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Observability of radiation-pressure shot noise in optomechanical systems
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We present a theoretical study of an experiment designed to detect radiation-pressure shot noise in an
optomechanical system. Our model consists of a coherently driven optical cavity mode that is coupled to a
mechanical oscillator. We examine the cross-correlation between two quadratures of the output field from the
cavity. We determine under which circumstances radiation-pressure shot noise can be detected by a measurement
of this cross-correlation. This is done in the general case of nonzero detuning between the frequency of the drive
and the cavity resonance frequency. We study the qualitative features of the different contributions to the cross-
correlator and provide quantitative figures of merit for the relative importance of the radiation-pressure shot
noise contribution to other contributions. We also propose a modified setup of this experiment relevant to the
“membrane-in-the-middle” geometry, which potentially can avoid the problems of static bistability and classical
noise in the drive.

DOI: 10.1103/PhysRevA.82.013818 PACS number(s): 42.50.Lc, 42.50.Wk, 42.50.Ct, 05.40.Jc

I. INTRODUCTION

An optomechanical system is characterized by an interac-
tion between light and mechanical motion [1,2]. The recent
interest in such systems was initiated by the efforts to detect
gravitational waves [3,4]. The field has now taken on a
life of its own, especially since the observation of quantum
effects in mechanical systems is nearly within experimental
reach. Besides the potential for technological innovation,
the possibility to study mechanical systems in the quantum
regime [1,2] could provide insight into the fundamentals of
quantum mechanics [5,6].

The canonical optomechanical system consists of an optical
cavity where one of the end mirrors is free to move [7,8]. When
light from a laser enters the cavity, the light exerts a force on
the movable mirror. As the mirror moves, the cavity length
changes, altering the resonance frequency of the cavity and
thus the optical intensity in the cavity. This in turn changes the
optical force on the mirror such that the optical and mechanical
dynamics are coupled. Experimental studies of this system
[9–14] are now getting close to observing quantum effects due
to the optomechanical coupling.

Other experimental realizations of coupled optical and
mechanical degrees of freedom have emerged over the past
decade. One realization includes placing a delicate membrane
inside an ordinary optical cavity with fixed end mirrors [15,16].
This has the advantage of not having to combine the flexibility
needed for the mechanical oscillator with the rigidity of a
high-finesse cavity mirror. We will refer to this setup as
the membrane-in-the-middle geometry. Other examples in-
clude mechanical breathing modes in toroidal microresonators
[17,18], nanobeams coupled to microwave resonators in su-
perconducting circuits [19,20], optical forces on free-standing
waveguides [21,22], and coupling to collective movement of
cold atoms in an optical lattice [23,24].

One of the major goals in the field of optomechanics
is the observation of radiation-pressure shot noise (RPSN).
This is the radiation-pressure fluctuations experienced by
the mechanical oscillator due to photon number fluctuations.
Equivalently, RPSN is the quantum back-action of an optical
displacement measurement [25]. One approach to observe

RPSN would be to measure a correlation between photon
number fluctuations (shot noise) in the optical field and the
position fluctuations of the mechanical oscillator. The main
obstacle to observing this correlation is that the shot noise–
induced fluctuations of the mechanical oscillator are typically
very small compared to thermal fluctuations associated with
the mechanical damping. To detect such a correlation in the
movable-mirror geometry, Heidmann et al. [26] proposed
using two optical beams, one strong signal beam and one
weak meter beam. The position fluctuations of the mechanical
oscillator induced by the signal beam would be detected with
the meter beam. If the beams are exactly at the cavity mean
resonance frequency, a correlation between the fluctuations in
the signal beam intensity and the phase quadrature in the meter
beam will be due to RPSN alone.

The idea presented by Heidmann et al. [26] has been tested
in the classical domain [27]. It was shown experimentally that
this scheme works when imposing additional classical noise
in the beam, but correlations due to the smaller quantum shot
noise have not yet been observed. A more indirect observation
of RPSN was achieved in a cold atom experiment [23] through
the measurement of RPSN-induced heating of the atomic
ensemble.

In this article, we report theoretical studies of an experiment
similar to the one proposed in Ref. [26]. We consider a
two-sided cavity, where the cavity mode is driven by one
rather than two beams and coupled to a mechanical oscillator.
We examine the cross-correlation between two quadratures
of the cavity output field, studying the general case where
the beam is not at resonance with the cavity. The qualitative
features of the various contributions to the cross-correlation
are explored, and we determine under which circumstances the
RPSN contribution can dominate over the contribution from
thermal noise. This is quantified by simple figures of merit
that can be used to determine the parameter values needed
in such an experiment. Furthermore, we compare the RPSN
contribution to the unwanted contribution from classical noise
in the laser. Finally, we also propose a modified setup for
the membrane-in-the-middle geometry in which two optical
modes couple to the mechanical oscillator with opposite
signs. This has the potential to overcome the problem of
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static mechanical bistability [16,28], as well as to significantly
reduce the contribution from classical laser noise.

The article is organized as follows: In Sec. II, we present
the model and briefly discuss its properties. Section III
gives details on the detection scheme, presents the various
contributions to the cross-correlation, and shows how to
minimize the thermal noise contribution. The comparison of
the quantum and thermal contributions is given in Sec. IV,
whereas Sec. V contains the comparison to the contribution
from classical laser noise. In Sec. VI, the new two-mode setup
is presented. Our conclusions are presented in Sec. VII, and
mathematical details can be found in Appendixes A and B.

II. MODEL

We consider one optical mode in a two-sided cavity
coupled linearly to the position of a mechanical oscillator.
The Hamiltonian is

Ĥ = h̄ωMĉ†ĉ + h̄(ωC + Aẑ)(â†â − 〈â†â〉) + Ĥκ + Ĥγ , (1)

where ĉ (â) is the annihilation operator for the mechanical
(optical) oscillator with frequency ωM (ωC). The dimensionless
position operator of the mechanical oscillator is ẑ = ĉ + ĉ† and
A is a coupling constant. Ĥκ and Ĥγ contain the couplings to an
optical and mechanical bath, respectively, and describe drive
and/or decay of the oscillators. In the membrane-in-the-middle
setup [15,16], when the cavity frequency depends linearly on
membrane position, this model is valid in the limit of small
membrane reflectivities.

In the Markov approximation, input-output theory [29,30]
gives the quantum Langevin equations

˙̂a = −
(

κ

2
+ iωC

)
â − iAẑâ + √

κLâin,L

+√
κRâin,R + √

κMâin,M

˙̂c = −
(

γ

2
+ iωM

)
ĉ − iA(â†â − 〈â†â〉) + √

γ η̂. (2)

Here, âin,L (âin,R) is the input mode at the left- (right-) hand side
of the cavity. See Fig. 1 for a schematic picture of the input-
output modes. The decay rate due to a finite transmission of the
end mirrors is characterized by κL and κR. We have included a

FIG. 1. (Color online) Schematic overview of the model. The
optical cavity mode â is coupled to three input modes and to the
position fluctuations ẑ of the mechanical oscillator, represented in
this case by a membrane in the middle. We imagine the cavity being
coherently driven by a laser on the left-hand side (see Fig. 2) such
that the input mode âin,L is the sum of a mean amplitude, classical
laser noise, and quantum noise. The mode âin,R simply represents
quantum noise entering the cavity from the right-hand side, whereas
âin,M represents quantum noise associated with other types of decay.

FIG. 2. (Color online) Schematic overview of the experiment
considered. The cavity mode is coherently driven by a laser from
the left-hand side. One quadrature X̂θR

of the transmitted beam
and one quadrature ŶθL

of the reflected beam are measured through
homodyne detection. The RPSN felt by the mechanical oscillator can
be detected through the cross-correlation of the fluctuations in the
two quadratures.

third decay channel of strength κM, which can describe optical
loss, e.g., due to scattering of photons into other optical modes
or absorption in the end mirrors or membrane. The input mode
âin,M is the associated quantum noise operator. The total decay
rate of the cavity mode is the sum of the contribution from
each port, i.e., κ = κL + κR + κM. The optical output modes
are given by

âout,i(t) = √
κi â(t) − âin,i(t), i = L,R,M. (3)

The mechanical input mode η̂ describes noise from the
mechanical bath. In the case of high mechanical quality factor
ωM/γ , we can assume

〈η̂(t)η̂†(t ′)〉 = (nth + 1)δ(t − t ′)
(4)〈η̂†(t)η̂(t ′)〉 = nthδ(t − t ′),

where nth is the mean number of phonons in the absence of
optomechanical coupling, determined by the temperature of
the mechanical bath.1

We will assume that the cavity mode is driven at the
frequency ωD from the left-hand side of the cavity. See Fig. 2
for a schematic setup. Thus, we can write

âin,L(t) = e−iωDt [āin(t) + ξ̂L(t)]
(5)

âin,i(t) = e−iωDt ξ̂i(t), i = R,M.

