index term n′−2

pq ; by consid-
ering a Pockels effect in n′−2

pq (n′−2
pq = rpqbEb + RpqbdEbEd ),

Eq. (6) becomes

npq+/− ∼= npp/qq − n3
pp/qq

2

[
n′−2

pp/qq − n−2
pp/qq

+/ − (rpqbEb + RpqbdEbEd )2

n′−2
pp − n′−2

qq

]
. (7)

When dealing with quadratic electro-optic effects in
nonzero-natural-birefringence situations, the mixed (sub-
script) term(s) of the form n′−4

pq can introduce refractive
index(es) dependencies which are quartic, (RpqbdEbEd )2,
cubic, 2(rpqbEb)(RpqbdEbEd ), and quadratic, (rpqbEb)2, in
the electric field(s). From all these contributions, only the
latter is important enough not to be neglected in certain
(quadratic) configurations [37]; although worthy of explicit
particular attention [38] mainly because of its comparable
order of magnitude (10−12–10−6) relative to the Kerr effect,
this inconspicuous quadratic contribution is merely due to the
squaring of certain Pockels term(s) and, for that matter, is not
of an authentic Kerr-like quadratic nature.

In the present theoretical work, the authors provide the
extensive and concrete treatment of only the genuine quadratic
(electro-optic) effect, involving just (combinations of) Kerr
coefficients (moduli) alone, in media lacking inversion
symmetry; the most reliable way of achieving this is by
methodically selecting only the electro-optic configurations
which allow for the three index terms n′−2

pp ,n′−2
qq ,n′−2

pq (p �= q)
to be simultaneously devoid of any Pockels terms while
making sure that Eqs. (2) and (3) will contain at least one
(nonzero) Kerr contribution.

III. CONCRETE EXAMPLE

The previous claim is clarified through a concrete example
which provides explicitly the exact and corresponding approx-
imate expressions for a pair of (eigen)indexes of refraction
and inclination angles containing only (combinations of) Kerr
terms in a noncentrosymmetric (uniaxial) crystal.

We consider the particular configuration of a tetragonal
4mm point group symmetry crystal, such as the ferroelec-
tric barium titanate (BaTiO3), with an externally applied
electric field of the form �E = E1x̂1 + E2x̂2. The direction
of the probing light beam k̂ coincides with x̂3; this makes
the transversal polarization plane of the electromagnetic wave

parallel to the x̂1x̂2 plane of the index ellipse. In this case,
the electro-optic effect for the tetragonal 4mm class can be
captured in its most explicitly revealing format by a matrix
equation of the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n′−2
1

n′−2
2

n′−2
3

n′−2
4

n′−2
5

n′−2
6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

n−2
o

n−2
o

n−2
e

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 r13

0 0 r13

0 0 r33

0 r51 0

r51 0 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

E1

E2

0

⎤
⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

R11 R12 R13 0 0 0

R12 R11 R13 0 0 0

R31 R31 R33 0 0 0

0 0 0 R44 0 0

0 0 0 0 R44 0

0 0 0 0 0 R66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

E2
1

E2
2

0

0

0

E1E2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(8)

The ordinary (no) and extraordinary (ne) refractive indexes
are always assumed to be known in this article. For the
sake of simplicity, the standard tensor subscript compression
convention was used: 11 → 1, 22 → 2, 33 → 3, 23 = 32 →
4, 13 = 31 → 5, 12 = 21 → 6. The 3 × 6 matrix contains the
Pockels coefficients, while the 6 × 6 matrix contains the Kerr
moduli [2,7,8]. For the particular configuration chosen (p = 1,
q = 2), the only relevant equations are the ones involving the
subscripts 11 → 1, 22 → 2, and 12 = 21 → 6; these make
the top two rows and the bottom row in Eq. (8). The new
(eigen)indexes of refraction and inclination angle are then
obtained using Eqs. (2) and (3):

n12± =
[
n−2

o + 1

2
(R11 + R12)

(
E2

1 + E2
2

)

± 1

2

√
(R11 − R12)2

(
E2

1 − E2
2

)2 + 4R2
66E

2
1E

2
2

]− 1
2

,

(9)

tan(2θ12) = 2R66E1E2

(R11 − R12)
(
E2

1 − E2
2

) . (10)

When either E1 or E2 is zero without both being null
simultaneously, |θ12| reaches its minimum value of 0◦; for
E1 = ±E2 �= 0 Vm−1, |θ12| reaches its maximum value of 45◦.
To be noticed is the fact that the two exact expressions above
[Eqs. (9) and (10)] contain absolutely no Pockels coefficients in
them; all contributions due to the generally preponderant first-
order (linear) electro-optic effect for the uniaxial tetragonal
4mm point group class have been completely bypassed in this
particular optical configuration.

