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Hamiltonian structure of propagation equations for ultrashort optical pulses
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A Hamiltonian framework is developed for a sequence of ultrashort optical pulses propagating in a nonlinear
dispersive medium. To this end a second-order nonlinear wave equation for the electric field is transformed into
a first-order propagation equation for a suitably defined complex electric field. The Hamiltonian formulation
is then introduced in terms of normal variables, i.e., classical complex fields referring to the quantum creation
and annihilation operators. The derived z-propagated Hamiltonian accounts for forward and backward waves,
arbitrary medium dispersion, and four-wave mixing processes. As a simple application we obtain integrals of
motion for the pulse propagation. The integrals reflect time-averaged fluxes of energy, momentum, and photons
transferred by the pulse. Furthermore, pulses in the form of stationary nonlinear waves are considered. They yield
extremal values of the momentum flux for a given energy flux. Simplified propagation equations are obtained
by reduction of the Hamiltonian. In particular, the complex electric field reduces to an analytic signal for the
unidirectional propagation. Solutions of the full bidirectional model are numerically compared to the predictions
of the simplified equation for the analytic signal and to the so-called forward Maxwell equation. The numerics
is effectively tested by examining the conservation laws.
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I. INTRODUCTION

The evolution of a wave packet is accurately described
in terms of a complex envelope [1]. The latter results from a
time-scale separation (e.g., when the pulse contains many field
cycles). A slowly varying envelope approximation (SVEA)
reduces then the second-order wave equation for the pulse
electric field to a more simple first-order nonlinear Schrödinger
equation (NSE) for the pulse envelope [2–4]. In the frequency
domain, the SVEA assumes that the pulse spectrum is narrow,
centered around a carrier frequency. However, situations for
which the SVEA lacks precision are also quite common. For
instance, we mention self-focusing [5,6], optical shocks [7],
steep pulse edge [8], experiments with ultrashort pulses as
optical event horizons [9], and supercontinuum (SC) gener-
ation [10]. An important example is that of a few-cycle or a
subcycle optical pulse where the spectrum width is comparable
to the carrier frequency [11–16]. In all such situations the NSE
cannot be applied and either a full modeling of Maxwell equa-
tions should be undertaken [17–23] or new effective models for
propagation of spectrally broad pulses should be introduced.
These models can be developed in different directions.

First, we mention a generalized NSE in which an arbitrary
dispersion profile is approximated by a higher-order Taylor
expansion or, more exactly, by a polynomial fit in the frequency
domain. The dispersion is then accounted for by a differential
dispersion operator in the time domain [2,4]. The nonlinear
term in the generalized NSE is further extended to capture
an arbitrary pulse duration [8,24,25]. Furthermore, incorpo-
ration of Raman scattering [26,27], diffraction [24,28,29],
and third-harmonic generation [30] have been discussed.
The generalized NSE applies to pulse propagation, optical
shocks, and SC generation [10,31–38]. It may reproduce the
optical field behavior even beyond the validity of the SVEA.
However, one should note that the dispersion profile for a very
broad spectrum a priori cannot be captured by a polynomial
expansion [39,40].

The second approach to the ultrashort optical pulses is to
abandon the envelope concept and to operate directly with
the pulse fields. The simplified model equations are derived
assuming an unidirectional character of pulse propagation
instead of SVEA. A recent review is given in Ref. [41]. In
addition, we mention a short-pulse equation in which the
dispersion function is expanded with respect to the inverse
frequency [42,43] and a more general approach with the
Laurent series [44–46]. Another important class of equations
is given by the (mixed) modified Korteweg–de Vries and
sine-Gordon models [47–52].

As a rule, such unidirectional propagation equations operate
in the space-time domain, ignore absorption, and use a
simplified medium response function. In return, the deduced
models often allow for an exact treatment [53–56] or at least for
an explicit solitary solution [41,57–63]. Also, many specific
solutions to the generalized NSE can be found [33,64–76].

The third approach is to derive the pulse propagation
model in the spectral domain [77–81]. Here, again using the
unidirectional approximation, one obtains a set of the first-
order ordinary differential equations for the field harmonics
Eω(z). The deduced models are more simple than the full
second-order propagation equation and still allow for arbitrary
dispersion and spectrum width.

In this paper, pulse propagation equations in the spectral
domain are treated from the Hamiltonian point of view.
By neglecting medium absorption and considering a one-
dimensional (z-propagated) setting, we transform the second-
order propagation equation for the electric field E(z,t) into
the first-order propagation equation for the complex electric
field E(z,t). Positive- and negative-frequency components
of E(z,t) correspond to the forward and backward waves,
respectively. A Hamiltonian framework is then introduced for
the derived propagation equation. To this end we define normal
variables, A(z,t) and A∗(z,t). The latter are classical complex
fields and refer to the quantum creation and annihilation
operators.
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By construction, the Hamiltonian is an integral of motion.
Further integrals are yielded by continuous symmetries of the
Hamiltonian. Because of the z-propagated formulation, the
integrals are given by the time-averaged fluxes of the relevant
physical quantities. They provide an effective tool to follow
the numerical solution (e.g., for the SC generation scenarios).
We also demonstrate that the stationary nonlinear waves can be
characterized as constrained extrema of the momentum flux.
Furthermore, reduction of the bidirectional model to a uni-
directional one and further reduction to an envelope equation
can be accomplished by simplifying the Hamiltonian function.
The corresponding hierarchy of the first-order propagation
equations is derived. Exemplary solutions of the bidirectional
model are numerically compared to the predictions of the
reduced equations.

II. DERIVATION

A. Basic equations

A formulation of the problem and notations are described
in this section. We consider a sequence of linearly polarized
electromagnetic pulses propagating along the z axis in a homo-
geneous dispersive nonlinear medium such that the diffraction
effects are negligible. The pulse fields E = (E(z,t),0,0) and
B = (0,B(z,t),0) are governed by Maxwell equations

∂zE = −∂tB, − 1

µ0
∂zB = ∂t (ε0E + P ), (1)

where ε0 and µ0 are the permittivity and the permeability
of free space, respectively. The induced medium polarization
P = (P (z,t),0,0) depends on E(z,t) and is determined by a
sequence of nonlocal susceptibility operators χ̂ (i) such that

P (E) = ε0(χ̂ (1)E + χ̂ (2)EE + χ̂ (3)EEE + · · ·), (2)

where χ̂ (1) is a linear operator, χ̂ (2) is a bilinear one, and
so on. The power expansion (2) assumes that pulses are
propagating in a weakly nonlinear limit. In addition, an
inverse symmetry is assumed such that P (−E) = −P (E)
and χ̂ (2) = 0. Equations (1) and (2) are reduced to a scalar
nonlinear wave equation

∂2
z E − 1

c2
∂2
t (E + χ̂ (1)E + χ̂ (3)EEE) = 0 (3)

in which only linear and cubic polarization terms are taken
into account.