We write the coherent state amplitude as āin(t) = ā0 + δx(t) +
iδy(t), where ā0 is defined to be constant and real such that
the real functions δx(t) and δy(t) describe classical amplitude
and phase fluctuations of the drive, respectively, e.g., arising
from technical laser noise. The noise operators ξ̂i satisfy

〈ξ̂i(t)ξ̂
†
i (t ′)〉 = (nC + 1)δ(t − t ′),

(6)
〈ξ̂ †

i (t)ξ̂i(t
′)〉 = nCδ(t − t ′),

to a good approximation, where nC is the thermal occupation
number at the cavity resonance frequency [30]. We will make
the experimentally relevant assumption that h̄ωC � kBT and
set nC to zero. We will also assume that the classical amplitude
and phase noise is white, since we are only interested in the

1The thermal phonon occupation number is nth = [eh̄ωM/(kBT ) −
1]−1, where T is the temperature of the mechanical bath.
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noise around the mechanical frequency ωM. We denote the
strength of the classical noises by CX and CY :

〈δx(t)δx(t ′)〉 = CXδ(t − t ′),
(7)

〈δy(t)δy(t ′)〉 = CY δ(t − t ′),

where CX and CY are typically both functions of the laser
power. We assume the amplitude and phase noise to be
uncorrelated.

In the frame rotating at the optical drive frequency, we
write the cavity amplitude as the sum of its mean value and
a fluctuating part, â(t) = e−iωDt (ā + d̂(t)). When we neglect
the small terms d̂†d̂ and d̂ ẑ, the linearized equations of motion
become

˙̂d = −
(

κ

2
− i�

)
d̂ − iαẑ + √

κL(δx + iδy + ξ̂L)

+√
κRξ̂R + √

κMξ̂M

˙̂c = −
(

γ

2
+ iωM

)
ĉ − i(α∗d̂ + αd̂†) + √

γ η̂. (8)

Here, the detuning � = ωD − ωC, the coupling α ≡ Aā, and
the mean cavity amplitude ā = 〈â〉 = √

κLā0/(κ/2 − i�).
Note that at nonzero detuning �, the mean cavity amplitude ā

is phase shifted relative to the incident amplitude by a phase
φ given by

φ = arctan
2�

κ
. (9)

The solutions to the equations of motion are given in
Eq. (A1) of Appendix A. They can be expressed in terms of the
mechanical susceptibility2 χM[ω] = [γ /2 − i(ω − ωM)]−1,
the cavity susceptibility χC[ω] = [κ/2 − i(ω + �)]−1, and the
optomechanical “self-energy”

�[ω] = −i|α|2(χC[ω] − χ∗
C[−ω]). (10)

We will let γopt denote the additional damping of the me-
chanical oscillator due to the optomechanical interaction. In
the weak-coupling limit where |γopt| � κ,ωM, the mechanical
frequency and damping rate are shifted by δωM = Re�[ωM]
and γopt = −2 Im�[ωM], respectively [31]. We will assume to
be in this limit and let

ω̃M = ωM + δωM
(11)

γ̃ = γ + γopt

denote the effective mechanical frequency and damping rate.
The effective mean phonon number becomes

nM = γ nth + γoptnopt

γ̃
, (12)

where nopt is given in Eq. (A15). In the absence of classical
laser noise, nopt = −(4ωM�|χC[ωM]|2)−1 is a measure of the

2We define the Fourier transform as f̂ [ω] = ∫ ∞
−∞ dtf̂ (t)eiωt and

f̂ †[ω] = ∫ ∞
−∞ dtf̂ †(t)eiωt such that (f̂ †[−ω])† = f̂ [ω]. The inverse

transform is f̂ (†)(t) = 1
2π

∫ ∞
−∞ dωf̂ (†)[ω]e−iωt .

effective temperature of the RPSN [30,31]. At a sufficiently
large positive �, the effective damping γ̃ becomes negative
and the mechanical oscillator becomes unstable.3 At negative
�, the optical damping γopt is positive, leading to cooling of
the mechanical motion.

III. DETECTING RADIATION-PRESSURE SHOT NOISE

As proposed by Heidmann et al. [26], RPSN on the
mechanical oscillator can be detected by a cross-correlation
measurement of the outgoing beams from the cavity. We
consider a similar detection scheme here. The general idea
is presented in subsection III A, and subsection III B provides
a motivation. In subsection III C, we show why mechanical
thermal noise poses a problem and how it can be avoided.
In subsection III D, we present a modified version of the
experiment and give general expressions for the various
contributions to the cross-correlation function.

A. General scheme

Figure 2 shows a simplified schematic of the most general
setup we consider. We assume that the quadrature

X̂θR (t) = ei(ωDt−θR)âout,R(t) + e−i(ωDt−θR)â
†
out,R(t) (13)

of the transmitted beam is measured through homodyne
detection, with some as-yet-unspecified local oscillator phase
θR. The fluctuations around the mean value of X̂θR (t) can be
written

δX̂θR (t) = e−iθR d̂out,R(t) + eiθR d̂
†
out,R(t), (14)

where d̂out,R(t) = √
κRd̂(t) − ξ̂R(t). Similarly, on the left-hand

side of the cavity, we assume that the quadrature fluctuation

δŶθL (t) = e−iθL d̂out,L(t) + eiθL d̂
†
out,L(t) (15)

is measured through homodyne detection. Here, d̂out,L(t) =√
κLd̂(t) − (δx(t) + iδy(t) + ξ̂L(t)).
For the detection of RPSN, we examine the Fourier

transform of the cross-correlation of the two quadrature
fluctuations δX̂θR and δŶθL defined above. Since they in general
do not commute, it is important to note that a measurement
will correspond to the symmetrized cross-correlation. Hence,
we study the function

S[ω] = 1

2

∫ ∞

−∞
dteiωt 〈{δX̂θR (t),δŶθL (0)}〉

= 1

4π

∫ ∞

−∞
dω′〈{δX̂θR [ω],δŶθL [ω′]}〉, (16)

where the brackets denote the anticommutator. In practice,
S[ω] can easily be measured by multiplying the complex

3In this case, nonlinear effects become important and the oscillator
settles into periodic self-sustained oscillations. See Ref. [32] and
references therein.
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Fourier-transforms of time traces of δX̂θR (t) and δŶθL (t).4 We
choose not to normalize S[ω] by the autocorrelators as in
Ref. [26], since we are not only looking for a nonzero value
but are also interested in the qualitative frequency dependence,
which is complicated by normalization. Also, comparing the
size of the signal for different parameter values can be of
interest when it comes to the problem of technical noise.

B. Motivation

The interaction part of the Hamiltonian (1) can in the
linearized case be written Ĥint = −l0ẑF̂ , where the optical
force operator is

F̂ = −h̄|α|
l0

(e−iφ d̂ + eiφd̂†), (17)

and l0 is the size of the zero-point fluctuations of the oscillator.
We now briefly motivate how the detection of optomechanical
correlations, i.e., correlations between the optical force F̂ and
the mechanical oscillator position ẑ, can be inferred from the
measurement of S[ω].

We consider a simplified situation where the laser is on
resonance with the cavity (� = 0). In addition, we neglect
the quantum vacuum noise ξ̂i and the classical phase noise
δy(t). Let us at first assume that the classical amplitude noise
δx is simply a periodic signal at frequency ωN, i.e., δx(t) ∼
cos(ωNt). Furthermore, we let θR = 0, such that X̂θR is the
intensity quadrature on the right-hand side, and θL = π/2 such
that ŶθL is the phase quadrature on the left-hand side. Finally,
we assume that the cavity decay rate is much larger than the
oscillation frequency of δx and the resonance frequency of
the mechanical oscillator, i.e., κ � ωN,ωM . We drop hats on
operators in the discussion below, since all quantum effects
are neglected.

In this simplified case, the quadrature δX0 is simply
proportional to the optical force F (t), which again is pro-
portional to δx(t). On the other hand, the reflected phase
quadrature is proportional to the position of the mechanical
oscillator, δYπ/2 ∼ z(t). The cross-correlation between the two
quadratures becomes

〈{δX0(t),δYπ/2(0)}〉 ∼ 〈F (t)z(0)〉. (18)

This means that the function S[ω] is the Fourier transform of
the cross-correlation between the optical force and the position
of the oscillator.

We can take this simple analysis one step further and
consider what kind of qualitative behavior we can expect
for the function S[ω]. The force is simply proportional to
the signal δx such that F (t) ∼ cos(ωNt). If we neglect the
mechanical bath and assume γ,|ωN − ωM| � ωM, the position
of the mechanical oscillator is

z(t) ∼ |χM[ωN]| cos(ωNt − λ(ωN)). (19)

4From the cross-correlation theorem, the measurement of S[ω] is
given by the product δX̂θR,τ [ω]δŶ ∗

θL,τ [ω], where the windowed Fourier
transforms are based on a sampling time τ . Another possibility is of
course to calculate the correlation function in real time and then
determine its Fourier transform.