The example provided here falls into the zero-natural-
birefringence category for uniaxial crystal configurations
discussed in the previous section [Eqs. (4) and (5)]. The
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(eigen)indexes of refraction in Eq. (9) can be approximated
by

n12+/− ∼= no − n3
o

2

[
R11/12E

2
1 + R12/11E

2
2

+/ − R2
66E

2
1E

2
2

(R11 − R12)
(
E2

1 − E2
2

)
]
, (11)

when |2R66E1E2| � |(R11 − R12)(E2
1 − E2

2)| or |θ12| � 22.5◦
and by

n12± ∼= no − n3
o

4

[
(R11 + R12)

(
E2

1 + E2
2

) ± 2R66E1E2

± (R11 − R12)2
(
E2

1 − E2
2

)2

4R66E1E2

]
, (12)

for |(R11 − R12)(E2
1 − E2

2)| < |2R66E1E2| or 22.5◦ < |θ12| �
45◦.

The last (fractional) terms in the preceding approximations
[Eqs. (11) and (12)] have an overall quadratic influence on
the new indexes of refraction, although their numerators
reveal a quartic dependence on the applied electric field
because of the squaring of the Kerr term(s). In all the
zero-natural-birefringence approximations mentioned in the
previous section [Eqs. (4) and (5)], these (last) fractional types
of terms introduce net quadratic contributions (10−12–10−3)
which cannot be neglected in situations dealing with an
authentic second-order electro-optic effect.

IV. EXPERIMENTAL SCHEMATIC

The sketch of a new electro-optic experimental setup
(Fig. 2) is presented here and then theoretically applied
to an even simpler tetragonal 4mm configuration with the
purpose of showing how certain (pure) Kerr coefficients can
in principle be directly determined in noncentrosymmetric
crystals. For the sake of clarity of purpose, the treatment
of the electromechanical coupling effect of electrostriction
associated with the quadratic electro-optic effect will be kept
to a minimum of detail. In its bare-essentials format, the design
proposed here combines a Mach-Zehnder interferometer (top
left corner), a Michelson interferometer (bottom right corner),
and an amplitude-modulated null polarimeter (top right corner)
in a three-in-one compact arrangement.

The light generated by a low-power laser (L) of wavelength
λ is (linearly) polarized by a (high-extinction-ratio) polarizer
P before being split by one of the four (antireflection-coated
and nonpolarizing) beamsplitters (BS1); the source’s light
intensity is in permanence monitored at the bottom left corner
of the experimental setup by one of the three (high-sensitivity)
power detectors (D3). The Mach-Zehnder interferometer and
the (null) polarimeter can be used in parallel to measure the
change in the electrically induced birefringence of the (crystal)
sample (S) in transmission; in this particular setup (Fig. 2),
however, the polarimeter is used only for proper alignment of
the crystal across the incident ray of light. One of the two (pairs
of) beams exiting beamsplitter BS3 generates an interference
pattern which is captured with one of the two (high-resolution)

L

CCD1

P

BS1

BS2

A

D1CCD2

D3

D2

PBS 

BS4

BS3

S

2x̂

3x̂

1̂x

FIG. 2. (Color online) Experimental schematic of the direct Kerr
electro-optic effect in noncentrosymmetric crystals. The experimental
setup combines a Mach-Zehnder interferometer (top left corner), a
Michelson interferometer (bottom right corner), and an amplitude-
modulated null polarimeter (top right corner) in a three-in-one
compact design. BS1, BS2, BS3, and BS4 are similar antireflection-
coated and nonpolarizing beamsplitters; D1, D2, D3 and CCD1,
CCD2 are similar high-sensitivity power detectors and similar high-
resolution CCD-CMOS cameras, respectively. L, S, and PBS are a
low-power laser, the (crystal) sample, and a no-multiple-reflections
and nonpolarizing pellicle beamsplitter, respectively. P and A are two
similar high-extiction rate polarizers oriented at 90◦ to each other in
a null format.

CCD-CMOS cameras (CCD2) and later analyzed; the other
beam is used to real-time monitor the (light) intensity in the
Mach-Zehnder interferometer with the use of detector D2.
The same type of power detector (D1) is used to monitor the
amount of light that passes through the (high-extinction-ratio)
null analyzer (A) when the electric field is on. The Michelson
interferometer is used for simultaneous measurement of the
change in the sample’s thickness with the application of a
voltage across it—the electromechanical effect; the fringe
pattern generated by the interference between the part of the
(right) incident beam reflecting off the sample’s surface and
the part of the (left) incident beam reflecting off the (no-
multiple-reflections and nonpolarizing) pellicle beamsplitter
(PBS) are captured with CCD1 and analyzed. Here the shift in
the reflection fringes (δR) is directly proportional to the phase
change �ϕR = (2π/λ)�	3 suffered by the two (reflected)
interfering waves; this phase difference, in turn, is related
to the change in the thickness of the sample (�	3) along
the x̂3 direction. The fringe shift generated at the Michelson
interferometer (CCD1) by the two beams (Fig. 2) is (directly)
proportional to �	3:

δR ∝ �	3. (13)
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We shall now consider the previous theoretical example
(Sec. III) in the even simpler event when E2 = 0 Vm−1 and
E1 �= 0 Vm−1. For a polarized wave propagating along the k̂ =
x̂3 axis and having its linear polarization parallel to the applied
electric field in the x̂1 direction (Fig. 2), the (eigen)index of
refraction that the light beam now sees is the correspondingly
reduced version of Eq. (11):

n12+ = n′
1

∼= no − n3
o

2
R11E

2
1 . (14)

The inclination angle remains unchanged in this case (θ12 =
0◦). The fringe shift in transmission (δT ) measured by the
CCD2 is directly proportional to the phase difference �ϕT

∼=
(2π/λ)[�n12+	3 + (no − 1)�	3] [13]; this phase change in
transmission through the material (�ϕT ) is in turn related
to the electrically induced variation of the (eigen)index of
refraction (�n12+ = �n1 = n12+ − no) along x̂1, the change
in the thickness of the sample (�	3), and the initial thickness
(	3) of the virgin crystal. The fringe shift generated at the
Mach-Zehnder interferometer (CCD2) by the two beams
(Fig. 2) is (directly) proportional to

δT ∝ �n12+	3 + (no − 1)�	3. (15)

Combining Eqs. (13)–(15), we end up with an expression of
(direct) proportionality between the Kerr coefficient R11 =
R22 for the uniaxial tetragonal 4mm point group and the (differ-
ence between) measurable fringe shifts in transmission (Mach-
Zehnder interferometer) and reflection (Michelson interferom-
eter), respectively, for a given applied electric field (E1):

R11 ∝ 2

n3
o	3

[
(no − 1)δR − δT

E2
1

]
. (16)

In the low-field-strength (phenomenological) treatment of the
electro-optic effect, the (Kerr) coefficients are independent of
the magnitude of the perturbing field(s); in other words, for
(DC) fields of a few hundred volts per millimeter, the fractional
term in the square brackets in Eq. (16) remains constant for
the same type of crystal (no) having the same initial thickness
(	3) and being probed in the same direction with the same
type of light characteristics (λ). The same approach can be
used to directly determine R12 = R21 for the same symmetry
class configuration either by applying the electric field in the
x̂2 direction (E2 �= 0 Vm−1, E1 = 0 Vm−1), which happens to
point normal (in)to the plane of the (article’s) page in Fig. 2,
or simply by rotating the (null) polarizer-analyzer complex
by 90◦ without changing the direction or the magnitude of
the initially applied electric field. So in these two simple and
in-plain-sight configurations [Eq. (8)], by measuring the two
fringe shifts (δT , δR), it is possible to directly determine the
individual values of the two (different) Kerr coefficients (R11,
R12) for 4mm BaTiO3 in a relatively straightforward manner.

In the situation mentioned earlier, it was assumed that
the direction of light polarization is already oriented along
one of the principal axes of the undisturbed crystal. In
practice, good alignment of the index ellipsoid relative to
the polarization direction of the beam can be achieved using
the null polarimeter in the top right corner of Fig. 2 and a
sample rotating-tilting stage having high angular resolution
(<0.0003◦) [39,40]. For a null amplitude modulator, the

intensity (I ) measured by D1 has the well-known form [2–4]

I = Imax sin2

(
π�n	3

λ

)
. (17)

Imax is the maximum intensity through the polarimeter, and
�n is the apparent natural birefringence in the x̂1x̂2 plane
of the misaligned virgin sample. When properly aligned,
an uniaxial crystal (tetragonal 4mm) having its optical axis
(ne) along x̂3 will show no natural birefringence in the x̂1x̂2

plane (�n = no − no = 0), and the transmitted intensity in
Eq. (17) becomes zero; this implies that in practice, the
lowest intensity reading at the (null) amplitude modulator
will usually correspond to a well-aligned initial sample. As
an additional precautionary measure, preliminary testing for
proper orientation of the indicatrix relative to the cut faces
of the virgin crystal can be done using conoscopic imaging
techniques commonly used in optical crystallography and
mineralogy [41,42].

