
PHYSICAL REVIEW A 82, 013807 (2010)

Stationary light pulses in cold thermal atomic clouds
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Fourier-expanded Maxwell-Liouville equations are employed to study the light pulse dynamics in atomic
samples coherently driven by a standing-wave light field. Solutions are obtained by a suitable truncation of
the Maxwell-Liouville equations that contain the number of spin and optical Fourier coherence components
appropriate to the sample temperature. This approach is examined here for cold but thermal atoms where the
Doppler broadening is still not negligible and familiar secular approximations no longer hold. In this temperature
regime higher-order momentum Fourier coherence components are shown to be important for achieving excellent
agreement with a recent experiment done in cold 87Rb clouds at several hundred microkelvins.
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I. INTRODUCTION

The development of quantum memories for photonic
states [1–3] hinges on the controlled localization and storage
of weak light pulses. Apart from the fundamental interest,
schemes for manipulating the propagation dynamics of weak
light pulses are being pursued rather actively for practical
implementations [4,5]. Such schemes have already led to novel
approaches for reversible light storage and retrieval [6–9],
adiabatic population and coherence transfer [10–12], and
resonant enhancement of optical nonlinearities [13–16], just
to mention a few. Most of these studies deal with spatially
homogeneous atomic samples driven by external traveling-
wave (TW) light beams, which significantly modify absorption
and dispersion properties of the dressed samples through elec-
tromagnetically induced transparency (EIT) [17–19]. Schemes
with atomic samples driven into a regime of standing-wave
(SW) EIT have also been well studied [20–24]. As far
as the electromagnetic confinement is concerned, SW-EIT
driving schemes represent a real improvement and may in fact
be exploited either to realize all-optically tunable photonic
bandgap structures [25–28] or to generate stationary light
pulses (SLPs) [29–36] whose forward (FW) and backward
(BW) components can easily be stored, made to interact, or
read out of the sample. This versatility in the control over
the propagation of SLP components may ease the realization
of nonlinear interactions between weak light pulses [37–40]
where strong atom-photon couplings are required for quantum
information processing [41–44].

Driving atomic systems in a SW-EIT configuration, how-
ever, is not a straightforward extension of the TW-EIT
configuration [42,45]. In an SW driving configuration, higher-
order momentum components of spin and optical coherences
are expected to arise due to multiple coherent scattering of
the FW and BW components of a probe field off the SW
optical grating. These higher-order components are actually
responsible for significant loss and diffusion in the decay
process of SLPs in ultracold atomic samples [46], where they
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indeed preserve their coherence [31,42,45]. Conversely, these
higher-order components are not important in warm atomic
samples, where instead they quickly decohere due to the fast
atomic motion [30,31].

Although different approaches to studying the propagation
dynamics of weak light pulses in the presence of SW optical
gratings have been developed for ultracold atomic samples
with negligible Doppler broadening [31,42,46] and for warm
atomic samples through a secular approximation [29,30], yet
a complete description at low but finite temperatures is still
missing. At these temperatures the Doppler broadening and
higher-order coherence components are important and need to
be taken into account. SLP dynamics in cold but thermal atoms
has been observed in a recent experiment [32] whose results
are interpreted1 by resorting to spin coherences of order ±2
besides the zero-order spin coherence and optical coherences
of order ±1.

The purpose of the present article is to extend the approach
we developed in Ref. [46] to the low but finite temperature
regime, with proper inclusion of the Doppler effect arising
from the atomic random motion. Our approach, strongly
supported by recent experimental work carried out in SW
dressed cold thermal (T ∼ mK) 87Rb atoms [32], is easily
reduced to study the light pulse dynamics in ultracold
(T ∼ µK) and warm (T ∼ 300 K) atoms driven by an SW
coupling field. We proceed by giving in Sec. II the appropriate
infinite set of Maxwell-Liouville equations whose solutions
are spatially periodic atomic coherence components which
now depend on the atomic velocity and have been integrated
over a typical velocity distribution [47,48]. The general
approach developed in Sec. II is then employed in Sec. III
to reproduce well the experimental data on cold thermal
87Rb atoms in Ref. [32]. In particular, we show a substantial

1Neither the Doppler broadening nor fairly higher-order coherence
components are directly included in Ref. [32], which is somehow
overcome by adopting rather high dephasing rates for the spin
coherence components of order ±2. Note that this fails, in the end, to
recover the fine structure of the observed data. See, e.g., the relevant
discussion of Fig. 4.
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departure from the experiment when we purposely neglect the
residual Doppler broadening. Moreover, solving the Maxwell-
Liouville equations in Sec. II entails a suitable truncation
procedure where only a few relevant higher-order components
of spin and optical coherences are included, without altogether
discarding higher-order coherence components as typically
done through a secular approximation [29,30]. This truncation
clearly depends on the atomic temperature through the Doppler
broadening. In addition, a bichromatic SW driving configura-
tion is expected to quench the onset of higher-order coherence
components [45] in much the same way that the Doppler effect
does. This has actually been used in Ref. [32] to create a
two-color SLP. The bichromatic SW driving configuration has
also been included in the model in Sec. II and used in Sec.
III to recover numerically the relevant experimental results
observed in Ref. [32].