This is phase shifted relative to the force, where λ(ωN) is given
by

λ(ωN) = arctan
γ /2

ωM − ωN
. (20)

As expected for a damped and driven harmonic oscillator,
λ ≈ 0 for frequencies ωM − ωN � γ , λ = π/2 for ωN = ωM,
and λ ≈ π for ωN − ωM � γ .

Interpreting the expectation value in Eq. (16) as a time
average, one arrives at S[ω] = S̃[ω] + S̃∗[−ω], with

S̃[ω] ∼ ωM − ωN + iγ /2

(γ /2)2 + (ωN − ωM)2 δ(ω − ωN). (21)

Remember that we assumed δx(t) ∼ cos(ωNt). In the relevant
situation where δx(t) represents white noise, the force is
driving the oscillator at all frequencies simultaneously. The
real part of the Fourier transformed cross-correlation S[ω]
will then be proportional to |χM[ω]| cos λ(ω), which has a sign
change at the mechanical frequency ωM. The imaginary part
will be proportional to |χM[ω]| sin λ(ω), which is a Lorentzian
centered at ωM.

The above analysis gives an idea of how optomechani-
cal correlations manifest themselves in the function S[ω].
However, we only considered a very simplified case, and
the general situation is more complicated. In addition, we
only took classical noise into account, but for the purpose
of detecting RPSN, we are looking for correlations between
quantum optical noise and oscillator position. It turns out that
in the special case we analyzed above, the result is valid also
for quantum noise. However, we will see that optomechanical
correlations of quantum origin can actually be distinguished
from their classical counterparts under certain conditions.

In general, to affirm that photon shot noise in the cavity
influences the mechanical oscillator fluctuations, it is simply
enough to prove that correlations exist between the position
operator ẑ and the vacuum noise operators ξ̂i which are the
sources of the shot noise. We will see that, in the general
case, S[ω] contains such correlation functions, and we will
determine under which circumstances additional terms can be
neglected.

C. The problem of thermal noise

In the simplified example in the previous section, the trans-
mitted intensity quadrature was independent of the oscillator
position. This is always the case when the detuning � is
exactly zero, as noted by Heidmann et al. [26]. In general
however, both quadratures δX̂θR and δŶθL depend on the
oscillator position ẑ. This gives rise to a term in S[ω], denoted
Sz,z[ω] below, that is proportional to the spectral density of the
mechanical oscillator, which is typically dominated by thermal
noise due to the mechanical bath. If this term is much larger
than the terms originating from optomechanical correlations,
RPSN detection by this method becomes difficult. However,
we now show that the thermal noise contribution can be made
to vanish not only for zero detuning but also for any detuning
�. This will permit the observation of the optomechanical
correlations.

From Eq. (8), we see that the cavity field fluctuations d̂

depend on the position operator ẑ, the quantum vacuum noise
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ξ̂i , and the classical laser noise δx,δy. Since the equations of
motion are linear, we can focus on the part that depends on ẑ

and ignore the other terms. The cavity field fluctuations then
become

d̂(t) = −iα

∫ t

−∞
dτe−(κ/2−i�)(t−τ )ẑ(τ ). (22)

Let us first consider the bad cavity limit κ � ωM, where the
cavity field follows the motion of the oscillator adiabatically.
In this limit, a general quadrature of the cavity field becomes

e−iθ d̂(t) + eiθ d̂†(t) = −2|α| sin(θ − 2φ)√
(κ/2)2 + �2

ẑ(t). (23)

This shows that in the bad cavity limit, choosing θR(θL) to
be 2φ makes δX̂θR (δŶθL ) independent of the position ẑ, such
that the thermal noise contribution in S[ω] vanishes. This also
connects smoothly with the resonant case � = 0, where the
intensity quadrature (θ = φ = 0) becomes independent of ẑ.

If the experiment is not in the bad cavity limit, the picture
is more complicated, but it is still possible to avoid the thermal
noise. We show this by first assuming that the motion of the
oscillator is given simply by z(t) ∼ cos(ωNt), i.e., a harmonic
oscillation at frequency ωN. Again, we drop operator hats as
everything is considered to be classical. The cavity quadrature
given by θ becomes

e−iθ d(t) + eiθd†(t) = −2|α||f (θ )|z(t − ρ(θ )/ωN), (24)

where f (θ ) = χC[ωN]χ∗
C[−ωN]((κ/2 − iωN) sin θ̃ − � cos θ̃)

and θ̃ = θ − φ is the quadrature phase measured relative to the
phase of the intensity quadrature. We observe that there is a
phase shift ρ(θ ) between the oscillator motion and the cavity
field fluctuations, defined by exp(iρ(θ )) = f (θ )/|f (θ )|. Note
again that in the bad cavity limit κ � ωN, the choice θ = 2φ

makes the prefactor (|f (θ )|) vanish.
In the general case, when examining the cross-correlation

〈δXθR (t)δYθL (0)〉, one finds that the term symmetric in time,
which corresponds to the real part of S[ω], vanishes when
ρ(θR) − ρ(θL) = ±π/2, whereas the antisymmetric part, cor-
responding to the imaginary part of S[ω], vanishes when
ρ(θR) − ρ(θL) = 0,π . The latter is always the case when
θR = θL. The former criterion demands that the two quadrature
phases satisfy[(

κ

2

)2

+ ω2
N + �2

]
cos(θ̃R − θ̃L) − κ� sin(θ̃R + θ̃L)

−
[(

κ

2

)2

+ ω2
N − �2

]
cos(θ̃R + θ̃L) = 0. (25)

By choosing one of the quadratures, this equation gives
the other quadrature for which Re S[ω] will vanish. The
physical interpretation is that the two quadratures δXθR (t) and
δYθL (t) then measure orthogonal quadratures of the mechanical
oscillator’s motion.

In the toy example above, we made the assumption z(t) ∼
cos(ωNt). In reality, the oscillator motion is a noisy signal and
not restricted to one frequency. If we still want the real part of
the cross-correlation S[ω] to vanish, Eq. (25) must be fulfilled
for all frequencies ωN. This is only possible if either θR or θL

is equal to φ, i.e., the intensity quadrature in the cavity. The

natural choice is then θR = φ, since this can be achieved simply
by replacing the homodyne detection on the right-hand side
with a photomultiplier and recording the intensity fluctuations.
For � �= 0, the remainder of Eq. (25) then dictates the other
quadrature to be θL = 2φ. To locate the correct θL, one
possibility is to drive the oscillator mechanically and look for
the quadrature phase where the strong signal from the driven
oscillator disappears in Re S[ω]. This null can be maintained
via a servo loop throughout the course of the experiment
provided that the external mechanical drive is at a frequency
well away from the frequencies of interest.

Let us also mention that for a mechanical oscillator with
a high quality factor ωM/γ , the requirement that one of the
quadrature phases must be φ can possibly be relaxed by
only demanding Eq. (25) to be valid for ωN = ωM. In that
case, the thermal contribution to Re S[ω] only approximately
vanishes for frequencies close to the mechanical frequency.
The calibration procedure mentioned above should also work
in that case, but then only for drive frequencies close to the
mechanical resonance frequency. Using θR = φ and θL = 2φ

does, however, also have the advantage that both angles
are known, which is useful when trying to fit theoretical
expressions to experimental results.

D. General expressions

From the above discussion of the thermal noise contri-
bution, we can conclude that it is favorable to let δX̂θR be
the fluctuations in the intensity quadrature, both for zero and
nonzero detuning �. This means that θR = φ, and we will
restrict ourselves to this situation from now on. We also rename
the quadratures by letting δX̂φ → δX̂ and δŶθL → δŶθ . Hence,
we consider a modified version of the experiment, shown in
Fig. 3, where the intensity fluctuations δX̂ are measured by
a photodetector. Let us, however, mention that the general
expressions for the contributions to S[ω] presented below are
valid also for arbitrary θR but with different coefficients.