The two interferometers can also be used to detect any
unwanted accidental appearance of a linear electro-optic
and/or electromechanical effect during measurements. These
first-order effects make themselves manifest by the way the
interference fringes shift; in the case of a net linear effect,
the fringe(s) will spatially oscillate (left and right) around the
initial position(s) corresponding to the electrically unperturbed
crystal every time the voltage polarity across the sample
switches sign. This is not the case when a quadratic effect
becomes the outstanding one; with no linear effect creeping
in, the (final) positions of the fringes remain independent of the
polarity of the applied electric field as long as its (maximum)
amplitude remains constant in magnitude. So this fringe shift
feature can be used in addition to the null polarimeter technique
mentioned earlier to ensure that the crystal remains properly
aligned and that no (residual) first-order effect compromises
the detection of a (genuine) quadratic one. Furthermore, the
collection of two-dimensional interference patterns on CCD-
CMOS cameras at the two interferometers can always facilitate
the early detection of any electrically induced precursor effects
and irregularities such as twinning in the volume or at the
surface of the sample. Any local sharp contrast variations
(spikes or dips) in the (continuous) intensity profile of the
interference patterns may indicate the possibility of something
experimentally compromising happening to the sample under
test; these together with changes in the intensity at D2 and
D1, respectively, and without any variations in it at D3,
can be good early-warning indicators of (irreversible) crystal
damage. On a final note, having two other similar optical
arrangements, as the (full) design in Fig. 2 only rotated at 90◦
relative to each other and the present one, and functioning in
conjunction with it, while simultaneously probing the crystal
in the extra x̂1 and x̂2 directions, constitutes one of the most
complete ways of measuring the (electro-optic) properties of
a crystal sample while monitoring its alignment and physical
(quality) status before and during the application of a voltage
across it.

V. RESULTS AND DISCUSSION

The 20 noncentrosymmetric crystal classes have been
systematically analyzed and the results tabulated in Table I
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for all the theoretical configurations allowing for ways of
selectively exploiting the symmetries of the point groups in
order to avoid any (camouflaged) involvements of Pockels

moduli. Interestingly enough, it has been found that aside from
the (biaxial) triclinic 1 and (uniaxial) trigonal 3, it is possible in
principle to directly detect at least one pure Kerr contribution

TABLE I. Configurations for direct determination of Kerr electro-optic coefficients in noncentrosymmetric crystals. The unit vector k̂

represents the direction of propagation for the probing beam of light; here it is always taken to be along one of the principal Cartesian axes
x̂1, x̂2, or x̂3. The components of the externally applied electric field �E = E1x̂1 + E2x̂2 + E3x̂3 which are not present in a particular table cell
are considered to be zero by default. Variable θpq is the inclination angle of the index ellipse; it is located in the x̂px̂q plane, which coincides
with the transversal polarization plane of the incident light wave for each particular configuration. The Rs represent the Kerr coefficients. The
bar-on-top (Kerr) moduli (R̄) belong to electro-optic terms which introduce overall quartic contributions (10−24–10−6) to the new (eigen)indexes
of refraction in the nonzero-natural-birefringence approximations [Eqs. (6) and (7)]. The initial refractive indexes are considered to be known,
with the extraordinary indexes of refraction ne always along the x̂3 axis. The abbreviation HOC applies to higher-order (electro-optic) moduli
beginning with third-order (cubic) ones.

k̂ �E θpq Electro-optic coefficients

Noncentrosymmetric-biaxial-monoclinic m(m⊥x̂2)
x̂2 E2 0◦ < |θ13| < 22.5◦ R12,R32,R̄52

Noncentrosymmetric-biaxial-monoclinic m(m⊥x̂3)
x̂3 E3 θ12 = 0◦ R13,R23

Noncentrosymmetric-biaxial-monoclinic 2(2 ‖ x̂2)

x̂2 E1,E3 0◦ < |θ13| < 22.5◦ R11,R31,R13,R33,R15,R35R̄51,

R̄53,R̄55

Noncentrosymmetric-biaxial-monoclinic 2(2 ‖ x̂3)
x̂3 E1,E2 0◦ � |θ12| < 22.5◦ R11,R21,R12,R22,R̄66

Noncentrosymmetric-biaxial-orthorhombic 2mm

x̂1 E1 θ23 = 0◦ R21,R31

x̂2 E2 θ13 = 0◦ R12,R32

x̂3 E1,E2 0◦ � |θ12| < 22.5◦ R11,R21,R12,R22,R̄66

Noncentrosymmetric-biaxial-orthorhombic 222
x̂1 E2,E3 0◦ � |θ23| < 22.5◦ R22,R32,R23,R33,R̄44

x̂2 E1,E3 0◦ � |θ13| < 22.5◦ R11,R31,R13,R33,R̄55

x̂3 E1,E2 0◦ � |θ12| < 22.5◦ R11,R21,R12,R22,R̄66

Noncentrosymmetric-uniaxial-trigonal 3m(m⊥x̂1)

x̂1 E1 0◦ < |θ23| < 22.5◦ R21,R31,R̄41; R12,R13,R23,R32,

R̄42,R̄56

Noncentrosymmetric-uniaxial-trigonal 3m(m⊥x̂2)
x̂2 E2 θ13 = 0◦ R12,R32; R21,R31,R13,R23