Integrating Eqs. (1) over time, one sees that the averaged
electric and magnetic fields are constant along the z axis. For
simplicity, we assume that the time-averaged fields vanish such
that ∮

E(z,t)dt = 0 and
∮

B(z,t)dt = 0, (4)

where we use the notation∮
dt =

∫ +T/2

−T/2
dt

and T is the period of the pulse sequence.

To proceed, we write the electric field in the frequency
domain

E(z,t) =
∑

ω

Eω(z)e−iωt , ω ∈ 2π

T
Z,

where

Eω(z) =
∮

E(z,t)eiωt dt

T
, Eω = E∗

−ω,

and Eω=0 = 0 in accord with Eq. (4). The linear susceptibility
χ̂ (1)E is defined by a convolution

(χ̂ (1)E)ω = χ (1)(ω)Eω.

It yields the dielectric constant and the propagation parameter

ε(ω) = 1 + χ (1)(ω) = ε∗(−ω),

k(ω) = ω

c

√
ε(ω) = β(ω) + iα(ω) = −k∗(−ω),

where β(ω) and α(ω) are odd and even functions, respectively.
Our main concern is the Hamiltonian framework; therefore, a
small absorption limit is considered. In particular, we neglect
α(ω), assuming that an essential part of the pulse spectrum
belongs to a transparency window.

The nonlinear susceptibility operator χ̂ (3) is given by the
expression

(χ̂ (3)EEE)ω =
∑

ω1+ω2+ω3=ω

χ (3)
ω1ω2ω3ω

Eω1Eω2Eω3

in which summation is performed over suitable (resonance)
triads {ω1,ω2,ω3}. Whenever possible, we abbreviate the sum
in the last equation as

(χ̂ (3)EEE)ω =
∑
123|ω

χ
(3)
123ωEω1Eω2Eω3 .

The condition ω1 − ω2 + ω3 = ω will be indicated as
12̄3|ω. In this way, summations over quads of frequencies
can also be abbreviated. For instance, we will replace∑

ω1−ω2+ω3−ω4=0 χ (3)
ω1ω2ω3ω4

by
∑

12̄34̄| χ
(3)
1234.

If the dispersion of χ̂ (3) can be ignored, one is left with the
cubic Kerr medium in which

(χ̂ (3)EEE)Kerr = χE3, χ = const. (5)

However, for a spectrally broad pulse such an approximation
may be invalid and a more general model should be used. For
instance, considering a classical nonlinear oscillator model for
electrons, one obtains (Miller’s rule, see Ref. [4])

χ
(3)
123ω = const × χ (1)(ω1)χ (1)(ω2)χ (1)(ω3)χ (1)(ω).

In the following we deal with a general nonlinear susceptibility
χ

(3)
123ω only assuming that it is symmetric with respect to all

permutations of frequencies as suggested by Miller’s rule. The
nonlinear absorption is ignored, i.e., χ

(3)
123ω is a real and even

function of frequencies. The Kerr model (5) is used as an
illustration.

To proceed, we write the nonlinear wave equation (3) in the
frequency domain

∂2
z Eω + β2(ω)Eω + ω2

c2

∑
123|ω

χ
(3)
123ωEω1Eω2Eω3 = 0. (6)

Equation (6) is the starting point of our considerations.
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B. Complex field

In this section we transform Eq. (6) into a first-order
propagation equation. To this end, we introduce a complex
electric field

E(z,t) =
∑

ω

Eω(z)e−iωt ,

where E(z,t) ∈ C and therefore in general Eω differs from
E∗

−ω = (E−ω)∗ = (E∗)ω. The notation

Ĕω = Eω + E∗
−ω

2
= Eω + (E∗)ω

2
(7)

is used to separate the real part of E(z,t). The complex
electric field is defined as a single complex counterpart of
two directional variables used in Ref. [81]

Eω(z) = Eω(z) + ωBω(z)

|β(ω)| = Eω(z) − i∂zEω(z)

|β(ω)| , (8)

where the second representation is obtained from the first
equation in (1). Equations (7) and (8) imply

Ĕω(z) = Eω(z), E(z,t) = 1

2
E(z,t) + c.c., (9)

such that E(z,t) is a complexification of E(z,t).
To get a better insight into Eq. (8), we consider, for

a moment, only a linear medium. For a linear forward
(backward) wave we have

Eω(z) ∼ e±iβ(ω)z ⇒ Eω =
(

1 ± ω

|ω|
)

Eω. (10)

Therefore Eω>0 and Eω<0 are responsible for the forward and
backward waves, respectively. In particular, contributions of
these waves are explicitly split in the relation Eω = 1

2 (Eω +
E∗

−ω).
Returning to the nonlinear case and applying an identity

(∂2
z + β2)Eω = (|β| + i∂z)(|β| − i∂z)Eω = (|β| + i∂z)|β|Eω,

we transform Eq. (6) into the following propagation equation:

i∂zEω + |β|Eω + ω2

c2|β|
∑
123|ω

χ
(3)
123ωĔω1 Ĕω2 Ĕω3 = 0. (11)

Equation (11) for Eω(z) is of first order. It looks similar to
the unidirectional equation for Eω(z) derived in Ref. [77],

i∂zEω + βEω + ω2

2c2β

∑
123|ω

χ
(3)
123ωEω1Eω2Eω3 = 0, (12)

and can be solved using the same numerical approach.
Equation (11) is, however, exact in the sense the unidi-
rectional approximation was not applied. Both forward and
backward waves exactly fulfill the same first-order propagation
model (11) as long as the nonlinearity is calculated from the
total field (9) (see also Refs. [78,79]).

C. Hamiltonian framework

A standard way to obtain first-order Hamiltonian equations
is to perform a Legendre transformation of a second-order
Lagrangian equation [82]. This procedure is discussed in
Ref. [83] for the second-order nonlinear wave equation and

the t-propagated picture. It leads to a complicated multivalued
expression for the canonical momentum. The z-propagated
picture is more simple to deal with because Eq. (11) is already
of first order.