In terms of ẑ, ξ̂i , δx, and δy, the correlation function
〈δX̂[ω]δŶθ [ω′]〉 can be written as a sum of five contributions:

〈δX̂[ω]δŶθ [ω′]〉 = 〈δX̂[ω]δŶθ [ω′]〉q,q + 〈δX̂[ω]δŶθ [ω′]〉cl,cl

+〈δX̂[ω]δŶθ [ω′]〉q,z+〈δX̂[ω]δŶθ [ω′]〉cl,z

+〈δX̂[ω]δŶθ [ω′]〉z,z. (26)

Here, the label “q” refers to the quantum fields ξ̂i , the label “cl”
refers to the classical fields δx,δy, and “z” refers to the position
ẑ of the mechanical oscillator. We have grouped the terms

FIG. 3. (Color online) Modified version of the experiment con-
sidered, where the transmitted intensity fluctuations are measured by
a photodetector.
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in this way to identify the signature of RPSN. The first term
contains correlators of the kind 〈ξ̂i[ω]ξ̂ †

i [ω′]〉, with i = L,R,M.
It turns out that 〈δX̂[ω]δŶθ [ω′]〉q,q = 0. Thus, in the absence of
the nonlinearity introduced by the radiation-pressure-induced
motion of the mechanical oscillator, there is no correlation
between quantum noise in the outgoing quadratures on
each side. The second term is the correlation between the
classical laser noise in the two quadratures, containing the
correlators 〈δx[ω]δx[ω′]〉 and 〈δy[ω]δy[ω′]〉. The third term,
〈δX̂[ω]δŶθ [ω′]〉q,z, contains correlations between the quantum
vacuum noise and the oscillator position, 〈ξ̂i[ω]z[ω′]〉, which
are the optomechanical correlations that we would like to
detect. The term 〈δX̂[ω]δŶθ [ω′]〉cl,z contains correlation func-
tions of the kind 〈δx[ω]ẑ[ω′]〉, which are also optomechanical
correlations, but due to classical noise in the drive, not
photon shot noise. The last term (∼〈ẑ[ω]ẑ[ω′]〉), discussed
in the previous section, is proportional to the position spectral
density and appears as a result of detecting the mechanical
oscillator position fluctuations in both quadratures. Although
it vanishes at zero detuning �, this term is generically
nonzero.

By using Eqs. (4), (6), (7), and (A1), we can evaluate the
expectation values and write the cross-correlation S[ω] as

S[ω] = Sq,z[ω] + Scl,cl[ω] + Scl,z[ω] + Sz,z[ω], (27)

where the terms correspond to the terms in Eq. (26). The
correlation function S[ω] is a complex quantity, where the
real(imaginary) part is symmetric(antisymmetric) in ω. We
will later use the abbreviations

R[ω] = Re S[ω]
(28)

I [ω] = Im S[ω]

and similarly for the various contributions in Eq. (27), i.e.,
Rq,z[ω] = Re Sq,z[ω], etc.

The general expression for S[ω] can be found in
Appendix A. We are interested only in its behavior around
the mechanical frequency ωM, where the oscillator is most
susceptible to the radiation-pressure noise. Considering a
mechanical oscillator with a high quality factor, we assume
γ̃ � κ,ωM and restrict ourselves to frequencies where |ω −
ωM| � κ,ωM. This greatly simplifies the expressions. The (z,z)
contribution becomes

Sz,z[ω] = R
(th)
1 + iI

(th)
1

(ω − ω̃M)2 + (γ̃ /2)2
. (29)

The real constants R
(th)
1 and I

(th)
1 are given in Eq. (A12) of

Appendix A. This means that in the vicinity of the mechanical
frequency ωM, both the real and imaginary parts of Sz,z[ω]
are Lorentzians centered around ω̃M with width γ̃ . This is as
expected, since Sz,z[ω] originates from the spectral density
of the mechanical oscillator. This term contains the thermal
noise contribution to the cross-correlator S[ω], as the spectral
density of the oscillator is typically dominated by thermal
fluctuations.

The term we would like to detect is

Sq,z[ω] = R
(q)
1 + iI

(q)
1 + R

(q)
2 (ω − ω̃M)

(ω − ω̃M)2 + (γ̃ /2)2
, (30)

where the real constants R
(q)
1 ,R

(q)
2 ,I

(q)
1 can be found in

Eq. (A16). The imaginary part of Sq,z[ω] is also a Lorentzian.
The real part is a sum of two terms, one proportional to the
above-mentioned Lorentzian and one term which changes sign
at ω̃M. We note at this point the important fact that when
|R(q)

1 /R
(q)
2 | is small compared to γ̃ , the real parts of Sq,z[ω] and

Sz,z[ω] differ qualitatively and are in principle distinguishable.
The term containing correlations between classical noise in the
drive and oscillator position becomes

Scl,z[ω] = R
(cl)
1 + iI

(cl)
1 + (

R
(cl)
2 + iI

(cl)
2

)
(ω − ω̃M)

(ω − ω̃M)2 + (γ̃ /2)2
. (31)

It is similar to Sq,z[ω], but with different coefficients and an
additional term in the imaginary part. An important reason for
the difference between the quantum and classical contributions
Sq,z[ω] and Scl,z[ω] is that classical noise enters the cavity only
from the left-hand side, whereas quantum noise enters through
all ports. Thus, an asymmetric cavity with κR > κL can be
favorable in terms of increasing the relative importance of the
quantum versus classical contributions. Apart from this, there
is no strong dependence on the relative size of κL, κR, and
κM. All plots in this article therefore refer to the case κM = 0
and κL = κR = κ/2. The term Scl,cl[ω] has no sharp features
around the mechanical frequency and produces only a smooth
background.

The detection of RPSN now comes down to being able to
identify the presence of the term Sq,z[ω] in the total signal
S[ω] being measured.

IV. QUANTUM VERSUS THERMAL CONTRIBUTION

In this section, we ignore classical noise in the drive, such
that Scl,z[ω] = Scl,cl[ω] = 0, and focus on the two remaining
contributions. We have observed that Rz,z[ω] and Rq,z[ω]
in principle can be distuingished even at � �= 0, whereas
the imaginary parts Iz,z[ω] and Iq,z[ω] are indistinguishable.
However, Rz,z[ω] is proportional to the mean phonon number
nM, which, depending on the temperature T of the mechanical
bath, can be a macroscopic number. The contribution Rq,z[ω]
will therefore be negligible in most cases. In other words,
the fluctuations of the oscillator due to the mechanical bath
are usually much larger than those caused by a fluctuating
photon number in the cavity, and consequently the latter
is negligible. However, we are not measuring the position
fluctuations directly, but rather the cross-correlations between
the outgoing quadratures δX̂ and δŶθ . In subsection III C, we
observed that at special points in parameter space the term
Rz,z[ω] vanishes. Heidmann et al. [26] noted that this occurs
at resonance, i.e., � = 0, where δX̂ is independent of ẑ. We
note that for nonzero detuning, it also occurs at the critical
angle θ = θc, where θc = 2φ modulo π and given by

θc = arctan
�/κ

1/4 − (�/κ)2 + kπ, k ∈ Z. (32)

This equation can be viewed in two ways. It gives the
appropriate detuning � to make Rz,z[ω] vanish for a given
cavity linewidth κ and angle θ . For example, when θ = π/2,
this detuning is |�| = κ/2. Equivalently, Eq. (32) tells us
which quadrature to measure on the left-hand side of the cavity
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FIG. 4. (Color online) The critical angle θc as a function of
detuning �. The angle θc is multivalued, since θ → θ + π gives
δŶθ (t) → −δŶθ (t) and hence S[ω] → −S[ω].

for a given �/κ . Figure 4 shows the critical angle θc as a
function of detuning �.

Although the criteria for vanishing Rz,z[ω] can be de-
termined quite easily, it does not mean that experimental
detection of Rq,z[ω] becomes straightforward. There is always
an uncertainty in experimental parameters as well as drift and
fluctuations in laser frequency. The question is whether one
can get sufficiently close to these criteria in order to claim that
the correlation Rq,z[ω] has been detected. In the following, we
therefore aim to determine what sufficiently close means in
quantitative terms.

A. Zero detuning

The unwanted contribution Rz,z[ω] changes sign with � and
vanishes when � = 0. One might therefore be able to make
Rz,z[ω] small enough that Rq,z[ω] is the dominant contribution
to the cross-correlation measurement by choosing the detuning
as close to � = 0 as possible. Of course, a fluctuating and/or
drifting � might pose a challenge in an actual experiment.

In the limit |�| � κ,ωM, the ratio |R(q)
1 /(R(q)

2 γ̃ )| → 0, such
that the quantum contribution Rq,z[ω] will have a sign change
at ω̃M. In fact, Sq,z takes exactly the form of the simple
force-position correlation discussed in subsection III B but
with ωM → ω̃M and γ → γ̃ . Also, Sq,z[ω] is proportional to
sin θ in this limit, such that θ = π/2 will maximize the signal,
as was also noted in Ref. [26].