II. THEORETICAL MODEL AND BASIC EQUATIONS

We consider here a three-level atomic system with two
lower levels, |1〉 and |2〉, and one excited level |3〉 (see
Fig. 1), which may represent, for example, the hyperfine
states |5S1/2,F = 1〉, |5S1/2,F = 2〉, and |5P3/2,F

′ = 2〉 of
87Rb atoms, just as done in Ref. [32]. The transition |2〉 ↔ |3〉
is driven by a bichromatric SW coupling electric field with
one (FW) component of frequency ωc+ = ckc+ traveling in
the +z direction and another (BW) component of frequency
ωc− = ckc− traveling in the opposite −z direction, which is
described by

Ec = Ec+e−iωc+t+ikc+z + Ec−e−iωc−t−ikc−z. (1)

In the presence of an incident (FW) weak probe of frequency
ωp+ = ckp+ that couples to the transition |1〉 ↔ |3〉, a similar
probe of frequency ωp− = ckp− and scattered in the opposite
(BW) direction will also be generated through wave mixing
with the bichromatic coupling field, and the probe field can
then be written as

Ep = Ep+e−iωp+t+ikp+z + Ep−e−iωp−t−ikp−z. (2)
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FIG. 1. (Color online) Energy level diagram for atoms in a typical
bichromatic standing-wave driving configuration [32,45]. When the
FW (ωc+) and BW (ωc−) coupling beams are slightly detuned, by
�b = ωc− − ωc+, an incident FW probe (ωp+) leads to the formation
of a BW (ωp−) probe with the same frequency detuning �b. The
detuning choice shown here corresponds to a specific case discussed
in Sec. III, whereas the limit case �b = 0 corresponds to the usual
monochromatic standing-wave driving configuration [29–31].

In particular, an FW probe photon (kp+) and a BW coupling
photon (kc−) may coherently scatter into an FW coupling
photon (kc+) and a BW probe photon (kp−) so as to con-
serve momentum (kp+ + kc− = kp− + kc+) and energy (ωp+ +
ωc− = ωp− + ωc+).

In the usual electric-dipole and rotating-wave approxima-
tions the interaction Hamiltonian is [17,39]

HI (z,t) = −h̄�p(z,t) |3〉 〈1| − h̄�c(z,t) |3〉 〈2| + H.c., (3)

where the probe and coupling Rabi frequencies can be written
as

�p(z,t) = �p+(z,t)e−i�p+t+ikc+z + �p−(z,t)e−i�p−t−ikc−z

= [�p+(z,t) + �p−(z,t)e−i�bt−i(kc++kc−)z]

× e−i�p+t+ikc+z,
(4)

�c(z,t) = �c+(t)e−i�c+t+ikc+z + �c−(t)e−i�c−t−ikc−z

= [
�c+(t) + �c−(t)e−i�bt−i(kc++kc−)z] e−i�c+t+ikc+z,

Here �p± = ωp± − ω31 (�c± = ωc± − ω32) is taken to be
the probe (coupling) detunings from transition |1〉 ↔ |3〉
(|2〉 ↔ |3〉), while �b = ωc− − ωc+ = ωp− − ωp+ is set as
the bichromatic detuning between the BW and the FW
coupling (probe) photons.