Noncentrosymmetric-uniaxial-trigonal 32

x̂1 E2,E3 0◦ � |θ23| < 22.5◦
R22,R32,R23,R33,R24,R̄42,R̄44;
R11,R31,R13,R14,R̄41,R̄55,R̄56,

R65

x̂2 E3 θ13 = 0◦ R13,R33; R23,R31,R32

x̂3 E3 θ12 is indeterminate R13, HOC;R23,R31,R32

Noncentrosymmetric-uniaxial-tetragonal 4mm

x̂1 E1 θ23 = 0◦ R21,R31; R12,R32

x̂2 E2 θ13 = 0◦ R12,R32; R21,R31

x̂3 E1,E2 0◦ � |θ12| � 45◦ R11,R12,R66; R22,R21

Noncentrosymmetric-uniaxial-tetragonal 4 and 4̄
x̂3 E1 θ12 = 1

2 arctan( 2R61
R11−R21

) R11,R21,R61; R22,R12,R62

x̂3 E2 θ12 = 1
2 arctan( 2R62

R12−R22
) R12,R22,R62; R21,R11,R61

x̂3 E1 = ±E2 θ12 = 1
2 arctan( R66

R16
) R11,R12,R16,R66; R22,R21,R26

x̂3 E1,E2 0◦ � |θ12| � 45◦ R11,R12,R16,R61,R66; R22,R21,

R26,R62

Noncentrosymmetric-uniaxial-tetragonal 4̄2m(2 ‖ x̂1)

x̂1 E2,E3 0◦ � |θ23| < 22.5◦ R22,R23,R32,R33,R̄44; R11,R13,

R31,R̄55

x̂2 E1,E3 0◦ � |θ13| < 22.5◦ R11,R13,R31,R33,R̄55; R22,R23,

R32,R̄44

x̂3 E1,E2 0◦ � |θ12| � 45◦ R11,R12,R66; R21,R22
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TABLE I. (Continued.)

k̂ �E θpq Electro-optic coefficients

Noncentrosymmetric-uniaxial-tetragonal 422

x̂1 E2,E3 0◦ � |θ23| < 22.5◦ R22,R23,R32,R33,R̄44; R11,R13,

R31,R̄55

x̂2 E1,E3 0◦ � |θ13| < 22.5◦ R11,R13,R31,R33,R̄55; R22,R23,

R32,R̄44

x̂3 E3 θ12 is indeterminate R13, HOC; R23

x̂3 E1,E2 0◦ � |θ12| � 45◦ R11,R12,R66; R21,R22

x̂3 E1,E2,E3 0◦ � |θ12| � 45◦ R11,R12,R13,R66; R21,R22,R23

Noncentrosymmetric-uniaxial-hexagonal 6

x̂3 E1 θ12 = 1
2 arctan( 2R61

R11−R21
)

R11,R21,R61; R22,R12,R16,R26,

R62,R66

x̂3 E2 θ12 = 1
2 arctan( 2R62

R12−R22
)

R12,R22,R62; R21,R11,R26,R16,

R61,R66

x̂3 E1 = ±E2 θ12 = 1
2 arctan( R12−R11

2R61
)

R11,R21,R61; R22,R12,R16,R26,

R62,R66

x̂3 E1,E2 0◦ � |θ12| � 45◦ R11,R21,R61; R22,R12,R16,R26,

R62,R66

Noncentrosymmetric-uniaxial-hexagonal 6̄
x̂1 E3 θ23 = 0◦ R23,R33; R13

x̂2 E3 θ13 = 0◦ R13,R33; R23

x̂3 E3 θ12 is indeterminate R13, HOC;R23

Noncentrosymmetric-uniaxial-hexagonal 622

x̂1 E2,E3 0◦ � |θ23| < 22.5◦ R22,R23,R32,R33,R̄44; R11,R13,

R31,R̄55

x̂2 E1,E3 0◦ � |θ13| < 22.5◦ R11,R13,R31,R33,R̄55; R22,R23,

R32,R̄44

x̂3 E3 θ12 is indeterminate R13, HOC;R23

x̂3 E1,E2 θ12 = 1
2 arctan( E1E2

E2
1−E2

2
) R11,R12; R21,R22,R66

x̂3 E1,E2,E3 θ12 = 1
2 arctan( E1E2

E2
1−E2

2
) R11,R12,R13; R21,R22,R23,R66

Noncentrosymmetric-uniaxial-hexagonal 6̄m2(m⊥x̂1)
x̂1 E1,E3 θ23 = 0◦ R21,R31,R23,R33; R12,R13,R32

x̂2 E1,E3 0◦ � |θ13| < 22.5◦ R11,R31,R13,R33,R̄55; R22,R23,

R32,R̄44

x̂3 E3 θ12 is indeterminate R13, HOC;R23

Noncentrosymmetric-uniaxial-hexagonal 6̄m2(m⊥x̂2)