Figure 5 shows the two contributions Rq,z[ω] and Rz,z[ω],
as well as the total signal R[ω] = Rq,z[ω] + Rz,z[ω], for a
detuning � = −0.01κ . The parameters chosen are relevant to
the present membrane-in-the-middle setup [15,16]. In the right
panel, the mean number of photons nphoton = |ā|2 in the cavity
is 100 times larger than in the left panel, corresponding to a
difference in laser power. The abscissa shows the frequency
deviation ω − ωM in units of the bare mechanical damping γ .
In the case displayed in Fig. 5, we are in the regime where
γopt,δωM � γ , where δωM is the “optical spring” frequency
shift and the linewidth increase γopt is a result of optical cooling
of the mechanical motion associated with the detuning being
negative [31]. In the top panel, Rq,z[ω] is shown, and we
observe that it is dominated by the R

(q)
2 term in Eq. (30). In
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FIG. 5. (Color online) The contributions Rq,z[ω] (upper panel)
and Rz,z[ω] (middle panel) and their sum R[ω] (lower panel).
We have used � = −0.01κ , ωM/κ = 3.2, ωM/γ = 106, A/ωM =
1.15 × 10−6, and θ = π/2. The temperature is 4.2 K and ωM/(2π ) =
1.2 MHz. The mean number of photons in the cavity (nphoton = |ā|2)
is 1010 (left panel) and 1012 (right panel). In the first case, the total
signal is dominated by Rz,z[ω], whereas in the second case Rq,z[ω]
dominates. In the absence of classical laser noise, a measured signal
as in the lower-right panel is a signature of RPSN.

the middle panel, the Lorentzian Rz,z[ω] is shown. Increasing
the photon number by a factor of 100, i.e., going from the
left to the right panel, we see that both Rq,z[ω] and Rz,z[ω]
become wider and are shifted further from ωM due to the
increase in γopt and δωM. We observe that the peak-to-peak
value of Rq,z[ω] is largely unchanged, whereas the height of
Rz,z[ω] is smaller when the photon number is increased. The
latter is due to increased optical cooling of the mechanical
oscillator. In the lower panel, the total signal R[ω] is shown.
On the left-hand side, the contribution Rz,z[ω] is dominant
and the total signal looks almost like a Lorentzian, albeit with
some asymmetry. On the right-hand side, Rq,z[ω] dominates,
and the total signal has a sign change and is clearly not a
Lorentzian. Assuming there is no classical noise in the drive, a
signal R[ω] as in the lower-right panel of Fig. 5 is a signature
of correlations between photon shot noise in the cavity and
position fluctuations of the mechanical oscillator.

From Eqs. (30) and (29), we can derive the peak-to-peak
value Pq of the contribution Rq,z[ω] and the height M of the
Lorentzian Rz,z[ω]. To be able to detect correlations between
photon shot noise and oscillator position, an important figure
of merit is the ratio Pq/M . We find that for |�| � κ,ωM,

Pq

M
= (κ/2)2 + ω2

M

2 (nM + 1/2) κ|�| , (33)

where the effective phonon number nM is given in Eq. (12).
When this ratio becomes larger than 1, the total signal R[ω] is

013818-7



K. BØRKJE et al. PHYSICAL REVIEW A 82, 013818 (2010)

dominated by Rq,z[ω]. In Fig. 5, this ratio is 0.34 (left panel)
and 5.42 (right panel).

Let us assume that the parameters ωM,κ,γ,nth are fixed and
we are free to change the detuning � and the optomechanical
coupling |α|. The latter can be varied by changing the input
power and hence the intracavity photon number. First, consider
the regime γopt � γ , where nM ≈ nth. In that case Pq/M is
simply inversely proportional to |�|. In the opposite regime,
γopt � γ , Eq. (33) becomes

Pq

M
≈ 2ωM|α|2

γ nth
[
(κ/2)2 + ω2

M

] + κ|α|2 , (34)

when assuming nM � 1. Note that in this regime (|�| � κ,ωM

and γ � γopt), the figure of merit is independent of �. The
reason is that an increase of � is compensated by additional
cooling of the oscillator. The ratio can be made larger by
increasing |α|,5 i.e., input power, and has a maximal value
of 2ωM/κ . It is worth noting that a decrease of |�| in this
regime does not necessarily pay off in an increased Pq/M .
For example, a decrease of |�| by a factor of 10 does not
significantly change this ratio in the examples shown in Fig. 5.
However, the overall signal gets larger and one might become
less sensitive to technical noise. In addition, when |�| gets
small enough, we eventually reach the point where γopt and γ

become comparable and Eq. (34) loses validity.

B. Finite detuning

At finite detuning �, the signal Rz,z[ω] vanishes when
θ = θc. We now investigate whether Rq,z[ω] is sufficiently
distinguishable from Rz,z[ω] also in this case, and how small
|θ − θc| must be for Rq,z[ω] to dominate.

We noted above that the correlation we seek to
detect, Rq,z[ω], is distinguishable from Rz,z[ω] when
|R(q)

1 /(R(q)
2 γ̃ )| � 1. For θ ≈ θc, this requirement becomes

ωMκ∣∣(κ/2)2 + �2 − ω2
M

∣∣ � 1. (35)

This can be satisfied in several ways, for example in the
resolved sideband limit ωM � κ with |�| � ωM. In an
experiment where the oscillator motion is dominated by
thermal fluctuations, the quadrature θ = θc can be located by
looking for an overall sign change in the total signal R[ω],
either by varying θ or, if θ is fixed, by varying �. Exactly
at θ = θc, one should be able to see the asymmetric features
originating from Rq,z[ω]. As mentioned earlier, the calibration
process for locating θc can be improved by strongly driving
the oscillator mechanically to temporarily amplify the (z,z)
contribution.

In Fig. 6, we show the real part of the cross-correlation R[ω]
and its contributions for � = −κ/2. In this case, θc = π/2.
In the left panel θ = θc − π/10, and in the right panel θ =
θc − π/100. We see that the unwanted contribution Rz,z[ω]
dominates in the first case, whereas Rq,z[ω] is dominant when
θ gets closer to θc.

5Note, however, that |α| is limited by our weak-coupling assumption
γ̃ � κ,ωM.
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FIG. 6. (Color online) The contributions Rq,z[ω] (upper panel)
and Rz,z[ω] (middle panel) and their sum R[ω] (lower panel). We have
used � = −0.5κ , ωM/κ = 3.2, ωM/γ = 106, and A/ωM = 1.15 ×
10−6. The temperature is 4.2 K and ωM/(2π ) = 1.2 MHz. The mean
number of photons in the cavity (nphoton = |ā|2) is 1010. The angle
θ is θc − π/10 (left panel) and θc − π/100 (right panel). In the first
case, the total signal is dominated by Rz,z[ω], whereas in the second
case, Rq,z[ω] dominates.

Again, the important figure of merit is the ratio between
the peak-to-peak value Pq of the contribution Rq,z[ω] and the
height M of the Lorentzian Rz,z[ω]. For δθ = |θ − θc| � 1,
it is

Pq

M
=

√
(ωMκ)2 + [

(κ/2)2 + �2 − ω2
M

]2

4(nM + 1/2)[(κ/2)2 + �2]δθ
. (36)

In Fig. 6, this ratio is 0.54 (left panel) and 5.44 (right panel).6

Figure 7 shows the ratio (36) as a function of � at
a temperature of 300 K with δθ = π/100 and ωM/(2π ) =
1.2 MHz. We have used ωM/κ = 1.6 and ωM/κ = 6.4 in the
left and right panels, respectively. Figure 8 shows the same
ratio, only at T = 4.2 K, giving significantly higher values. We
observe that for small ωM/κ , the ratio is not very dependent on
�, but for larger values of ωM/κ it has a peak at � = −κ/2. For
high temperatures, it also has a peak at � = −ωM. This is in
accordance with the fact that cooling of the mechanical motion
is most effective at � = −ωM when ωM/κ is large [31,33].
Note, however, that the condition � = −ωM with ωM � κ

does not satisfy Eq. (35).
From the above, we can conclude that it might be possible

to observe the correlation between photon shot noise and
oscillator position using a negative detuning � and θ = θc,
especially in the resolved sideband regime where ωM/κ is

6The value for the left panel is inaccurate, since δθ = π/10 is a bit
large for Eq. (36) to be valid.
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FIG. 7. (Color online) The ratio between the peak-to-peak value
Pq of Rq,z[ω] and the height M of Rz,z[ω] for ωM/κ = 1.6 (left panel)
and ωM/κ = 6.4 (right panel). The deviation from the critical angle θc

is δθ = π/100, ωM/γ = 106, A/ωM = 1.15 × 10−6, nphoton = 1010,
ωM/(2π ) = 1.2 MHz, and the temperature is 300 K.

large. We should point out that θc is susceptible to fluctuations
in the detuning �, as can be seen from Eq. (32). From this point
of view, it would be beneficial to choose |�| large compared
to the cavity linewidth κ , since dθc/d� → 0 when |�|/κ
becomes large (see Fig. 4). However, the choice of the detuning
� is also limited by other requirements, such as Eq. (35).

