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Gains without inversion in quantum systems with broken parities

W. Z. Jia* and L. F. Wei†

Quantum Optoelectronics Laboratory, Southwest Jiaotong University, Chengdu 610031, China
(Received 30 March 2010; published 12 July 2010)

For a quantum system with broken parity symmetry, selection rules cannot hold and cyclic transition structures
are generated. With these loop transitions we discuss how to achieve inversionless gain of the probe field by
properly setting the control and auxiliary fields. Possible implementations of our generic proposal with specific
physical objects with broken parities (e.g., superconducting circuits and chiral molecules) are also discussed.
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I. INTRODUCTION

It is well known that under the usual electric-dipole
approximation, natural atoms obey the optical selection rules,
since their quantum states have well-defined parity symme-
tries. With these electric-dipole transitions, strong interactions
between the fields and atoms have been utilized to dynamically
manipulate quantum coherence. As a consequence, many
interesting optical phenomena, such as coherent population
trapping (CPT) [1], electromagnetically induced transparency
(EIT) [2], lasing without inversion (LWI) [3], and so on, can
be implemented. Basically, these phenomena are originated
from the absorption cancellation via quantum interference of
various allowed dipole transitions. Specifically, LWI provides
an approach to demonstrate optical gain without requiring
population inversion of atomic levels.

Besides the usual electric-dipole transitions, various rel-
atively weak magnetic-dipole transitions are also utilized
to realize certain transitions forbidden by electric-dipole
selection rules. Typically, for a natural three-level atom
two electric-dipole transitions (between quantum states with
different parities, e.g., |1〉 and |2〉, and |2〉 and |3〉) and a
magnetic-dipole transition (between near degenerate quantum
states with same parities, i.e., |1〉 and |3〉) can generate a loop-
transition structure [4–7]. Such loop-transition configurations
have been used to control phenomena associated with atomic
coherence, including CPT [4], EIT [5], group velocity control
[6], and LWI [7].

Recently, certain quantum systems with broken parity
symmetries had been investigated. These systems include
(e.g., chiral molecules [8–10], asymmetric quantum wells
[8], and superconducting quantum circuits (SQCs) [11–14]),
etc. Both quantum bound states and interaction Hamiltonian
(transition matrix elements) in these parity-broken systems
have not well-defined parities, and thus the usual selection
rules do not hold. Therefore, certain particular transition
structures (e.g., three-level �-type cyclic transition) can be
realized [8–10,12]. Compared with loop structure in natural
atoms, in parity-broken systems, even three levels are well
separated from each other; the possible transition channels
can form a loop for selection rules do not hold. Note that such
a configuration has been experimentally demonstrated with
circuit quantum electrodynamics (QED) systems [13], and has
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already been utilized to achieve tunable coupling between two
flux qubits [14].

In this paper, we investigate how to generate gain without
inversion in parity-broken three-level quantum systems by
utilizing the �-type transition structure. We consider a �-type
three-level system interacting simultaneously with three ex-
ternal fields: a weak probe, a strong coherent control, and
a tunable auxiliary ones. The optical response of a quantum
system with broken-parity symmetry is sensitive to the relative
phase of the three coherent driving fields. We show that
the desirable inversionless gains (called lasers or masers) of
the weak probe field can be achieved by properly controlling
the parameters of applied driving fields.

Compared with the previous schemes for realizing LWIs
with the loop-transition configurations in microscopic natural
atoms [7], we emphasize that: (i) the LWI could also be
demonstrated with certain macroscopic quantum systems, such
as SQCs; (ii) gain without inversion can be generalized from
the traditionally optical waveband (with natural atoms) to
the microwave domain (since the energy splittings of SQCs
are just in this waveband); and (iii) manipulating the cyclic
transitions in the present parity-broken artificial atoms to
realize the LWI is relatively simple. This is because one of three
transitions in loop configuration with natural atoms is usually
implemented by using a significantly weak magnetic-dipole
transition. However, in the loop structure with parity-broken
artificial atoms, the strengths of three transitions could be at
the same orders.

The paper is organized as follows. In Sec. II we firstly give
a universal analysis on the gain-absorption properties in quan-
tum systems with parity-broken symmetries. Then, in Sec. III,
we discuss how to demonstrate our generic proposals with
two class specific physical systems: the superconducting flux
qubits and the chiral molecules. Conclusions and discussions
are given in Sec. IV.