x̂1 E2,E3 0◦ � |θ23| < 22.5◦ R22,R32,R23,R33,R̄44; R11,R31,

R13,R̄55

x̂2 E2,E3 θ13 = 0◦ R12,R32,R13,R33; R21,R31,R23

x̂3 E3 θ12 is indeterminate R13, HOC;R23

Noncentrosymmetric-uniaxial-hexagonal 6mm

x̂1 E1 θ23 = 0◦ R21,R31; R12,R32

x̂2 E2 θ13 = 0◦ R12,R32; R21,R31

x̂3 E1,E2 θ12 = 1
2 arctan( E1E2

E2
1−E2

2
) R11,R12; R66,R22,R21

Noncentrosymmetric-anaxial-cubic 23 and 4̄3m

x̂1 E2,E3 0◦ � |θ23| � 45◦ R22,R23,R32,R33,R44; R11,R12,

R13,R21,R31,R55,R66

x̂2 E1,E3 0◦ � |θ13| � 45◦ R11,R13,R31,R33,R55; R22,R23,

R32,R21,R12,R44,R66

x̂3 E1,E2 0◦ � |θ12| � 45◦ R11,R12,R21,R22,R66; R33,R23,

R32,R31,R13,R44,R55

in each of the 18 remaining point groups not having inversion
symmetry properties.

The “Electro-optic coefficients” column contains only Kerr
coefficients; these generic moduli could correspond to either
clamped (high-fequency, strain-free) or unclamped (low-
frequency, stress-free) quadratic coefficients, depending on the

actual experimental setup. The moduli with a bar on top (R̄)
belong to squared Kerr terms which, in the nonzero-natural-
birefringence approximations [Eqs. (6) and (7)], introduce
net quartic electro-optic contributions (10−24–10−6) to the
values of the new (eigen)indexes of refraction. Each row of
Table I corresponds to a different setup configuration. The
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electric field components that do not show up in a particular
table cell are considered null by default; the components
that are mentioned are not to be considered zero all at
the same time. The Kerr coefficients at each row’s end are
divided into two sets by a semicolon. The first set contains
all the different quadratic electro-optic coefficients which
are explicitly involved through nonlinear combinations in
the expressions for the new (eigen)indexes of refraction to
be determined for that specific configuration; the second
set contains second-order electro-optic moduli which are
related to the coefficients in the first set through symmetry
properties specific to that particular point group. In most of
the cases, the inclination angle θpq is dependent on both
the Kerr coefficients and the strength of the electric field’s
components; its magnitude usually varies between 0◦ and
45◦. In some situations, however, the angle depends only on
the Kerr coefficients, while in others, it depends only on the
electric field’s components. The configurations for which the
inclination angle is indeterminate correspond to the physical
cases in which the index ellipse is actually an index circle;
in these kinds of situations, the values of the refractive index
(the radius of the index circle) still depend only on the Kerr
effect. Since the electrically induced (optical) phase difference
between the fast and slow polarizations in these particular
types of setups remains zero up to the third-order (cubic)
electro-optic dependence, these cases could in principle allow
for the possibility of going beyond the quadratic effect and
obtaining some direct information about the higher-order
coefficients (HOC) using polarimetric [1–9,11–21] and/or
ellipsometric methods [11]; the Kerr effect, which still happens
to be isotropically present in the plane of the index circle,
could be detected using interferometric techniques [11–13].
In Sec. II, in the nonzero-natural-birefringence cases [Eqs. (6)
and (7)], the terms |n′−2

pp − n′−2
qq | ∼= |n−2

pp − n−2
qq | are considered

to be much greater than any electro-optic effect contributions
(>10−3 � 10−12); the same is not true for the zero-natural-
birefringence situations [Eqs. (4), (5), (11), and (12)] treated
in Secs. II and III.

On the practical side, and to the best of the authors’
knowledge, the first determinations of some individual Kerr
coefficients for (uniaxial) tetragonal (4mm) barium titanate
(BaTiO3) have been done outside the traditional electro-optics
field using a powerful nonlinear optics technique involving
degenerate four-wave mixing (DFWM) [43]; surprisingly
enough, this method ends up making use of Pockels coefficient
values when calculating the (cascaded) contributions to the
third-order (effective) nonlinear susceptibilities (Kerr moduli).
In the present work, however, the authors have theoretically
shown that just by using conventional electro-optics detection
procedures [2–21], it is possible in principle to do without
the involvement of any Pockels coefficients when trying
to detect certain Kerr contributions in 90% of the point
group crystal classes which lack a center of symmetry.
In this regard, the authors experimentally obtained some
individual numerical values for two Kerr coefficients of
ferroelectric barium titanate (tetragonal 4mm) using a polari-
metric (electro-optic) technique [44,45] The values measured,
R31 = −8.0 ± 0.7 × 10−17 m2 V−2 and R21 = −3.5 ± 0.3 ×
10−17 m2 V−2, fall within the wide range of quadratic electro-
optic coefficients (10−24 m2 V−2 to 10−15 m2 V−2) mentioned