In this section we introduce a Hamiltonian framework by
writing Eq. (11) in terms of normal variables. To this end, we
change from E(z,t) to a new complex field

A(z,t) =
∑

ω

Aω(z)e−iωt , Eω =
√

2µ0ω2

|β(ω)|Aω, (13)

define

Tω1ω2ω3ω4 = µ0|ω1ω2ω3ω4|χ (3)
ω1ω2ω3ω4

c2
√|β(ω1)β(ω2)β(ω3)β(ω4)| , (14)

and transform Eq. (11) into

i∂zAω + |β|Aω + 2
∑
123|ω

T123ωĂω1Ăω2Ăω3 = 0, (15)

where similar to Eq. (7)

Ăω = Aω + A∗
−ω

2
(16)

splits contributions of the forward and backward waves.
Equation (14) indicates that T1234 and χ

(3)
1234 have the same

symmetries with respect to permutations of indices.
Due to its simple and symmetric structure, Eq. (15) can be

easily transformed into a Hamiltonian form

i∂zAω + δ

δA∗
ω

H = 0 (17)

by defining the following Hamiltonian:

H =
∑

ω

|β(ω)||Aω|2 +
∑
1234|

T1234Ăω1Ăω2Ăω3Ăω4 . (18)

Equation (17) is a complex representation of the canonical
Hamiltonian equations. The classical fields A(z,t) and A∗(z,t)
are complex canonical variables and refer to the creation and
annihilation operators (see, e.g., Ref. [84]). By using Eq. (16)
and symmetries of T1234, one can transform Eq. (18) into the
form

H =
∑

ω

|β(ω)|AωA∗
ω + H40 + H31 + H22, (19)

where contributions of all the possible four-wave-mixing
(FWM) processes are explicitly distinguished in the last three
terms,

H40 = 1

16

∑
1234|

T1234(Aω1Aω2Aω3Aω4 + c.c.),

H31 = 1

4

∑
1234̄|

T1234(Aω1Aω2Aω3A∗
ω4

+ c.c.),

H22 = 3

8

∑
12̄34̄|

T1234Aω1A∗
ω2
Aω3A∗

ω4
.

One should stress that the system (17) and (18) is an exact
reformulation of Eq. (3) in the weak absorption limit. Such
a reformulation is useful for some applications which are
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more difficult to address using Eq. (3). Sample applications
are described in the next section.

III. APPLICATIONS

Hamiltonian formulation of a nonlinear wave equation has
many important applications: integrability analysis, conserva-
tion laws, stability of solitons, and a spectrum of turbulent
states to name just a few [84–86]. In this section we obtain
conservation laws and relate them to the stationary nonlinear
waves.

A. Momentum flux

Concerning conservation laws, special care is required
when the space coordinate serves as an effective time. Con-
sider, for instance, a standard continuity equation ∂tρ + ∂zj =
0 for a physical quantity with the density ρ(z,t) and the
flux density j (z,t) in one space dimension. Normally, the
conserved integral is given by the “charge”

∫
ρ(z,t)dz. For

the z-propagated picture we obtain
∫

j (z,t)dt = const, i.e.,
the time-averaged “current” is constant along the z axis.

Returning to the sequence of optical pulses, we conclude
that the period average of the involved variables should not
depend on the observation point z. Two simple examples are
given by Eqs. (4). By construction, also the Hamiltonian (19)
conserves for Eq. (17). The term

∑
ω |β(ω)|AωA∗

ω suggests
that H is related to momentum transfer. It appears that H is
the period average of the momentum flux. By transforming
Eq. (18) back to real fields in accord with Eqs. (8) and (13),
one obtains

H =
∮ (

ε0
(
E + χ̂ (1)E + 1

2 χ̂ (3)EEE
)
E

2
+ B2

2µ0

)
dt

T
.

For χ̂ (3) = 0, the term in the large parentheses is a known
expression for the momentum flux density in a linear
medium [87]. The above expression for H is then the mean
momentum flux in the nonlinear case.

B. Energy flux

Further integrals can be obtained from continuos sym-
metries of the Hamiltonian (19). Note, that H is invariant
under the transformation Aω → Aωeiωs with a free parameter
s. For instance, summation in H40 is performed over quads
of frequencies such that ω1 + ω2 + ω3 + ω4 = 0. Therefore,
eiωs factors (appearing in Aω1Aω2Aω3Aω4 ) cancel each other.
Similar arguments apply to the other terms in H.

The above continuous transformation is generated by a
differential equation i∂sAω + ωAω = 0; the latter can be
transformed into a Hamiltonian equation

i∂sAω + δ

δA∗
ω

∑
ω′

ω′|Aω′ |2 = 0.

Following a canonical analog of Noether’s theory (see
Ref. [82]), we conclude that the quantity

E =
∑

ω

ω|Aω|2 (20)

is an additional integral of motion for the model (17). This
integral is related to energy transfer. It appears that E is the
period-averaged energy flux. Returning to the real fields in
Eq. (20), one obtains an averaged Poynting vector

E =
∮

EB

µ0

dt

T
.

Therefore, the simplest vacuum expression for the Poynting
vector applies also to our nonlinear case. The sum in
Eq. (20) can easily be evaluated for numerical solutions of the
propagation model (15) and provides a useful tool to control
numerics.

C. Stationary nonlinear waves

Stationary nonlinear waves are special solutions of propa-
gation equations such that the wave field depends on a single
variable τ = t − b1z (retarded time) with a free parameter b1.
Such solutions propagate with a constant velocity 1/b1 and
are stationary in the comoving frame. With respect to Eq. (3),
all stationary nonlinear waves can be characterized using the
momentum and energy fluxes.

Let us consider H and E as functionals acting on a test
function a(τ ) = ∑

ω aωe−iωτ such that

H[a] =
∑

ω

|β(ω)|aωa∗
ω +

∑
1234|

T1234ăω1 ăω2 ăω3 ăω4 ,

E[a] =
∑

ω

ωaωa∗
ω, ăω = aω + a∗

−ω

2
.

We now look for extremal values of H[a] under constrain
E[a] = const. To solve this problem, one can set the derivative
of H[a] − b1E[a] to zero,

δ

δa∗
ω

(H[a] − b1E[a]) = δ

δa∗
ω

H[a] − b1ωaω = 0, (21)

where b1 is an unknown Lagrange multiplier.
The constrained problem yields both a(τ ) and b1. After the

solution is found, one can construct

A(z,t) = a(t − b1z) and Aω(z) = aωeib1ωz.

Now, the latter expression for Aω(z) solves Eq. (15) because
by inserting aωeib1ωz into the equivalent Eq. (17) one obtains
the extremum condition (21). Therefore, for a given energy
flux, a stationary nonlinear wave yields an extremal value of
the momentum flux. Furthermore, unstable nonlinear waves
correspond to saddle points (see Ref. [88]).

D. Classical flux of photons

An additional integral of motion appears if contributions

of both 4 →← 0 and 3 →← 1 four-wave processes in the Hamil-
tonian (19) can be neglected (or, strictly speaking, eliminated
using a suitable canonical change of variables as in Ref. [84]).
In that case, the Hamiltonian reduces to the form

H =
∑

ω

|β||Aω|2 + 3

8

∑
12̄34̄|

T1234Aω1A∗
ω2
Aω3A∗

ω4
, (22)
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and the governing Eq. (17) becomes

i∂zAω + |β|Aω + 3

4

∑
12̄3|ω

T123ωAω1A∗
ω2
Aω3 = 0. (23)

The reduced Hamiltonian (22) is invariant under an ar-
bitrary phase shift Aω → Aωeiθ with a free parameter θ .
This continuous transformation is generated by a differential
equation i∂θAω + Aω = 0; the latter can be transformed into
a Hamiltonian equation

i∂θAω + δ

δA∗
ω

∑
ω′

|Aω′ |2 = 0.