II. GAIN WITHOUT POPULATION INVERSION
IN QUANTUM SYSTEMS WITH �-TYPE

CYCLIC TRANSITIONS

Consider a three-level system with a cyclic transition
structure shown in Fig. 1. In our inversionless gain scheme
with parity-broken three-level systems, three coherent driving
fields are applied: one is the strong resonant-coupling field, one
is applied as a probe, and the third one is a tunable auxiliary
field. Depending on the specific systems adopted, these three
applied fields could be either microwaves or optical waves.
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FIG. 1. Three-level quantum system with broken parity. The
triangle-shaped transition structure allows three possible transition
channels coherently driven by the fields with Rabi frequencies Gij and
detunings �i,i,j = 1,2,3. γi are the decay rates of the corresponding
levels.

The Hamiltonian of our generic system can be written as H =∑3
i=1 Ei |i〉〈i| + 1

2

∑3
i>j=1[Gije

iωij t |i〉〈j | + H.c.], where Ei

are the eigenvalues of energy eigenstates |i〉, ωij and Gij

are the frequencies and Rabi frequencies of the coherent
driving fields, respectively. Let �1 = E3 − E1 − ω31, �2 =
E2 − E1 − ω21, and �3 = E3 − E2 − ω32 be the detunings of
the applied driving fields. When the condition �1 = �2 + �3

is satisfied and in the interaction picture, the interaction Hamil-
tonian is time independent: HI = �1|3〉〈3| + �2|2〉〈2| +
1
2

∑3
i>j=1[Gij |i〉〈j | + H.c.]. The dynamical evolution of the

system, including relaxation terms γi , is governed by the
Liouvillian equation: dρ/dt = −i[HI ,ρ] + L[ρ].

The closed-loop atomic configuration considered here
makes the optical properties of the system sensitive to the
relative phases of applied fields [5]. The Rabi frequencies
Gij should be dealt as complex parameters (e.g., G31/2 =
g1e

iφ1 , G21/2 = g2e
iφ2 , and G32/2 = g3e

iφ3 , with 2gi being
the amplitudes and φi the phases. Redefining the density
matrix elements—ρii = σii , ρ13 = σ13e

−iφ1 , ρ23 = σ23e
−iφ3 ,

ρ12 = σ12e
i(φ3−φ1)—and from the above Liouvillian equation,

one can obtain their equations of motion:

σ̇11 = γ1σ33 + γ2σ22 − (ig1σ13 + ig3σ12e
i� + H.c.), (1)

σ̇22 = −γ2σ22 + γ3σ33 + (ig2σ12e
i� − ig3σ23 + H.c.), (2)

σ̇12 = ( − 1
2γ2 + i�2

)
σ12 − ig3σ13 + ig1σ32

+ ig2e
−i�(σ22 − σ11), (3)

σ̇13 = (−�13 + i�1)σ13 + ig1(σ33 − σ11)

+ ig2σ23e
−i� − ig3σ12, (4)

σ̇23 = (−�123 + i�3)σ23 + ig2σ13e
i� − ig1σ21

+ ig3(σ33 − σ22), (5)

where � = (φ2 + φ3 − φ1) is the relative phase of the applied
fields, and �13 = (γ1 + γ3)/2, �123 = (γ1 + γ2 + γ3)/2.

FIG. 2. (Color online) A �-type three-level system driven by
three coherent fields: (a) A strong coupling field [red (thick arrow)
line] applied resonantly to the transition channel |2〉 ←→ |3〉, a
weak probe [blue (thin arrow) line], and another auxiliary field (⇔
line) with equal detunings are applied to the transition channels
|1〉 ←→ |2〉 and |1〉 ←→ |3〉, respectively. (b) A strong coupling
field applied resonantly to the transition channel |1〉 ←→ |2〉, a weak
probe, and another auxiliary field with equal detunings are applied to
the transition channels |2〉 ←→ |3〉 and |1〉 ←→ |3〉, respectively.