The coupling field is supposed to be slowly modulated in
time, and the probe field to be a pulse with a slowly varying
envelope. Since in a realistic atomic level configuration, kp± �
kc± ,2 in Eqs. (4) we choose the wave vectors of the coupling
field components as the central wave vectors for the probe
pulse components as well.3

We adopt in the following a semiclassical result [47,49]
for a single-mode driving field where evolutions of the atomic
variables are described in terms of an ensemble-averaged form
of the density-matrix equations of motion [21,22]. The relevant
Liouville equation for a group of atoms moving at velocity υ

in the +z direction may be written in this case as

ih̄

(
∂

∂t
+ υ

∂

∂z

)
ρ = [HI ,ρ] + Rρ, (5)

where R describes relaxation processes due, for example,
to spontaneous emission and atomic collisions. The specific
dynamics of the spin and optical coherences for the three-level
EIT system shown in Fig. 1 are derived from Eq. (5) as

(∂t + υ∂z)ρ21 = −γ21ρ21 + i�∗
cρ31,

(6)
(∂t + υ∂z)ρ31 = −γ31ρ31 + i�cρ21 + i�p,

where γ21 and γ31 denote the spin and optical coherences
dephasing rates, respectively. In deriving Eqs. (6), we have

2A typical hyperfine splitting (ω21) for 87Rb atoms is of the order
6.8 GHz, which amounts to a fairly small mismatch, �k ∼
0.14 mm−1, between kp± and kc± .

3In our case, as described by Eqs. (4), the coupling field
of Eq. (1) becomes Ec = Ec+(t)e−iωc+t+ikc+z + Ec−(t)e−iωc−t−ikc−z

[with �c±(t) = Ec±(t)d32/2h̄], and the probe field of Eq. (2) becomes
Ep = εp+(z,t)e−iωp+t+ikc+z + εp−(z,t)e−iωp−t−ikc−z [with �p±(z,t) =
εp±(z,t)d31/2h̄].

013807-2



STATIONARY LIGHT PULSES IN COLD THERMAL . . . PHYSICAL REVIEW A 82, 013807 (2010)

assumed that the two probe components Ep± are weak enough
so that ρ11 � 1 and ρ22 � ρ33 � ρ32 � 0.

The spin coherence in Eqs. (6) is then expanded into spatial
Fourier components as

ρ21(z,t,υ) = e−i(�p+−�c+)t

×
+∞∑

n=−∞
ρ

(2n)
21 (z,t,υ)e+in(kc++kc−)z+in�bt , (7)

and likewise for the optical coherence,

ρ31(z,t,υ) = e−i�p+t+ikc+z

+∞∑
n=0

ρ
(2n+1)
31 (z,t,υ)

× e+in(kc++kc−)z+in�bt + e−i(�p++�b)t−ikc−z

×
−∞∑
n=0

ρ
(2n−1)
31 (z,t,υ)e+in(kc++kc−)z+in�bt . (8)

Inserting Eqs. (4), (7), and (8) into Eqs. (6), we arrive at an
infinite set of mutually coupled equations,4

∂tρ
(2n)
21 = −γ

(2n)
21 ρ

(2n)
21 + i�c+ρ

(2n+1)
31 + i�c−ρ

(2n−1)
31

∂tρ
(2n+1)
31 = −γ

(2n+1)
31 ρ

(2n+1)
31 + i�c+ρ

(2n)
21

+ i�c−ρ
(2n+2)
21 + i�p+δn,0, (9)

with γ
(2n+1)
31 = γ31 − i�p+ + in�b + iυ(n + 1)kc+ +

iυnkc− for n � 0, and

∂tρ
(2n)
21 = −γ

(2n)
21 ρ

(2n)
21 + i�c+ρ

(2n+1)
31 + i�c−ρ

(2n−1)
31

∂tρ
(2n−1)
31 = −γ

(2n−1)
31 ρ

(2n−1)
31 + i�c+ρ

(2n−2)
21

+ i�c−ρ
(2n)
21 + i�p−δn,0, (10)

with γ
(2n−1)
31 = γ31 − i�p+ + i(n − 1)�b + iυnkc+ +

iυ(n − 1)kc− for n � 0. In addition, one has the same value,
γ

(2n)
21 = γ21 − i(�p+ − �c+) + in�b + iυn(kc+ + kc−), of

the spin dephasing rate for both n � 0 and n � 0. All
dependencies of spin and optical coherence terms have been
omitted in Eqs. (9) and (10).

The coupled Liouville Eqs. (9) and (10), if truncated
at a suitable |n|, may be numerically solved to generate
ρ

(±1)
31 (z,t,υ). This in turn is to be averaged over all possible

velocities along the z direction of a typical Maxwell distri-
bution N (υ) = N0

υd

√
π
e−υ2/υ2

d for a thermal atomic sample at a
temperature T ; that is,

ρ
(±1)
31 (z,t) =

∫ +∞

−∞
ρ

(±1)
31 (z,t,υ)N (υ) dυ, (11)

where the temperature T is directly related to the most probable
speed υd = √

2KT/m and hence to the probe transition
residual Doppler width �d ≡ ω31υd/c.