Therefore the quantity

N =
∑

ω

|Aω|2 (24)

is an integral of motion for the simplified pulse propagation
equation (23). By analogy with quantum mechanics, N is
proportional to a flux of photons. By transforming Eq. (24)
back to real fields in accord with Eqs. (8) and (13), one obtains
an expression for the period average of the classical photon
flux

N =
∑

ω

1

|β(ω)|
(

ε0ε(ω)EωE∗
ω

2
+ BωB∗

ω

2µ0

)
.

Note, that N is infinite when conditions (4) are violated. If it is
not the case, Eq. (24) provides a further useful tool to control
numerics for Eq. (23).

IV. PROPAGATION EQUATIONS

In this section we describe how common unidirectional
and envelope propagation equations can be derived from the
Hamiltonian function (19).

A. Unidirectional approximation

As cited in the Introduction, propagation equations for
short pulses are usually derived using the unidirectional
approximation instead of the SVEA. In this section we
explain how the unidirectional approximation applies with
respect to the Hamiltonian equation (17). In accord with
Eq. (10), forward and backward waves correspond to positive-
and negative-frequency components of E(z,t). Neglecting the
backward wave, we obtain

Eω>0 = 2Eω,

Eω<0 ≈ 0,
⇒ E(z,t) = 2

∑
ω>0

Eω(z)e−iωt .

In other words, the complex E(z,t) becomes an analytic signal
corresponding to the real E(z,t). Considering Eq. (19), we see
that H40 can be ignored because the condition ω1 + ω2 + ω3 +
ω4 = 0 cannot be satisfied for positive frequencies. Therefore
the Hamiltonian (19) can be written in the form

H =
∑
ω>0

β(ω)AωA∗
ω + H31 + H22, (25)

where summations in H31 and H22 are now performed only
over positive frequencies, because Aω<0 = 0 by construction.
The propagation equation (15) takes the form

i∂zAω + β(ω)Aω + S31 + S22 + S13 = 0, (26)

where ω > 0 and

S31 = 1

4

∑
123|ω

T123ωAω1Aω2Aω3 ,

S22 = 3

4

∑
12̄3|ω

T123ωAω1A∗
ω2
Aω3 ,

S13 = 3

4

∑
1̄23̄|ω

T123ωA∗
ω1
Aω2A∗

ω3
.

At first glance, the unidirectional first-order Eq. (26) is not
simpler than the bidirectional first-order Eq. (15). However,
Eq. (26) is more convenient for practical uses. To a large
extent one can eliminate the fast dynamics of Aω(z) by
transition to a moving frame of reference. Letting V be
the velocity parameter, we introduce Bω(z) = Aω(z)eiωz/V .
It is easy to see that Bω(z) is also governed by Eq. (26)
but with the Doppler-shifted propagation constant β(ω) →
β̃(ω) = β(ω) − ω/V . Dynamics in the moving frame is slow
if β̃ 
 β. This transformation is especially useful when phase
and group velocities are close to each other for the frequencies
of interest.

B. Simplified nonlinear response

A useful and simple propagation equation results if one

can neglect both the backward waves and the 3 →← 1 four-

wave processes. Removing H31 from Eq. (25), one obtains the
following Hamiltonian:

H =
∑
ω>0

β(ω)AωA∗
ω + 3

8

∑
12̄34̄|

T1234Aω1A∗
ω2
Aω3A∗

ω4
, (27)

and the corresponding propagation equation

i∂zAω + β(ω)Aω + 3

4

∑
12̄3|ω

T123ωAω1A∗
ω2
Aω3 = 0. (28)

Here ω > 0 and both summations are performed over positive
frequencies. Equations (27) and (28) are unidirectional coun-
terparts of the bidirectional Eqs. (22) and (23), respectively.

The Hamiltonian (27) is invariant with respect to phase
shifts and (in addition to H and E) the classical photon flux N
is conserved. For a numerical solution, Eq. (28) can be trans-
formed to a both moving and oscillating frame of reference. Let
us assume that for the frequencies of interest the propagation
constant β(ω) is closely approximated by a linear function
β(ω) ≈ β0 + β1(ω − ω0), where ω0 is a reference frequency
and β0, β1 are fit parameters. Introducing a new variable

Aω(z) = Bω(z)ei[β0+β1(ω−ω0)]z,

one derives that Bω(z) is also governed by Eq. (28), but with
the new propagation constant

β̃(ω) = β(ω) − β0 − β1(ω − ω0) 
 β(ω), (29)
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such that evolution of Bω(z) is slow and more convenient for
the numerical treatment.

For a spectrally narrow pulse with the carrier frequency ω0,
a natural choice is β0 = β(ω0) and β1 = β ′(ω0). This obser-
vation suggests that Eq. (28) is closely related to the envelope
NSE while being a nonenvelope model and allowing for arbi-
trary β(ω). The relationship is investigated in the next section.

C. Envelope equation

In this section we demonstrate that the generalized NSE is
just a few approximation steps away from the unidirectional
Eq. (28). To this end, we return to the complex electric field
(analytic signal for the case at hand) in Eq. (28) by using
definition (13)

i∂zEω + β(ω)Eω + 3ω

8cn(ω)

∑
12̄3|ω

χ123ωEω1E∗
ω2
Eω3 = 0. (30)

Equation (30) is subject to three conservation laws:

H =
∑
ω>0

n2(ω)
ε0|Eω|2

2
+ 3ε0

32

∑
12̄34̄|

χ
(3)
1234Eω1E∗

ω2
Eω3E∗

ω4
,

E =
∑
ω>0

cn(ω)
ε0|Eω|2

2
,

N =
∑
ω>0

cn(ω)

ω

ε0|Eω|2
2

,

expressing period-averaged fluxes of momentum, energy, and
photons, respectively.

To derive NSE, we introduce an envelope �(z,t) for some
reference frequency ω0

�(z,t) =
∑


�(z)e−it , �(z) = Eω0+(z),

such that

E(z,t) =
∑


Eω0+(z)e−i(ω0+)t = �(z,t)e−iω0t .