For simplicity, we assume that all the decay rates of the
levels are equal, namely γi = γ . The steady-state solution of
the master equation can be attained by setting σ̇ij = 0. We first
consider the case shown in Fig. 2(a). A resonant coupling field
g3 is applied to the transition between the intermediate state
|2〉 and the upper state |3〉, a weak coherent field g2 with the
detuning � acted as a probe is applied to the transition between
the ground state |1〉 and intermediate state |2〉, and an auxiliary
field g1 with the same detuning � couples the levels |1〉 and
|3〉, respectively. The absorption behavior for the probe g2 can
be described by Im(σ21e

−i�). For the configuration displayed
in Fig. 2(a), it is seen, from Figs. 3(a) and 3(b), that remarkable
gains [i.e., Im(σ21e

−i�) < 0] can be established, if the modulus
of Rabi frequency g1 and the relative phase � are modulated
appropriately. In fact, the modulation of � can be achieved
by fixing φ2, φ3, and changing the phase of the auxiliary field
φ1 only. Typically, when g1 = 0.74γ and � = 0 (or π ), it
is shown clearly that the gain dip appears at �2 ≈ −9.98γ

(or 9.98γ ); when � = π/2,g1 = 1.70γ , two gain regions
locate, respectively, at about �2 < −10γ and �2 > 10γ ,
with the maximum gain points appearing at �2 ≈ ±12.12γ ;
and when � = 3π/2, g1 = 6.13γ , a remarkable probe gain
can be established approximately in a wide spectral range
from about −10γ to 10γ , with the maximum gain point
being located at �2 = 0. Figure 3(d) shows that the Rabi
frequencies of the auxiliary fields, used in Figs. 3(a) and 3(b),
are optimal for implementing the desirably maximum gains.
More interestingly, Fig. 3(c) shows that population inversion
σ22 − σ11 is always less than zero for any detuning. This
indicates that the phase-dependent gains attained in Figs. 3(a)
and 3(b) are inversionless.

On the other hand, if the atomic configuration in Fig. 2(b)
is selected (i.e., g2 acts as a resonant coupling field), g3 is
a weak probe with detuning �, and g1 is an auxiliary field
with the same detuning, Figs. 4(a)–4(c) show similarly that the
phase-sensitive gain without population inversion could still be
achieved. Specifically, when g1 = 0.94γ and � = 0 (or π ), it
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FIG. 3. Phase-sensitive probe gain without population inversion of the configuration shown in Fig. 2(a), with the parameters γi = γ ,
g3 = 10γ , and g2 = 0.1γ . (a) Detuning-dependent probe gain for g1 = 0.74γ and � = 0 (solid line); π (dashed line). (b) Detuning-dependent
probe gain for � = π/2,g1 = 1.70γ (solid line) and � = 3π/2,g1 = 6.13γ (dashed line). (c) Detuning-dependent population difference
σ22 − σ11 corresponds to the probe gains shown in (a) and (b). It is clearly shown that these gains are not due to the population inversions.
(d) Probe gain versus amplitude of Rabi frequency of auxiliary field g1. With fixed relative phases and detunings, maximal gains can be gotten
at g1 = 0.74γ (solid line); 1.70γ (dashed line); or 6.13γ (dash-dotted line). This means that the parameters of auxiliary field utilized in (a) and
(b) for getting the gains are optimal.

is shown clearly that the gain dip appears at �3 ≈ 10.04γ (or
−10.04γ ); when � = π/2,g1 = 6.97γ , a remarkable probe
gain can be established in a spectral range from about −20γ to
20γ , with the maximum gain point being located at �3 = 0;
and when � = 3π/2, g1 = 1.52γ , two gain regions locate,
respectively, at about �3 < −10γ and �3 > 10γ , with the
maximum gain points appearing at �3 ≈ ±12.92γ . Also, for
the fixed � and detuning �3, Fig. 4(d) shows how the Im(σ32)
depends on the parameter g1. One can see that the parameters
selected in Figs. 4(a)–4(c) are optimal for realizing the gains.

The previously mentioned numerical results can be simply
explained by investigating the steady-state condition in Eqs. (3)
and (5):

Im(σ21e
−i�) = γ2g2

2A (σ11 − σ22) + Im

[
1

A

(
1

2
γ2 − i�2

)

× (ig3σ31 − ig1σ23)e−i�

]
, (6)

Imσ32 = g3�123(σ22 − σ33)/B + Im[(�123 − i�3)

× (ig1σ12 − ig2σ31e
−i�)/B], (7)

with A = γ 2
2 /4 + �2

2, B = �2
123 + �2

3. Clearly, in the config-
uration shown in Fig. 2(a), in order to achieve gain without
inversion for probe g2 the conditions Im(σ21e