The potential insensitivity to laser frequency fluctuations
for large |�|/κ could offer an advantage of this method versus
performing the experiment at resonance. Another advantage
is a lower effective phonon number nM due to greater optical
cooling of the mechanical motion. On the other hand, the
reduced overall size of the signal, which reduces the signal to
(technical) noise ratio, might be a disadvantage.

V. QUANTUM VERSUS CLASSICAL CONTRIBUTION

Even if a signal as in the lower right panel of Figs. 5 and 6 is
detected, one needs to make sure that it represents a correlation
between the mechanical oscillator position and photon shot
noise, not classical laser noise. We now ignore the contribution
Sz,z[ω] and look at whether we can distinguish the classical
and quantum contributions. We again focus on the two cases
where the thermal signal Rz,z[ω] vanishes, � = 0 and, for
� �= 0, θ = θc.

A. Zero detuning

We saw earlier that Rq,z[ω] has a sign change at ω̃M

when |�| � κ,ωM, since |R(q)
1 /(R(q)

2 γ̃ )| → 0 in that limit. The
corresponding ratio for the classical signal Rcl,z[ω] becomes
|R(cl)

1 /(R(cl)
2 γ̃ )| = ωM/κ when |�| � κ,ωM. This means that

2 1.5 1 0.5
0

2

4

6

P
q / 

M

/
8 6 4 2

0

2

4

6

/

FIG. 8. (Color online) The ratio between the peak-to-peak value
Pq of Rq,z[ω] and the height M of Rz,z[ω] for ωM/κ = 1.6 (left panel)
and ωM/κ = 6.4 (right panel). The deviation from the critical angle θc

is δθ = π/100, ωM/γ = 106, A/ωM = 1.15 × 10−6, nphoton = 1010,
and the temperature is 4.2 K.

in the good cavity limit ωM/κ � 1 and close to resonance,
Rcl,z[ω] is approximately a Lorentzian [see Eq. (31)], and
the classical and quantum contributions are distinguishable.
This is a consequence of the cavity being two sided. In the
bad cavity limit ωM/κ � 1, the classical and quantum signals
Rq,z[ω] and Rcl,z[ω] cannot be distinguished, although it might
still be possible to exclude the classical laser noise contribution
from other types of measurement.

The ratio between the peak-to-peak values of Rq,z[ω] and
Rcl,z[ω] is

Pq

Pcl
=

√
(κ/2)2 + ω2

M

4κLCX

(37)

for |�| � κ,ωM. We observe that an asymmetric cavity with
κR > κL will reduce the relative contribution from classical
noise in this case. Equation (37) also suggests operating in the
resolved sideband regime, ωM/κ � 1.

The two points noted above are illustrated in Fig. 9,
which shows the quantum contribution Rq,z[ω], the classical
contribution Rcl[ω] = Rcl,z[ω] + Rcl,cl[ω], and their sum. We
have used ωM/κ = 0.64 and ωM/κ = 6.4 in the left and
right panels, respectively. The strength of the classical noise
was chosen to be CX = CY = 1, making it comparable to
the quantum noise. In the left panel, we observe that the
classical and quantum signals are of the same order, and it
is hard to distinguish them. In the right panel, the classical
contribution looks more like a (negative) Lorentzian, whose
height is smaller than the peak-to-peak value of the quantum
contribution.
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FIG. 9. (Color online) The contributions Rq,z[ω] (upper panel),
Rcl[ω] (middle panel), and their sum (lower panel). The detuning
is � = −0.01κ , ωM/γ = 106, A/ωM = 1.15 × 10−6, θ = π/2, and
nphoton = 1010. The ratio between mechanical frequency and cavity
linewidth is ωM/κ = 0.64 (left panel) and ωM/κ = 6.4 (right panel).
Note the qualitative difference between the two contributions in the
latter case.
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FIG. 10. (Color online) The contributions Rq,z[ω] (upper panel),
Rcl[ω] (middle panel), and their sum (lower panel). The detuning is
� = −κ/2, ωM/γ = 106, A/ωM = 1.15 × 10−6, nphoton = 1010, and
θ = θc. The ratio between mechanical frequency and cavity linewidth
is ωM/κ = 3.2 (left panel) and ωM/κ = 6.4 (right panel).

We should also mention that the imaginary parts Iq,z[ω]
and Icl,z[ω] differ qualitatively, since the former is simply a
Lorentzian. Examining the imaginary part I [ω] could therefore
provide a way of deciding whether the observed signal R[ω]
is of quantum or classical nature. See Appendix A for details.

B. Finite detuning

For angles θ close to θc, we know that the quantum
signal Rq,z[ω] is distinguishable from Rz,z[ω] when Eq. (35)
is satisfied. In this case, the coefficients R

(cl)
1 and R

(cl)
2 are

so complicated that an expression like Eq. (37) is not very
helpful. However, the relative size of the quantum and classical
contributions can always be examined by plotting the two
contributions. Figure 10 shows two examples, where � =
−κ/2, θ = θc = π/2, CX = CY = 1, and where ωM/κ = 3.2
(left panel) and ωM/κ = 6.4 (right panel).

We observe that the quantum contribution dominates in
both cases and that a large ratio ωM/κ seems to be favorable
also here.

VI. TWO OPTICAL MODES

As mentioned in the introduction, the most studied system
in optomechanics is the one where an optical cavity mode is
coupled to the motion of a movable end mirror [7–14]. The
membrane-in-the-middle geometry [15,16] is an alternative
setup where one avoids having to combine a high-finesse
cavity mirror and a delicate mechanical element. In both
geometries, it is beneficial to make the intracavity photon
number and hence the optomechanical coupling |α| as large as
possible for the observation of RPSN. This can be achieved by

increasing the power of the laser driving the cavity. However,
one problem with this is that the mean radiation pressure on the
mechanical oscillator increases, which leads to an increased
shift in its equilibrium position. This eventually leads to a static
instability [16,28] where more than one stable equilibrium
position exist. This effect limits the amount of laser power that
can be applied.

It turns out that there is a way to perform the membrane-
in-the-middle experiment with zero mean radiation pressure
on the membrane. The trick is to drive two optical modes
in the cavity whose coupling to the oscillator is of opposite
sign. In other words, the two eigenmode frequencies would
depend oppositely on the oscillator position [15]. It should
then be possible to increase the intracavity photon number
without worrying about the static instability and thus increase
the possibility of observing RPSN. Note that this is not possible
in the movable mirror setup, where the coupling always has
the same sign. If in addition, both modes are driven by the
same laser, e.g., by utilizing an acousto-optic modulator, the
classical noises in the two modes are correlated, whereas
the quantum noises are not. The classical noises in the two
cavity modes will then try to force the mechanical oscillator
in opposite directions in a synchronized way, resulting in
a small net displacement. This can significantly reduce the
oscillator fluctuations induced by classical laser noise and thus
improve the chances of observing the fluctuations induced
by photon shot noise. We briefly discuss this setup below.
Although it is somewhat specific to the membrane-in-the-
middle geometry, it may be of interest in other setups as well
[22,23].

We now consider two optical modes â and b̂ both coupled
to the mechanical oscillator,

Ĥ = h̄ωMĉ†ĉ + h̄(ωC,a + Aẑ)(â†â − 〈â†â〉)
+ h̄(ωC,b − Bẑ)(b̂†b̂ − 〈b̂†b̂〉) + Hκa

+ Hκb
+ Hγ , (38)

where the coupling constants A and B have the same sign.
If A〈â†â〉 = B〈b̂†b̂〉, the mechanical oscillator’s equilibrium
position is the same as in the absence of driving the cavity
modes. We again assume that the cavity is driven from the left,
with frequencies ωD,a and ωD,b for the two modes â and b̂,
and define the detunings �a = ωD,a − ωC,a and �b = ωD,b −
ωC,b. We assume that the two cavity modes are well separated
in frequency compared to their linewidths κa and κb and to the
detunings �a and �b, i.e., |ωC,a − ωC,b| � κa,b,|�a,b|.