The real electric field is expressed as

E(z,t) = Re[E(z,t)] = 1
2�(z,t)e−iω0t + c.c.,

in accord with the definition of the envelope [1]. Note, that
SVEA is avoided because the transformation from E(z,t)
to �(z,t) is a trivial change of variables. Returning now
to Eq. (30), we change to �(z), approximate χ (3)

ω1ω2ω3ω
by

χ0 = χ (3)
ω0ω0ω0ω0

, and obtain

i∂z� + β(ω0 + )� + 3(ω0 + )χ0

8cn(ω0 + )
(|�|2�) = 0.

Changing to

�(z) = ψ(z)ei(β0+β1)z,

we perform a standard transformation to a moving frame

�(z,t) = ψ(z,τ )eiβ0z, τ = t − β1z,

E(z,t) = 1
2ψ(z,t − β1z)ei(β0z−ω0t) + c.c.,

and obtain

i∂zψ + β̃(ω0 + )ψ + 3(ω0 + )χ0

8cn(ω0 + )
(|ψ |2ψ) = 0,

where β̃ is defined by Eq. (29).
The resulting equation, in which n(ω0 + ) is often

replaced by n(ω0), is the generalized NSE for ultrashort
pulses [8,24,25]. In the reduction of Eq. (30), we only
approximate the operator χ (3). For instance, the NSE and
the field based Eq. (30) are trivially equivalent for the Kerr
medium. This illustrates why the commonly used generalized
NSE reproduces ultrashort pulse propagation observed exper-
imentally in photonic crystal fiber, far beyond the validity of
the SVEA [10]. Furthermore, one immediately obtains H, E,
and N in terms of the envelope.

V. SIMULATIONS OF PULSE PROPAGATION

Our first objective in this section is to present numerical
solutions of the first-order propagation equation generated by
the full bidirectional Hamiltonian (19). Second, we compare
the bidirectional model to a simpler propagation equation
generated by the Hamiltonian (27) and to the so-called
forward Maxwell equation [77]. To highlight complex and
comprehensive propagation dynamics, we regard intense
ultrashort pulses propagating in a photonic crystal fiber to
generate a SC, which is characterized by a dramatic spectral
broadening. Throughout this section we neglect the dispersion
of the nonlinear suceptibility χ̂ (3) and consider instantaneous
nonlinear polarization (5).

The bidirectional propagation equation corresponding to
the Hamiltonian (19) is transformed into the bidirectional
model for the complex field E(z,t) (BMCF)

i∂zEω + |β(ω)|Eω + ω2χ

8c2|β(ω)| [(E + E∗)3]ω = 0, (31)

where the real optical electric field E(z,t) = Re[E(z,t)].
BMCF describes both the third-harmonic generation and the
self-steepening effect for interacting forward and backward
waves.

With reasonably given initial conditions, the solutions of the
BMCF facilitate then a direct comparison with results obtained
by the forward Maxwell equation (12) (FME, Refs. [77–79]),
which for the case at hand reads

i∂zEω + β(ω)Eω + ω2χ

2c2β(ω)
(E3)ω = 0. (32)

A further comparison is made with the simplified forward
model for the analytic signal (FMAS), corresponding to the
Hamiltonian (27). For Eω>0(z), the FMAS reads

i∂zEω + β(ω)Eω + 3ω2χ

8c2β(ω)
(|E |2E)ω>0 = 0. (33)

Here Eω<0(z) = 0 by construction and E(z,t) is an analytic
signal for E(z,t). The field-based FMAS can be transformed
into the envelope-based NSE for arbitrary pulse widths without
using the SVEA.

The period-averaged momentum flux H and the period-
averaged energy flux E [Eqs. (19) and (20)] are used as control
parameters for the accuracy of the solutions of BMCF. The
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classical photon flux N [Eq. (24)] is used as a further control
parameter for FMAS. To assure conservation of E, H, and
N for an equidistant mesh of time points, we need at least
�t = 0.2 fs. Depending on the initial pulse width, we have to
use a resolution of 214 and 215 harmonics for a periodic time
window T = 3.5 ps and T = 7 ps, respectively. Several test
calculations were performed for a better resolution, 217. The
increase of the resolution does not affect the results.

A. Numerical procedure

Here, the direct split-step Fourier approach [3] either
requires very small space steps or lacks precision for a few-
cycle optical pulse and relatively long (e.g., 1 cm) propagation
distance, such that the integrals of motion do not conserve. For
our numerics we use, therefore, a de-aliased pseudospectral
method. The latter originates from the computational fluid
dynamics [89] and provides a numerical implementation in an
very efficient and accurate manner. The method calculates all
linear operators and derivatives in the frequency domain and
performs the nonlinear multiplications in the time domain,
with the transformations between the domains achieved by
the fast Fourier transform. The integration for the linear
and nonlinear part is performed in the frequency domain
by a precise Runge-Kutta integration scheme of order eight
with adaptive step-size control, depending on the accuracy as
described in Ref. [90].

The fiber parameters of the highly nonlinear microstruc-
tured fiber are taken from [91]. The propagation constant
β(ω), traditionally approximated by polynomials in ω − ω0,
quickly diverges for large frequencies. Instead, we use a proper
rational approximation for the refractive index as in [40], which
gives a correct asymptotic of chromatic dispersion for higher
frequencies and avoids unnecessary numerical stiffness. The
real refractive index is then given by

n(ω) = p0 + p1ω + · · · + p5ω
5

1 + q1ω + · · · + q5ω5

with the following parameters: p0 = 1.006 54, p1 =
−2.314 31 fs, p2 = 1.959 42 fs2, p3 = −0.678 111 fs3, p4 =
0.120 882 fs4, p5 = −0.009 110 63 fs5 and q1 = −2.299 67 fs,
q2 = 1.947 27 fs2, q3 = −0.673 382 fs3, q4 = 0.120 015 fs4,
q5 = −0.009 051 04 fs5. The value of the nonlinear suscepti-
bility χ can be obtained from the nonlinear refractive index n2

by χ = 8
3n(ω0)n2. For the input pulse electric field we choose

E(z,t)|z=0 = 1
2 [�0 cosh−1(t/t0)e−iω0t + c.c.],

having a central angular frequency ω0 and a hyperbolic-secant
shape for the initial envelope with amplitude �0 and width
t0. In the following we study the nonlinear propagation of
a 50- and 10-fs pulse, injected at a central frequency ω0 =
2.325 48 PHz, corresponding to a pump wavelength λ0 =
810 nm in the vicinity of the zero dispersion wavelength in
the anomalous dispersion regime. The input pulse amplitude,
width, and the fiber parameters determine the dispersion length
LD and the nonlinear length LNL such that

L−1
D = |β2|

t2
0

and L−1
NL = ω0

c
n2�

2
0 ,

where β2 = β ′′(ω0). The input soliton order N equals
(LD/LNL)1/2. For our simulations we choose �0 such that
N = 3.54 for the 50-fs pulse and N = 2.24 for the 10 fs pulse.