in the contemporary crystal physics literature [2–9,11–13,22]
mostly for centrosymmetric materials. Relative to some of
the Kerr moduli obtained by Biaggio [43], however, the
authors’ values are about 3 orders of magnitude greater. The
discrepancy between the two groups’ measured coefficients
could be due to at least one of the three main factors: high
dispersion—in the case of DFWM—because of very high
modulation frequency corresponding to the beam’s electric
field [6], crystal damage, twinning, and/or asymmetric polling
induced by a high (DC) field amplitude [44,45], and growth-
or fabrication-induced misalignment of the initial indicatrix
relative to the cut faces of the crystal [46,47]. The first factor
is negligible in traditional low-power–low-frequency electro-
optics [2–20]. In the authors’ experience, for barium titanate,
the second factor could be kept under control for amplitudes
of the applied (DC) electric field less than 6 × 105 Vm−1.
Sometimes crystal damage, twinning, and nonuniform polling
can be prompted by the accumulation of residual charge on the
faces of the crystal; this surface charge problem can be solved
by applying a low-frequency alternative voltage across the
material sample on top of a zero-frequency (DC) field [11–13];
the AC voltage device can be synchronized with the measuring
aparatus through the means of a lock-in amplifier. The third
and least controllable of all the preceding factors can have
its influence minimized by the growing or procuring of very
high quality, millimeter-thick crystals having all faces finely
cut and smoothly polished such as the photorefractive-grade
type in the particular case of ferroelectric (tetragonal 4 mm)
BaTiO3 [48,49].

VI. CONCLUSION AND OUTLOOK

The theoretical tabulated findings of this article constitute a
contribution to the century-old field of electro-optics (Kerr
1875, Pockels 1893) which, until presently [1–35], has
unfortunately failed to take into extensive consideration the
(sometimes subtle) possibilities of obtaining direct informa-
tion about (pure) quadratic effects without any (conspicuous
or inconspicuous) contributions involving linear coefficients
in most of the point group classes lacking inversion symmetry.
The major theoretical application of this work is the extension
of the general idea and treatment used here in the case of
the electro-optic effect to other phenomena of crystal physics
in which a higher order (phenomenological) effect is usually
eclipsed by a lower-order one; these other physical phenomena
to be studied and analyzed could be optical, electrical,
magnetic, mechanical, thermal or chemical-stoichiometric in
nature [1–13,18,20,22–35].

The main practical application will be the demanding task
of systematic measurement and numerical tabulation of the sets
of Kerr coefficients presented in Table I; the real-time monitor-
ing of these (sets of) moduli under changing external factors,
such as temperature, could provide researchers with extra
information regarding the dynamics of phase transitions. In
addition, many of the HOC configurations in Table I constitute
good experimental opportunities for determination of other
(secondary) optical effects associated with the application
of electric fields across (noncentrosymmetric) crystals such
as the electrically induced dichroism and the electrogyration
effect [2,4,11,25,50].
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The challenging—but not impossible—project involving
the direct determination and tabulation of Kerr moduli and, by
extension, of other (sets of) optical or non-optical (genuinely)
quadratic coefficients in noncentrosymmetric materials has a
good chance of becoming quite involved in the future because
of the vast number of crystals and minerals which fall within
the point group symmetry classes treated in Table I. The

project’s theoretical and practical implications could lead,
directly or indirectly, to an improvement in the general body
of knowledge and applications with regard to the multitude
of (phenomenological) macroscopic optical and nonoptical
physical properties of materials in all the condensed matter
subfields which deal with organic or inorganic, soft or solid
substances lacking inversion symmetry.
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[12] S. Haussühl, Physical Properties of Crystals: An Introduction
(Wiley-VCH, Weinheim, 2007).

[13] H.-J. Weber, in Crystals: Growth, Properties, and Applications,
edited by H. C. Freyhardt (Springer, Berlin, 1988).

[14] C. C. Davis, Lasers and Electro-optics: Fundamentals and
Engineering (Cambridge University Press, Cambridge, 1996).

[15] K. Iizuka, Elements of Photonics: In Free Space and Special
Media (Wiley, New York, 2002), Vol. 1.

[16] Y. B. Band, Light and Matter: Electromagnetism, Optics,
Spectroscopy, and Lasers (Wiley, Chichester, 2007).