4The velocity-dependent terms υ∂zρ
(2n±1)
31 on the left-hand side

of Eqs. (9) and (10) have been purposely omitted, as the Fourier
components ρ

(2n±1)
31 vary slowly over spatial scales of the order of

υ divided by the characteristic frequency of the time evolution of
ρ

(2n±1)
31 , i.e., υ∂zρ

(2n±1)
31 � ∂tρ

(2n±1)
31 , and similarly for the Fourier spin

terms υ∂zρ
(2n)
21 � ∂tρ

(2n)
21 .

The probe dynamics in a SW driving configuration that
mutually couples the FW and BW probe components is
assessed by solving Maxwell’s equations together with Eqs. (9)
and (10) [39]. The relevant wave equations, in the slowly
varying envelope approximation5 for both probe and optical
polarization fields, turn out to be

∂z�p+ = −∂t�p+/c + i�k�p+ + i
γ31α+

2
ρ

(+1)
31 ,

(12)
∂z�p− = +∂t�p−/c − i�k�p− − i

γ31α−
2

ρ
(−1)
31 ,

with α± = N0d
2
31

ε0h̄

kp±
γ31

and �k = kp± − kc±.6

Equations (9)–(12) are our main result and apply in a
rather general fashion when effects of light propagation in
atomic samples driven into the SW-EIT configuration are to
be investigated. It is, however, worthwhile mentioning two
limiting cases here. For very cold atomic samples (T = 0) our
theory can be seen to reduce to that used in Ref. [46], where
the dynamics of a light pulse in SW dressed ultracold atoms
has been studied. In this temperature range, Doppler effects
are not important and the velocity averaging in Eq. (11) is
likewise not relevant. In the opposite limit of warm atoms, the
velocity averaging in Eq. (11) is most relevant and all higher-
order coherence components are expected to be immaterial
as in Ref. [30], where the light propagation dynamics is
studied in SW dressed warm atoms. Since our Maxwell-
Liouville Eqs. (9)–(12) are rather involved integrodifferential
equations, analytical or asymptotic solutions are clearly hard
to attain except for ultracold or warm atomic samples. This is
possible when adiabatic and secular approximations as well
as arbitrary initial-state assumptions [30,31] are made, which
may, however, result in a significant underestimate of SLP
decay [46].

In the next section we set �p+ = �c+ = −�b/2. For cold
87Rb atoms at temperatures below 10 mK, we have υ/c < 10−8

and thus nυ�b/c < 0.1 Hz for n � 5 and �b = 3.0 MHz
[cf. Fig. 2(f)], so we may further assume that kc− = kc+ and
kp− = kp+ in γ

(2n)
21 and γ

(2n±1)
31 . In this case, if we define � =

υkc+ = ωc+υ/c as the Doppler shift, the complex dephasing
rates in Eqs. (9) and (10) simplify to

γ
(2n)
21 = γ21 + i2n(� + �b/2),

(13)
γ

(2n±1)
31 = γ31 + i(2n ± 1)(� + �b/2).

It is clear that both transverse relaxations (γ21 and γ31)
and frequency detunings (� and �b) affect the decay of
higher-order coherence terms in Eqs. (9) and (10). Increasing
values of � and �b will produce a decrease in amplitudes of
these higher-order coherence terms, and hence when only the
Doppler shift is present, for instance, spin [ρ(2n)

21 ] and optical
[ρ(2n±1)

31 ] coherences decrease in inverse proportion to values

5Both probe field and polarization amplitudes in Eqs. (12), propor-
tional to �p± (z,t) and to ρ±1

31 (z,t), respectively, are assumed to vary
slowly on time scales of an optical period. The probe field is further
assumed to vary slowly on spatial scales of an optical wavelength
(∂zEp± � kp±Ep± ).