B. Backscattered optical field components

To investigate numerically the effect of backscattered com-
ponents of the optical field in the case of nearly unidirectional
propagation, we regard the BMCF. Forward propagation of the
input pulse is justified by the initial conditions

[Eω>0(z) = 2Eω(z)]z=0 and Eω<0(z)|z=0 = 0,

where we neglected initial components of backward propagat-
ing waves.

Figure 1 shows the density plots in the (ω,z) plane of the
spectral evolution for positive and negative frequencies for
an input pulse with t0 = 50 fs and t0 = 10 fs, respectively.
The spectra are shown on a logarithmic scale. The spectral
broadening of the 50-fs pulse [Fig. 1(a)] in the range between

FIG. 1. (Color online) Evolution of χ |Eω|2 in the (ω,z) plane for
the 50-fs pulse (a), and the 10-fs pulse (b). The spectra are shown
in logarithmic scale (dB). Negative frequencies reflect backscattered
optical field components.
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FIG. 2. Exemplary profiles of the
forward propagating electric field and
the corresponding spectra of the full
complex field for a 50-fs pulse. The
temporal profiles are shown in a for-
ward comoving frame with τ = t −
β1z.

0–5 PHz exhibits the typical scenario for SC generation by
soliton fission, demonstrated by modeling both the FME [77]
and the generalized NSE [10]. Snapshots of the temporal
shapes for selected propagation distances and corresponding
spectra are presented in Fig. 2. For ω > 5 PHz the spectral evo-
lution is determined by third-harmonic generation, featuring
similar broadening for the third-harmonic components. The
properties of backscattered components of the optical field are
represented by negative frequencies. From the beginning of
the propagation the main pulse and the third harmonic lead to
the excitation of two extremely weak counterparts of backward
waves on the negative side of the spectrum. The strong initial
contraction of the main pulse and the fission of fundamental
solitons results in an enhanced spectral broadening, reflected
also by the negative frequencies, which evolve in an analogous
manner (see also Fig. 2 at z = 2.5 cm). After the breakup of
the higher-order soliton (Fig. 2 at z = 5.05 cm) the spectral
width is already saturated, but FWM generates complicated
substructures, which leads to a complicated substructure for
all negative frequencies.

Also for the 10-fs pulse [Fig. 1(b)], the nonlinear coupling
causes a similar spectral evolution for negative frequencies
as for the positive frequencies even though the input energy
is reduced and the energy shift to negative frequencies is

consequently smaller. The soliton order is lower, so that SC
generation by the known soliton fission process is less efficient.
Snapshots of the temporal shapes for selected propagation
distances and corresponding spectra are presented in Fig. 3.
The strong initial spectral broadening is mainly generated
by self-phase modulation and soliton compression and the
spectrum reaches an octave coverage after only a few mm. In
the time domain we observe one main pulse in the anomalous
dispersion regime, forming one fundamental soliton, whereas
the rest of the incident pulse in the normal dispersion regime
disperses. After the fundamental soliton is generated, the
spectrum becomes almost frozen (z > 20 mm). Again there is
an excitation of two main components of backscattered light
with negative frequencies and the spectral broadening on the
negative side follows the pump pulse compression and the
accompanied spectral broadening of the third harmonics. The
FWM interaction of radiated dispersive waves and ejected
fundamental solitons is low and the spectral profile of the
backward waves retains an unruffled shape. However, the
negative spectral components generated by the nonlinear
coupling remain negligibly small and the propagation of the
forward waves remains unaffected by their interaction.

In Fig. 4 we present the temporal evolution of the backward
moving waves for the 10-fs pulse (left column) and 50-fs pulse

50 0 50 100 150 200
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10 5 0 5 10
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χ ω
2

50 0 50 100 150 200

0.01

0

0.01

Τ fs

χ1 2E z 1.0 cm

10 5 0 5 10

10 12

10 24

10 36 Ω PHz

χ ω
2

50 0 50 100 150 200

0.01

0

0.01

τ fs

χ1 2E z 0.5 mm

10 5 0 5 10

10 12

10 24

10 36 ω PHz

χ ω
2

FIG. 3. Exemplary profiles of the
forward propagating electric field and
the corresponding spectra of the full
complex field for a 10-fs pulse. The
temporal profiles are shown in a for-
ward comoving frame with τ = t −
β1z.
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FIG. 4. Exemplary time pro-
files of the backscattered electric
field components for a 10-fs pulse
(left column) and a 50-fs pulse
(right column). The profiles are
shown in a backward comoving
frame with τ− = t + β1z.

(right column) for selected propagation distances. The z values
are chosen such that the backward waves are not superposed
with the forward waves in our periodic time window and
well-separated pulses can be observed. The two backward
propagating field components have their center at t = 0 at the
beginning of the propagation with the same temporal profile
and width as the incident forward propagating pump wave and
the third harmonics, but with amplitudes, which are several
magnitudes lower. They propagate in the opposite direction
with the same velocity as the forward propagating parts, so that
the backscattered field components of the third harmonic move
faster than the backscattered field components of the input
pulse moving with the group velocity β−1

1 . The propagation
of the backward waves is mainly affected by the linear part
of BMCF and the temporal profiles stay unchanged over the
regarded propagation distances.

The amplitude of the backscattered components depends on
the nonlinear term in BMCF and increases with the nonlinear
susceptibility χ . For the given pulse and fiber parameters the
shift of energy to negative frequencies is extremely weak and
the impact of backscattered light on the propagation dynamics
of the forward wave can be neglected. We demonstrate this in
the next section by comparing the predictions of the BMCF
with simulation of the FME and the FMAS.

C. Comparison with unidirectional models

In this section we concentrate on the dynamics of the
forward-propagating waves, represented by positive frequen-
cies. The spectral evolution of the electric field components
of the 10-fs pulse and the 50-fs pulse obtained by the BMCF
(solid black line), the FME (solid gray line), and the FMAS
(dashed black line) are presented in Fig. 5.

The solutions of the BMCF for positive frequencies do not
differ globally from the solutions of the FME. The FMAS lacks
3 →← 1 four-wave processes and no third-harmonic generation
is observed, but in the spectral range 0–5PHz the same spectra
are received as by the BMCF or the FWE. The differences
between the three models are more visible in Fig. 6, where the
spectra for the 50-fs pulse are shown in logarithmic and linear
scale and around the carrier frequency. For the FMAS there is
no energy shift to backscattered optical field components and
to higher harmonic generation and the main pulse contains
more energy. The SC generation evolves slightly faster in
that case (dashed line). A similar deviation exists between
the BMCF and the FME, whereas the energy difference lies
only in shift of energy to the backward waves.