There are now six input modes, âin,i(t) and b̂in,i(t), with
i = L,R,M. We write them as

âin,L(t) = e−iωD,a t [āin(t) + ξ̂a,L(t)],

b̂in,L(t) = e−iωD,b t [b̄in(t) + ξ̂b,L(t)],
(39)

âin,i(t) = e−iωD,a t ξ̂a,i(t), i = R,M,

b̂in,i(t) = e−iωD,b t ξ̂b,i(t), i = R,M,

where the quantum noise operators ξ̂j,i have the same
properties as before. If we assume that the classical noises
in the two beams are correlated, the coherent state amplitudes
are āin(t) = ā0 + δx(t) + iδy(t) and b̄in(t) = āin(t)b̄0/ā0. We
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have assumed that ā0 and b̄0 are real. Also, since we are
interested only in the noises δx and δy around the mechanical
frequency, we can neglect any effects due to different path
lengths for the two beams. We write the cavity amplitudes
as a mean and a fluctuating part, â = e−iωD,a t [ā + d̂a(t)]
and b̂ = e−iωD,b t [b̄ + d̂b(t)]. Linearization of the equations of
motion gives

˙̂da = −
(

κa

2
− i�a

)
d̂a − iαẑ + √

κa,Rξ̂a,R

+√
κa,L(δx + iδy + ξ̂a,L) + √

κa,Mξ̂a,M,

˙̂db = −
(

κb

2
− i�b

)
d̂b + iβẑ + √

κb,Rξ̂b,R

(40)

+√
κb,L

[
b̄0

ā0
(δx + iδy) + ξ̂b,L

]
+ √

κb,Mξ̂b,M,

˙̂c = −
(

γ

2
+ iωM

)
ĉ − i(α∗d̂a + αd̂†

a − β∗d̂b − βd̂
†
b) + √

γ η̂,

with α = Aā and β = Bb̄. The mean cavity amplitudes are

ā =
√

κa,L

κa,L/2 − i�a

ā0

(41)

b̄ =
√

κb,L

κb,L/2 − i�b

b̄0.

The condition stated above for a zero mean radiation pressure
on the oscillator is A|ā|2 = B|b̄|2.

The solutions to the equations of motion are given in
Appendix B, as well as exact results for the cross-
correlation (16) in the case of two optical modes. An interesting
feature is that when, in addition to A|ā|2 = B|b̄|2, κa,i =
κb,i , �a = �b are satisfied, the position operator ẑ becomes
independent of the classical noise δx and δy such that Scl,z[ω]
vanishes. The properties of the quantum and thermal contribu-
tions will be the same as discussed in Secs. III and IV. Although
this requires fine-tuning, one might be able to get close to
these conditions and thereby reduce the classical contribution
significantly.

VII. CONCLUDING REMARKS

We have presented a detailed theoretical study of a proposed
experiment designed to observe radiation-pressure shot noise
by detecting a correlation between photon shot noise in an
optical cavity mode and position of a mechanical oscillator.
The experiment involves the measurement of a cross-correlator
of two outgoing optical field quadratures from the cavity.
We have investigated the possibility of detecting radiation-
pressure shot noise by this method.

The cross-correlation measurement has contributions from
three noise sources: radiation-pressure shot noise, classical
radiation-pressure noise, and thermal noise in the mechanical
oscillator. We have determined how the radiation-pressure shot
noise contribution differs qualitatively and quantitatively from
the other contributions to this cross-correlator. As pointed
out in Ref. [26], the contribution from thermal noise disap-
pears when the drive frequency equals the cavity resonance
frequency. We found that in the general case of nonzero
detuning, it also disappears at a specific choice of quadratures

for the cross-correlation measurement. We have presented
figures of merit for when the shot noise contribution can
be expected to dominate over the thermal noise contribution
in the vicinity of these idealized situations. The choice
of parameters in the examples we presented is relevant to
present-day experiments [15,16] such that the observation of
radiation-pressure shot noise by this method should be within
reach.

The relative importance of classical laser noise versus
quantum shot noise has also been investigated. We find that
this can be diminished by the use of an asymmetric cavity
and/or a cavity of very high finesse. In addition, we proposed a
new setup for the membrane-in-the-middle geometry involving
two optical modes. This setup can overcome the problem of
static bistability and can potentially also reduce the unwanted
classical radiation-pressure noise significantly.
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APPENDIX A: MATHEMATICAL DETAILS IN THE CASE
OF ONE OPTICAL MODE

We begin by writing down the solution to the equations of
motion (8) in Fourier space:

ẑ[ω] = 1

N [ω]

[√
γ

(
χ−1∗

M [−ω]η̂[ω] + χ−1
M [ω]η̂†[ω]

)
− 2ωM(α∗χC[ω]ζ̂ [ω] + αχ∗

C[−ω]ζ̂ †[ω])
]

d̂[ω] = −χC[ω](iαẑ[ω] − ζ̂ [ω]). (A1)

We have defined the operator

ζ̂ [ω] = √
κL(δx[ω] + iδy[ω] + ξ̂L[ω])

+√
κRξ̂R[ω] + √

κMξ̂M[ω], (A2)

the susceptibilites χC[ω] = [κ/2 − i(ω + �)]−1 and χM[ω] =
[γ /2 − i(ω − ωM)]−1, and the functions

N [ω] = χ−1
M [ω]χ−1∗

M [−ω] + 2ωM�[ω],
(A3)

�[ω] = −i|α|2(χC[ω] − χ∗
C[−ω]).

In the weak coupling limit, −2iωMN−1[ω] can be thought
of as an effective mechanical susceptibility and �[ω] as the
optomechanical self-energy.

It is instructive to write out some of the terms in Eq. (26).
We begin with the (q,z) term,

〈δX̂[ω]δŶθ [ω′]〉q,z = −|α|−1√κReiθ�[ω]

×
(

〈ẑ[ω]ξ̂ †
L[ω′]〉 − √

κLχ∗
C[−ω′]

∑
i

√
κi〈ẑ[ω]ξ̂ †

i [ω′]〉
)
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− |α|−1√κLe−iφ�[ω′]

×
(

〈ξ̂R[ω]ẑ[ω′]〉 − √
κRχC[ω]

∑
i

√
κi〈ξ̂i[ω]ẑ[ω′]〉

)
.

(A4)

The summations are over i = L,R,M. We see that this term
consists of correlations we wish to detect, namely correlations
between the quantum vacuum noise of the electromagnetic
field and position of the mechanical oscillator. We have defined
the function

�[ω] = −i|α|2(ei(φ−θ)χC[ω] − e−i(φ−θ)χ∗
C[−ω]), (A5)

where φ is the complex phase of the mean cavity amplitude
ā. The term 〈δX̂[ω]δŶθ [ω′]〉cl,z contains correlation functions
of the kind 〈δx[ω]ẑ[ω′]〉, whereas the last term in Eq. (26)
is

〈δX̂[ω]δŶθ [ω′]〉z,z (A6)

= √
κLκR|α|−2�[ω]�[ω′]〈z[ω]z[ω′]〉. (A7)

We next present the terms in Eq. (27). The first term, which
is the term of interest, is

Sq,z[ω] = −ωM
√

κLκR

×
[

�[ω]

N [ω]
(e−i(φ−θ)χ∗

C[ω] + ei(φ−θ)χC[−ω])

+ �[−ω]

N [−ω]
(χC[ω] + χ∗

C[−ω])

]
. (A8)

The contributions from the classical noise in the drive, when
expressed by the functions

B±[ω] = e−iφχC[ω] ± eiφχ∗
C[−ω],

D±[ω] = e−iθ (1 − κLχC[ω]) ± eiθ (1 − κLχ∗
C[−ω]),

CB,B[ω] = (B+[ω]B+[−ω]CX − B−[ω]B−[−ω]CY ),

CB,D[ω] = (B+[ω]D+[−ω]CX − B−[ω]D−[−ω]CY ), (A9)

become

Scl,cl[ω] = −√
κLκRCB,D[ω]

Scl,z[ω] = 2ωM
√

κLκR

×
(

�[ω]

N [ω]
CB,D[ω] − κL

�[−ω]

N [−ω]
CB,B[ω]

)
.

(A10)

The last term can be written

Sz,z[ω] = √
κLκR

�[ω]�[−ω]

N [ω]N [−ω]

×
[
|α|−2γ

(
nth + 1

2

) (∣∣χ−1
M [−ω]

∣∣2 + ∣∣χ−1
M [ω]

∣∣2)

+ 4ω2
MκLCB,B[ω]+2ω2

Mκ(|χC[ω]|2+|χC[−ω]|2)

]
.

(A11)

The first term in Sz,z[ω] is typically the dominant one, which
represents the fluctuations of the oscillator due to thermal noise
from the mechanical bath.

As stated earlier, in the limit γ̃ ,|ω − ωM| � κ,ωM, the
above expressions simplify. The coefficients appearing in
Eq. (29) are

R
(th)
1 = K (th)

{[(
κ

2

)2

− �2

]
sin θ − κ� cos θ

}

I
(th)
1 = K (th)ωM

(
κ

2
sin θ − � cos θ

)
, (A12)

where

K (th) = −2�γ̃

(
nM + 1

2

)
K (q) (A13)

and

K (q) = 2
√

κLκR|α|2|χC[ωM]|2|χC[−ωM]|2√
(κ/2)2 + �2

. (A14)

The effective phonon number nM is given by Eq. (12), with

nopt = −κ|χC[−ωM]|2 + κLCB,B[−ωM]

4�κωM|χC[ωM]|2|χC[−ωM]|2 . (A15)

The coefficients in Eq. (30) are

R
(q)
1 = K (q)γ̃ ωM�

(
� sin θ + κ

2
cos θ

)

R
(q)
2 = K (q)

{
κ

2

[
3�2 −

(
κ

2

)2

− ω2
M

]
sin θ

+�

[
3

(
κ

2

)2

− �2 + ω2
M

]
cos θ

}

I
(q)
1 = −K (q) γ̃

2

[(
κ

2

)2

+ �2 + ω2
M

]

×
(

κ

2
sin θ − � cos θ

)
. (A16)

The coefficients in Eq. (31) are quite complicated and therefore
not presented here.