−i�) <0, and
σ11 − σ22 > 0 should be simultaneously satisfied. It can be
seen from Eq. (6) that, when σ11 − σ22 > 0, the first term
on the right-hand side of Eq. (6) is positive. Thus, in order

to get a gain, namely Im(σ21e
−i�) < 0, the second term on

the right-hand side of Eq. (6) must contribute negatively
to Im(σ21e

−i�). This implies that in this case the induced
inversionless gain is originated from the dynamically induced
coherence by the coupling field g3 and the auxiliary one g1.
Clearly, if the auxiliary field is not applied, the system shown
in Fig. 2(a) is reduced to the usual ladder-type configuration.
In the presence of a control field g3 and a probe field g2, the
phenomenon of EIT can be achieved instead of inversionless
gain. However, in the present systems with �-type cyclic
transition structure (due to the broken parity symmetries),
an auxiliary coherent driving field g1 could be applied to
couple the levels |1〉 and |3〉. As a consequence, the term
related to σ23 appears and thus negative values of Im(σ21e

−i�)
can be induced within certain spectral ranges. This is clearly
proven that the auxiliary driving field plays crucial roles for
the appearance of the gain. Similarly, Eq. (7) shows that for
the configuration displayed in Fig. 2(b), an auxiliary field g1 is
necessary to obtain the phase-dependant gain without inversion
of the probe field g3.

III. PHYSICAL DEMONSTRATIONS AND POSSIBLE
APPLICATIONS

The above generic results can be realized with all the
systems whose quantum states possess broken parity symme-
tries, such as chiral molecules [8–10], asymmetric quantum
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FIG. 4. Phase-sensitive probe gain without population inversion of the configuration shown in Fig. 2(b), with the parameters γi = γ ,
g2 = 10γ , and g3 = 0.1γ : (a) Detuning-dependent probe gain for g1 = 0.94γ and � = 0 (solid line); π (dashed line). (b) Detuning-dependent
probe gain for � = π/2,g1 = 6.97γ (solid line), and � = 3π/2,g1 = 1.52γ (dashed line). (c) Detuning-dependent population difference
σ33 − σ22 corresponds to the probe gains shown in (a) and (b). It is clearly shown that these gains are not due to the population inversions.
(d) Probe gain versus amplitude of Rabi frequency of auxiliary field g1. With fixed relative phases and detunings, maximal gains can be gotten
at g1 = 0.94γ (solid line); 6.97γ (dashed line); or 1.52γ (dash-dotted line). This means that the parameters of auxiliary field utilized in (a) and
(b) for getting the gains are optimal.

wells [8], superconducting quantum circuits (SQCs) [11–14],
and so on.

Typically, SQCs can be regarded as artificial atoms with
quantized energy levels. Quantum-mechanical behaviors in
these artificial atoms, such as spectroscopy [15], Rabi oscil-
lations [16], and so forth, have already been demonstrated
experimentally. Also, SQCs coupling to various bosonic
modes (e.g., microwave fields, nanomechanical resonator [17],
superconducting transmission line [18], etc.) can be utilized to
simulate various quantum optical phenomena in the microwave
domain. Moreover, recent studies show that quantum optical
phenomena related to atomic coherence, such as EIT [19,20],
Autler-Townes effects [21], and CPT [22], can also be achieved
in SQCs. Here, by using their special loop-transition structure
we show that these devices could be utilized to realize another
important phenomenon related to atomic coherence (i.e.,
the microwave gain without population inversion mentioned
above).

In SQCs the desirable cyclic transition configurations could
be demonstrated with both flux and phase qubits [11–14].
In fact, the parity-broken and consequently loop-transition
configurations had been first observed in phase-qubit ex-
periments [11] and recently demonstrated with flux qubits
[13,14]. Here, we take the flux qubits as typical examples.
For the artificial atoms generated by three Josephson-junction
circuits selection rules do not always exist, as the parity of
the system can be broken by adjusting the parameters of
circuits. The effective potential of the system reads (see,

e.g., [12,19]) U (ϕm,ϕp) = 2EJ (1 − cos ϕp cos ϕm) + αEJ

[1 − cos(2πf + 2ϕm)], with ϕp,m = (ϕ1 ± ϕ2)/2 being the
generalized coordinates defined by the phase drops ϕ1 and
ϕ2 across the two larger junctions, respectively, and EJ their
Josephson energies. The reduced magnetic flux f = �e/�0 is
defined as the ratio of the external magnetic flux �e with the
flux quantum �0, and 0 < α < 1. Clearly, if the flux is biased
away from the degenerate point with f = 1/2, the potential
U (ϕm,ϕp) has ill-defined parities and thus microwave-induced
transitions between arbitrary two levels are possible. Typically,
it is seen from Ref. [12] that, for f = 0.496 the lowest three
energy levels of the artificial atom are well separated from
other higher energy levels and the moduli |tij | of transition
matrix elements between any two levers are comparable (i.e.,
|t01| � 0.19, |t02| � 0.14, and |t12| � 0.19). This indicates
that the flux qubit is really an ideal candidate to realize the
phase-sensitive inversionless gain proposed in Sec. II.