In short, predictions of all three models are very sim-
ilar around the pulse carrier frequency. Therefore also the
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FIG. 5. Electric field spectra for
selected propagation distances for a
10-fs pulse (left) and 50-fs pulse
(right). Calculations were performed
with the BMCF (solid black line), the
FME (solid gray line), and the FMAS
(dashed black line).
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FIG. 6. Detailed comparison of
the spectra predicted by the BMCF
(solid black line), the FME (solid gray
line), and the FMAS (dashed black
line) around the carrier frequency for
a 50-fs pulse in logarithmic scale (left)
and linear scale (right).

simplest FMAS reproduces the most essential features of pulse
propagation. Even for a relatively long propagation distance,
the transfer of energy for third-harmonics generation and for a
backscattered wave remains small and, most important, there
is no noticeable feedback to the main pulse. The quality of all
presented numerical solutions is effectively controlled by the
conservation laws.

VI. CONCLUSIONS

Let us summarize our results. Propagation of spectrally
broad ultrashort optical pulses is considered. First, we show
how the standard second-order propagation equation can be
transformed into a first-order model for a properly chosen
complex electric field. The model looks similar to the first-
order unidirectional models reported previously; however, it
accounts for both forward and backward waves. These waves
are described by positive- and negative-frequency components
of the complex electric field. The latter reduces to an analytic
signal for the purely forward waves.

Second, we present the bidirectional first-order propagation
equation as a Hamiltonian one. To this end the so-called
normal variables (classical counterparts of the creation and
annihilation operators) are introduced. Then we obtain con-
servation laws for the z-propagated picture. They are given by
the time-averaged fluxes of momentum, energy, and photons
transferred by the pulse. The conservation laws provide a

useful tool to control numerical solutions. They can also
be used to characterize solitons. In particular, a stationary
nonlinear wave is governed by the following property: the
wave yields an extremal value of the momentum flux for
a given energy flux. We also show that both nonenvelope
(unidirectional) and envelope propagation equations can be
derived directly from the Hamiltonian representation.

Finally, we illustrate numerically the propagation dynamics
described by the bidirectional model for the complex field by
calculating supercontinuum generation for ultrashort pulses.
The solutions reproduce all essential features seen in a number
of experiments [10,92] and in simulations with the generalized
nonlinear Schrödinger equation [10]. In addition, the effect of
backscattered optical field components can be investigated.
A comparison with the forward Maxwell equation [77–79]
and with the simplified equation for the analytic signal
exemplifies that under certain circumstances also the latter
model represents a practical and useful tool for the description
of pulse propagation in nonlinear media.
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H. G. Muller, and P. Agostini, Science 292, 1689 (2001).
[15] M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider,

N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann,
M. Drescher, and F. Krausz, Nature (London) 414, 509 (2001).

[16] M. Drescher, M. Hentschel, R. Kienberger, G. Tempea,
C. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz,
Science 291, 1923 (2001).

[17] P. M. Goorjian, A. Taflove, R. M. Joseph, and S. C. Hagness,
IEEE J. Quantum Electron. 28, 2416 (1992).

[18] R. G. Flesch, A. Pushkarev, and J. V. Moloney, Phys. Rev. Lett.
76, 2488 (1996).

[19] L. Gilles, J. V. Moloney, and L. Vázquez, Phys. Rev. E 60, 1051
(1999).

[20] V. P. Kalosha and J. Herrmann, Phys. Rev. A 62, 011804 (2000).
[21] J. C. A. Tyrrell, P. Kinsler, and G. H. C. New, J. Mod. Opt. 52,

973 (2005).
[22] Y. Mizuta, M. Nagasawa, M. Ohtani, and M. Yamashita, Phys.

Rev. A 72, 063802 (2005).

013812-10

http://dx.doi.org/10.1109/JQE.1987.1073392
http://dx.doi.org/10.1109/JQE.1987.1073392
http://dx.doi.org/10.1364/OL.23.000534
http://dx.doi.org/10.1364/OL.17.001340
http://dx.doi.org/10.1103/PhysRev.164.312
http://dx.doi.org/10.1103/PhysRevA.67.023813
http://dx.doi.org/10.1126/science.1153625
http://dx.doi.org/10.1103/RevModPhys.78.1135
http://dx.doi.org/10.1103/RevModPhys.78.1135
http://dx.doi.org/10.1143/JPSJ.65.2020
http://dx.doi.org/10.1070/PU1999v042n01ABEH000448
http://dx.doi.org/10.1070/PU1999v042n01ABEH000448
http://dx.doi.org/10.1103/RevModPhys.72.545
http://dx.doi.org/10.1126/science.1059413
http://dx.doi.org/10.1038/35107000
http://dx.doi.org/10.1126/science.1058561
http://dx.doi.org/10.1109/3.159548
http://dx.doi.org/10.1103/PhysRevLett.76.2488
http://dx.doi.org/10.1103/PhysRevLett.76.2488
http://dx.doi.org/10.1103/PhysRevE.60.1051
http://dx.doi.org/10.1103/PhysRevE.60.1051
http://dx.doi.org/10.1103/PhysRevA.62.011804
http://dx.doi.org/10.1080/09500340512331334086
http://dx.doi.org/10.1080/09500340512331334086
http://dx.doi.org/10.1103/PhysRevA.72.063802
http://dx.doi.org/10.1103/PhysRevA.72.063802


HAMILTONIAN STRUCTURE OF PROPAGATION . . . PHYSICAL REVIEW A 82, 013812 (2010)

[23] V. E. Semenov, JETP 102, 34 (2006).
[24] T. Brabec and F. Krausz, Phys. Rev. Lett. 78, 3282 (1997).
[25] P. Kinsler and G. H. C. New, Phys. Rev. A 69, 013805 (2004).
[26] K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665

(1989).
[27] N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata,

R. Morita, H. Shigekawa, and M. Yamashita, IEEE J. Quantum
Electron. 37, 398 (2001).

[28] M. A. Porras, Phys. Rev. A 60, 5069 (1999).
[29] M. Geissler, G. Tempea, A. Scrinzi, M. Schnürer, F. Krausz, and
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D. Binosi, and Á. Montero, Phys. Rev. E 71, 016601 (2005).
[81] P. Kinsler, S. B. P. Radnor, and G. H. C. New, Phys. Rev. A 72,

063807 (2005).
[82] V. I. Arnold, Mathematical Methods of Classical Mechanics,

2nd ed. (Springer, Berlin, 1989).
[83] G. Webb, M. P. Sorensen, M. Brio, A. R. Zakharian, and J. V.

Moloney, Physica D 191, 49 (2004).
[84] V. E. Zakharov, V. S. L’vov, and G. Falkovich, Kolmogorov

Spectra of Turbulence 1. Wave Turbulence (Springer, Berlin,
1992).

[85] V. E. Zakharov, S. L. Musher, and A. M. Rubenchik, Phys. Rep.
129, 285 (1985).