[17] R. Guenther, Modern Optics (Wiley, New York, 1990).
[18] T. S. Narasimhamurty, Photoelastic and Electro-optic Proper-

ties of Crystals (Plenum, New York, 1981).
[19] I. P. Kaminow, An Introduction to Electrooptic Devices

(Academic, Orlando, 1974).
[20] D. F. Nelson, Electric, Optic, and Acoustic Interactions in

Dielectrics (Wiley, New York, 1979).
[21] H. A. Haus, Waves and Fields in Optoelectronics (Prentice Hall,

Inc., Upper Saddle River, New Jersey, USA, 1983).
[22] H. J. Juretschke, Crystal Physics: Macroscopic Physics of

Anisotropic Solids (Benjamin, Reading, 1974).
[23] W. P. Mason, Crystal Physics of Interaction Processes

(Academic, New York, 1966).
[24] V. M. Agranovich and V. L. Ginzburg, Crystal Optics with

Spatial Dispersion and Excitons (Springer, Berlin, 1984).

[25] B. N. Grechushnikov, in Modern Crystallography IV: Physical
Properties of Crystals, edited by L. A. Shuvalov (Springer,
Berlin, 1988).

[26] A. M. Glazer and K. G. Cox, in International Tables for
Crystallography: Physical Properties of Crystals, edited by
A. Authier (Kluwer Academic, Dordrecht, 2003).

[27] D. Schwarzenbach, Crystallography (Wiley, Chichester, 1996).
[28] M. Catti, in Fundamentals of Crystallography, edited by

C. Giacovazzo (Oxford University Press, Oxford, 2002).
[29] L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrody-

namics of Continuous Media (Elsevier Butterworth-Heinemann,
Oxford, 2008).

[30] A. S. Nowick, Crystal Properties via Group Theory (Cambridge
University Press, Cambridge, 1995).

[31] W. A. Wooster, Tensors and Group Theory for the Physical
Properties of Crystals (Oxford University Press, London, 1973).

[32] S. Bhagavantam, Crystal Symmetry and Physical Properties
(Academic, London, 1966).

[33] A. R. Billings, Tensor Properties of Materials: Generalized
Compliance and Conductivity (Wiley Interscience, London,
1969).

[34] S. V. Popov, Y. P. Svirko, and N. I. Zheludev, Susceptibility
Tensors for Nonlinear Optics (IOP, Bristol, 1995).

[35] Y. P. Svirko and N. I. Zheludev, Polarization of Light in
Nonlinear Optics (Wiley, Chichester, 1999).

[36] S. Ducharme, J. Feinberg, and R. R. Neurgaonkar, IEEE J.
Quantum Electron. 23, 2116 (1987).

[37] M. Melnichuk and L. T. Wood, J. Opt. Soc. Am. A 23, 1236
(2006).

[38] M. Izdebski and W. Kucharczyk, J. Opt. Soc. Am. B 25, 149
(2008).

[39] [http://www.newport.com].
[40] [http://www.thorlabs.com].
[41] E. E. Wahlstrom, Optical Crystallography (Wiley, New York,

1969).
[42] W. D. Nesse, Introduction to Optical Mineralogy (Oxford

University Press, New York, 2004).
[43] I. Biaggio, Phys. Rev. Lett. 82, 193 (1999).
[44] M. Melnichuk and L. T. Wood, J. Opt. Soc. Am. A 22, 377

(2005).
[45] M. Melnichuk and L. T. Wood, J. Opt. Soc. Am. A 24, 2843

(2007).
[46] M. Izdebski and W. Kucharczyk, Opto-Electron. Rev. 16, 42

(2008).
[47] M. Izdebski, Appl. Opt. 47, 2729 (2008).
[48] [http://www.mtixtl.com].
[49] [http://marketech-crystals.com].
[50] O. G. Vlokh and R. O. Vlokh, Opt. Photonics News 20(4), 34

(2009).

013821-9

http://dx.doi.org/10.1109/JQE.1987.1073272
http://dx.doi.org/10.1109/JQE.1987.1073272
http://dx.doi.org/10.1364/JOSAA.23.001236
http://dx.doi.org/10.1364/JOSAA.23.001236
http://dx.doi.org/10.1364/JOSAB.25.000149
http://dx.doi.org/10.1364/JOSAB.25.000149
http://www.newport.com
http://www.thorlabs.com
http://dx.doi.org/10.1103/PhysRevLett.82.193
http://dx.doi.org/10.1364/JOSAA.22.000377
http://dx.doi.org/10.1364/JOSAA.22.000377
http://dx.doi.org/10.1364/JOSAA.24.002843
http://dx.doi.org/10.1364/JOSAA.24.002843
http://dx.doi.org/10.2478/s11772-007-0038-0
http://dx.doi.org/10.2478/s11772-007-0038-0
http://dx.doi.org/10.1364/AO.47.002729
http://www.mtixtl.com
http://marketech-crystals.com
http://dx.doi.org/10.1364/OPN.20.4.000034
http://dx.doi.org/10.1364/OPN.20.4.000034