The timescale to reach the steady-state solutions (see
Sec. II) required for realizing LWI with the present SQCs could
be estimated as follows. With the experimentally demonstrated
relaxation rate 6.9 × 107s−1 (between the two lower levels of
a flux qubit at degenerate point) [20,23], and the calculated
transition matrix elements |tij (f )| [12], the three decay rates
used in our proposal are estimated as γ2 = γ3 = 5.5 × 106 s−1

and γ1 = 3.2 × 106 s−1 (note that the relaxation times are
proportional to |tij |2). If the Rabi frequencies of the coupling
and probe fields are setting as 10γ2 and 0.1γ2, and by
appropriately choosing the Rabi frequency of the auxiliary
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field, the timescale to reach the so-called stationary solutions
is numerically as 10−6 s. This implies that the physical
demonstration of our proposal with SQCs should be feasible.

Furthermore, constructing an effective medium to realize
inversionless maser with these artificial atoms is also possible.
In fact, the typical size of a superconducting qubit is about
10−6 m [16]. This is much smaller than the wavelength of
microwave. For example, if a transition can be driven by the
microwave field with wavelength around 10−2 m, the ratio
between the wavelength of the driving field and the size of
artificial atoms is about 104. This is in accordance with the
ratio between the optical wavelength and the size of the natural
atom. Therefore, an effective medium generated by a block
consisting of superconducting artificial atoms is feasible.

For another kind of quantum system with broken parity
symmetry (i.e., chiral molecules [8–10]), our scheme proposed
in Sec. II could also offer an effective way to discriminate
the left- and right-handed chiral molecules (such pairs are
called “enantiomers” [8]), in addition to realize LWI. If only
the three lowest levels are considered, a chiral molecule
can be modeled as a three-level cyclic system as shown in
Fig. 1. Thus, three lasers can be applied to enantiomeric
molecules with the Rabi frequencies being chosen as, for
example, those in Fig. 3(a). The Rabi frequencies of applied
lasers between any pair of left- and right-handed states differ
by a sign, namely, gie

iφL
i = −gie

iφR
i (i = 1,2,3). Thus the

according phase factors of Rabi frequencies φ
L,R
i (i = 1,2,3)

differ by π [8]. Clearly, the difference between the total
phase factors of the two enantiomers is �L − �R = π , where
�L,R = φ

L,R
2 + φ

L,R
3 − φ

L,R
1 . On the other hand, as shown in

Sec. II, the gain-absorption properties of the two enantiomers
(both with cyclic transition structures) are dependent on

the total phase factors �L,R. Clearly, if we set the phase
factor of the applied coherent fields appropriately to assure
that �L = π , then inevitably �R = 0. As a consequence, the
probe gain-absorption spectra of the left- and right-handed
chiral molecules correspond to the dashed and solid lines in
Fig. 3(a), respectively. Thus, the enantiomers can be identified
by their different gain-absorption spectra.

IV. CONCLUSIONS AND DISCUSSIONS

In summary, we have shown that phase-sensitive gain
without inversion can be realized with parity-broken quan-
tum systems. We investigate two typical inversionless gain
approaches by applying a probe, a coupling field, and a
tunable auxiliary field to generate a transition loop. In these
approaches, by modifying the phase and modulus of the
Rabi frequency of the auxiliary field, remarkable inversionless
gains can be obtained for different probe detunings. Our
generic proposal could be implemented with various specific
systems with broken parity symmetries (e.g., superconducting
artificial atoms, chiral molecules, asymmetric quantum wells,
and so on). Therefore, maser (laser) without inversion can
be realized in principle with these systems by using their
cyclic transition structures. As far as chiral molecules, the
phase-dependent gain-absorption spectra may be used to
discriminate enantiomeric molecules.
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