[86] V. E. Zakharov and E. A. Kuznetsov, Usp. Fiz. Nauk 40, 1087
(1997).

[87] L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynam-
ics of Continuous Media, 2nd ed. (Elsevier, New York, 1984).

[88] V. E. Zakharov and E. A. Kuznetsov, JETP 86, 1035 (1998).
[89] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang,

Spectral Methods: Fundamentals in Single Domains, 3rd ed.
(Springer, Berlin, 2006).

[90] E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary
Differential Equations I: Nonstiff Problems, 2nd ed. (Springer,
Berlin, 2000).

[91] I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, Opt. Express
12, 124 (2004).

[92] J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25
(2000).

013812-11

http://dx.doi.org/10.1134/S1063776106010043
http://dx.doi.org/10.1103/PhysRevLett.78.3282
http://dx.doi.org/10.1103/PhysRevA.69.013805
http://dx.doi.org/10.1109/3.40655
http://dx.doi.org/10.1109/3.40655
http://dx.doi.org/10.1109/3.910449
http://dx.doi.org/10.1109/3.910449
http://dx.doi.org/10.1103/PhysRevA.60.5069
http://dx.doi.org/10.1103/PhysRevLett.83.2930
http://dx.doi.org/10.1364/OE.15.005382
http://dx.doi.org/10.1364/OE.15.005382
http://dx.doi.org/10.1103/PhysRevA.58.3303
http://dx.doi.org/10.1103/PhysRevA.58.3303
http://dx.doi.org/10.1103/PhysRevLett.82.1430
http://dx.doi.org/10.1103/PhysRevLett.82.723
http://dx.doi.org/10.1103/PhysRevLett.84.3732
http://dx.doi.org/10.1016/S0030-4018(01)01113-0
http://dx.doi.org/10.1016/S0030-4018(01)01113-0
http://dx.doi.org/10.1103/PhysRevA.69.053803
http://dx.doi.org/10.1103/PhysRevA.69.053803
http://dx.doi.org/10.1016/j.optcom.2004.09.049
http://dx.doi.org/10.1007/s00340-006-2475-8
http://dx.doi.org/10.1103/PhysRevLett.78.642
http://dx.doi.org/10.1016/j.optcom.2009.10.034
http://dx.doi.org/10.1016/j.optcom.2009.10.034
http://dx.doi.org/10.1070/QE2000v030n04ABEH001712
http://dx.doi.org/10.1016/j.physd.2004.04.007
http://dx.doi.org/10.1088/0951-7715/18/3/021
http://dx.doi.org/10.1134/1.558109
http://dx.doi.org/10.1103/PhysRevA.66.013811
http://dx.doi.org/10.1103/PhysRevA.72.043821
http://dx.doi.org/10.1103/PhysRevA.72.043821
http://dx.doi.org/10.1103/PhysRevA.67.013804
http://dx.doi.org/10.1103/PhysRevA.74.063815
http://dx.doi.org/10.1103/PhysRevA.78.013807
http://dx.doi.org/10.1103/PhysRevA.78.043802
http://dx.doi.org/10.1103/PhysRevA.78.043802
http://dx.doi.org/10.1103/PhysRevA.79.063835
http://dx.doi.org/10.1143/JPSJ.74.239
http://dx.doi.org/10.1143/JPSJ.74.239
http://dx.doi.org/10.1103/PhysRevE.71.056622
http://dx.doi.org/10.1103/PhysRevE.71.056622
http://dx.doi.org/10.2991/jnmp.2008.15.2.4
http://dx.doi.org/10.2991/jnmp.2008.15.2.4
http://dx.doi.org/10.1137/080734327
http://dx.doi.org/10.1137/080734327
http://dx.doi.org/10.1134/1.1857267
http://dx.doi.org/10.1134/1.1625724
http://dx.doi.org/10.1134/1.1625724
http://dx.doi.org/10.1088/0305-4470/39/22/L03
http://dx.doi.org/10.1103/PhysRevLett.99.203902
http://dx.doi.org/10.1103/PhysRevLett.99.203902
http://dx.doi.org/10.1103/PhysRevA.77.043823
http://dx.doi.org/10.1103/PhysRevA.77.063821
http://dx.doi.org/10.1103/PhysRevA.77.063821
http://dx.doi.org/10.1016/j.chaos.2006.10.055
http://dx.doi.org/10.1063/1.342996
http://dx.doi.org/10.1103/PhysRevLett.76.3955
http://dx.doi.org/10.1103/PhysRevLett.76.3955
http://dx.doi.org/10.1103/PhysRevLett.78.448
http://dx.doi.org/10.1103/PhysRevLett.78.448
http://dx.doi.org/10.1103/PhysRevLett.85.4502
http://dx.doi.org/10.1103/PhysRevLett.85.4502
http://dx.doi.org/10.1063/1.1290744
http://dx.doi.org/10.1103/PhysRevE.71.056619
http://dx.doi.org/10.1103/PhysRevE.71.056619
http://dx.doi.org/10.1103/PhysRevLett.98.074102
http://dx.doi.org/10.1103/PhysRevLett.98.074102
http://dx.doi.org/10.1103/PhysRevE.78.026602
http://dx.doi.org/10.1103/PhysRevA.78.023821
http://dx.doi.org/10.1103/PhysRevLett.101.123904
http://dx.doi.org/10.1103/PhysRevA.78.021806
http://dx.doi.org/10.1103/PhysRevA.78.021806
http://dx.doi.org/10.1140/epjst/e2009-01072-0
http://dx.doi.org/10.1140/epjst/e2009-01072-0
http://dx.doi.org/10.1103/PhysRevLett.87.203901
http://dx.doi.org/10.1103/PhysRevLett.87.203901
http://dx.doi.org/10.1103/PhysRevLett.89.283902
http://dx.doi.org/10.1103/PhysRevLett.89.283902
http://dx.doi.org/10.1103/PhysRevE.70.036604
http://dx.doi.org/10.1103/PhysRevE.71.016601
http://dx.doi.org/10.1103/PhysRevA.72.063807
http://dx.doi.org/10.1103/PhysRevA.72.063807
http://dx.doi.org/10.1016/j.physd.2003.10.014
http://dx.doi.org/10.1016/0370-1573(85)90040-7
http://dx.doi.org/10.1016/0370-1573(85)90040-7
http://dx.doi.org/10.1070/PU1997v040n11ABEH000304
http://dx.doi.org/10.1070/PU1997v040n11ABEH000304
http://dx.doi.org/10.1134/1.558551
http://dx.doi.org/10.1364/OPEX.12.000124
http://dx.doi.org/10.1364/OPEX.12.000124
http://dx.doi.org/10.1364/OL.25.000025
http://dx.doi.org/10.1364/OL.25.000025