A. Zero detuning

For |�| � κ,ωM and θ �= 0, the coefficients in Eq. (29)
become

R
(th)
1 = −2

√
κLκRκ�|α|2γ̃ (

nM + 1
2

)
[
(κ/2)2 + ω2

M

]2 sin θ (A17)

and I
(th)
1 /R

(th)
1 = 2ωM/κ . For Sq,z[ω], we get

R
(q)
2 = − 2

√
κLκR|α|2[

(κ/2)2 + ω2
M

] sin θ, (A18)

R
(q)
1 /(R(q)

2 γ̃ ) = 0 and I
(q)
1 /(R(q)

2 γ̃ ) = 1/2. In this case, the
coefficients in Scl,z[ω] are relatively simple and given
by

R
(cl)
2 = −4

√
κLκRκκL|α|2CX sin θ[

(κ/2)2 + ω2
M

]2 , (A19)
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R
(cl)
1 /(R(cl)

2 γ̃ ) = ωM/κ , I
(cl)
2 /R

(cl)
2 = −2ωM/κ , and

I
(cl)
1 /(R(cl)

2 γ̃ ) = −1/2. As expected, the oscillator only
sees the amplitude noise and not the phase noise when
the frequency of the drive is close to the cavity resonance
frequency.

It is worth noting that |I (cl)
2 /R

(cl)
2 | = 2ωM/κ , whereas

|I (q)
1 /(R(q)

2 γ̃ )| = 1/2. Unless κ � ωM, this means that if the
classical signal is dominant in the real part of S[ω], it
should also be dominant in the imaginary part (note also that
|I (th)

1 /R
(th)
1 | = |I (cl)

2 /R
(cl)
2 |). Thus, if a sign change is observed

in R[ω], but not in I [ω], one might be able to conclude that
the sign change is due to photon shot noise in the cavity and
not classical noise in the drive. Another possibility is to add
classical noise deliberately in order to determine the source of
the sign change in R[ω].

B. Finite detuning

The angle θc was defined as the quadrature angle where the
constant R(th)

1 vanishes for a given value of �/κ . For δθ = θ −
θc and |δθ | � 1, we find7 that R

(th)
1 = K (th)((κ/2)2 + �2)δθ .

The imaginary part does not change significantly for θ around
θc. Its value at θ = θc is I

(th)
1 = K (th)ωM�. We also quote the

coefficients appearing in Eqs. (30) at θ = θc. They are

R
(q)
1 = K (q) γ̃ ωMκ�

2
,

R
(q)
2 = K (q)�

[(
κ

2

)2

+ �2 − ω2
M

]
, (A20)

I
(q)
1 = −K (q) γ̃ �

2

[(
κ

2

)2

+ �2 + ω2
M

]
.

APPENDIX B: MATHEMATICAL DETAILS IN THE CASE
OF TWO OPTICAL MODES

The solution to Eqs. (40) are

ẑ[ω] = 1

N2[ω]

[√
γ

(
χ−1∗

M [−ω]η[ω] + χ−1
M [ω]η†[ω]

)
− 2ωM(α∗χa[ω]ζa[ω] + αχ∗

a [−ω]ζ †
a [ω]

−β∗χb[ω]ζb[ω] − βχ∗
b [−ω]ζ †

b [ω])
]
, (B1)

d̂a[ω] = −χa[ω] (iαẑ[ω] − ζa[ω]),

d̂b[ω] = χb[ω] (iβẑ[ω] + ζb[ω]).

We have defined

ζa[ω] = √
κa,L(δx[ω] + iδy[ω] + ξa,L[ω])

+√
κa,Rξa,R[ω] + √

κa,Mξa,M[ω],
(B2)

ζb[ω] = √
κb,L

[
b̄0

ā0
(δx[ω] + iδy[ω]) + ξb,L[ω]

]
+√

κb,Rξb,R[ω] + √
κb,Mξb,M[ω],

7Note that there are two critical angles θc with a difference of π . We
have chosen one of them here. Choosing the other gives an overall
minus sign in all coefficients.

and

N2[ω] = χ−1
M [ω]χ−1∗

M [−ω] + 2ωM�2[ω],

�2[ω] = �a[ω] + �b[ω],
(B3)

�a[ω] = −i|α|2(χa[ω] − χ∗
a [−ω]),

�b[ω] = −i|β|2(χb[ω] − χ∗
b [−ω]),

where the optical mode susceptibilities are χa or b[ω] =
[κa or b/2 − i(ω + �a or b)]−1. As stated in Sec. VI, the mean ra-
diation pressure on the oscillator is zero when A|ā|2 = B|b̄|2.
If in addition κa,i = κb,i and �a = �b, it is straightforward
to check that ẑ becomes independent of the classical noise δx

and δy. This requires fine-tuning, but it shows that it might be
possible to make the classical contribution small enough to be
negligible.

We now return to the general case and imagine measuring
the cross-correlation between the quadrature fluctuations

δX̂(t) = e−iφa d̂a,out,R(t) + eiφa d̂
†
a,out,R(t) (B4)

and

δŶθ (t) = e−iθ d̂b,out,L(t) + eiθ d̂
†
b,out,L(t) (B5)

in the same way as before, with d̂j,out,i(t) = eiωD,j t (âj,out,i(t) −
〈âj,out,i(t)〉) and eiφa = α/|α|. δX̂ represents the intensity
fluctuations in the output of mode a on the right-hand side
of the cavity. δŶθ is the fluctuation in an arbitrary quadrature
in the output of mode b on the left-hand side. It is, however,
not essential whether mode a or b is detected. Defining S[ω]
as in Eq. (16), it still has four contributions as in Eq. (27). The
quantum contribution is

Sq,z[ω] = ωM

×
[
√

κa,Lκb,R
|β|
|α|

�a[ω]

N2[ω]
(e−iλχ∗

b [ω] + eiλχb[−ω])

+√
κa,Rκb,L

|α|
|β|

�b[−ω]

N2[−ω]
(χa[ω] + χ∗

a [−ω])

]
(B6)

with �b[ω] = −i|β|2(eiλχb[ω] − e−iλχ∗
b [−ω]), λ = (φb −

θ ), and eiφb = β/|β|. The terms due to classical noise in the
drive can be expressed by the functions

Ba,±[ω] = e−iφaχa[ω] ± eiφaχ∗
a [−ω],

Bb,±[ω] = b̄0

ā0
(e−iφbχb[ω] ± eiφbχ∗

b [−ω]),
(B7)

Db,±[ω]= b̄0

ā0
[e−iθ (1−κb,Lχb[ω])±eiθ (1 − κb,Lχ∗

b [−ω])],

E±[ω] = √
κa,L|α|Ba,±[ω] − √

κb,L|β|Bb,±[ω].

They become

Scl,cl[ω] = −√
κa,Lκa,RCBa,Db

[ω],

Scl,z[ω] = 2ωM
√

κa,R

(
1

|α|
�a[ω]

N2[ω]
CDb,E[ω] (B8)

+√
κa,Lκb,L

1

|β|
�b[−ω]

N2[−ω]
CBa,E[ω]

)
,
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where we have used the abbreviation CBa,Db
[ω] =

Ba,+[ω]Db,+[−ω]CX − Ba,−[ω]Db,−[−ω]CY and similarly
for CBa,E[ω], and so on. Finally, the last contribution
is

Sz,z[ω] = −√
κa,Rκb,L

1

|α||β|
�a[ω]�b[−ω]

N2[ω]N2[−ω]

×
{

γ

(
nth + 1

2

) (|χ−1
M [−ω]|2 + |χ−1

M [ω]|2)

+ 4ω2
MCE,E[ω] + 2ω2

M[κa|α|2(|χa[ω]|2

+ |χa[−ω]|2) + κb|β|2(|χb[ω]|2 + |χb[−ω]|2)]

}
.

(B9)

Again, we point out that when A|ā|2 = B|b̄|2, �a = �b,
κa,i = κb,i , the functions E±[ω] are identically zero and
hence Scl,z[ω] = 0. In this case, when analyzing the other
contributions, one finds the same results as in the case with
one optical mode, only with modified γopt and δωM.
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