6The small mismatch �k (see footnote 2) arises from the fact that
we work in the limit of kp± � kc± [cf. Eqs. (4)].
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FIG. 2. (Color online) Transmission [(blue) circles] and reflection
[(red) triangles] profiles of a probe pulse [(magenta) squares] incident
on a sample of cold 87Rb atoms driven by an SW coupling with
time-modulated FW (black) and BW (gray) components. Numerical
simulations correspond to the experimental data in Figs. 4(a–c),
4(e), and 4(f) of Ref. [32], whose labeling is maintained here for
the sake of comparison. (a) The first probe transmission signal is
obtained with �c+ ≡ 2.05 MHz, while the second signal corresponds
to storage and retrieval obtained with �c+ = 2.05 MHz switched,
first, off at t1 = 1.90 µs and, then, on at t2 = 4.10 µs. (b) Probe pulse
storage by switching �c+ = 2.05 MHz off at t1 = 1.90 µs and then
retrieval in the opposite direction by switching on �c− = 2.05 MHz at
t2 = 4.10 µs. (c) FW probe component transmission in the presence
of �c− ≡ 2.42 MHz. (e, f) The FW coupling component �c+ =
2.05 MHz is switched off at t1 = 1.85 µs and then on at t2 = 3.30 µs,
while the BW coupling component �c− = 2.05 MHz is switched on
at t2 = 3.30 µs and off at t3 = 4.95 µs, allowing for probe storage
between t1 and t2 and SLP formation between t2 and t3. Equations (8)
and (9) are truncated at |n| = 3 in (e), where �b = 0, but at |n| = 1
in (f), where �b = 3.0 MHz, to ensure convergence in each case.
Other common parameters are �d = 305 kHz, corresponding to a
temperature of 296 µK, �p+ = �c+ = −�b/2, γ21 = 4.0 kHz, γ31 =
3.0 MHz, N0 = 3.02 × 1010 cm−3, L = 10 mm, d31 = 1.465 × 10−29

C·m, λp+ = 780.792 nm, and λc+ = 780.778 nm. The incident probe
pulse is assumed to have a Gaussian profile Ip = Ip0 exp[−(t −
t0)2/τ 2], with t0 = 1.0 µs and duration τ = 0.4 µs.

of the product nυ ∼ n
√

T . At sufficiently high temperatures,
only the zero-order term ρ

(0)
21 will then survive decay, whereas

other higher-order terms [ρ(±1,±3,...)
31 and ρ

(±2,±4,...)
21 ] may

instead survive for temperatures approaching 0. It is then
clear that, under the two-photon resonance condition (�p± =
�c±) required to achieve EIT, the zero-order spin coherence
ρ

(0)
21 always contributes to the SLP dynamics. Conversely,

other higher-order spin coherences ρ
(±2,±4,...)
21 , whose nonzero

frequency detunings grow with their orders, may quickly
exceed the EIT window and become irrelevant to the SLP
dynamics.7 Just as the Doppler shift � experienced by thermal
atoms restrains the development of higher-order coherence
terms, a bichromatic detuning �b may likewise be used to
avoid losses in the process of SLP formation in cold atoms.

III. STATIONARY LIGHT GENERATION IN
COLD THERMAL ATOMS

In this section, we use the theoretical approach developed
in the previous section to investigate the SLP generation in a
cold thermal atomic sample where the residual Doppler broad-
ening is not negligible. In particular, we present numerical
simulation, with an excellent agreement, for the experimental
results as recently observed in such a low but finite temperature
regime [32].

Using Eqs. (9)–(12), we simulate a set of experimental
data shown in Fig. 4 of Ref. [32]. There, the FW signals
(transmitted to the sample exit) and the BW signals (reflected
to the sample entrance) of an incident probe pulse are reported
for different experimental configurations and achieved by
using different time modulations of the TW or SW coupling
fields. Our predictions are shown in Fig. 2 and reproduce
very well the corresponding plots in Fig. 4 of Ref. [32]. In
particular, the atomic temperature is determined by simulating
the data in Fig. 4(c) of Ref. [32], where the FW probe and the
BW coupling are not in the Doppler-free configuration. Our
best fit is obtained for �d � 305 kHz, corresponding to an
atomic temperature T � 296 µK, which clearly amounts to
a non-negligible Doppler effect. A further assessment of the
relevance of Doppler broadening is made by again simulating
the FW probe signals shown in Figs. 4(c) and 4(e) of Ref. [32]
but using different values of �d . This is done in Figs. 3(a)
and 3(b), where a moderate change of the Doppler width �d :
457 ← 305 → 205 kHz (T : 665 ← 296 → 134 µK) results
in a significant departure of the theoretical curves from the
experimental data. This makes clear that the proper inclusion
of the residual Doppler broadening is essential to explain well
experiments with cold thermal atoms, making approaches that
work strictly at T = 0 somewhat unfit. We further note that
the curves for �d = 0 and those for �d = 61 kHz are not far

7The overall decay of spin coherence ρ21 in Eq. (7) may also be
envisaged to occur when Bloch vectors with different detunings
gradually become out of phase with each other. Coherence com-
ponents ρ

(2n)
21 in Eq. (7) decaying at different rates γ

(2n)
21 may in

fact be associated with Bloch vectors precessing around different
orientations [17] that depend directly on imaginary parts of complex
rates γ

(2n)
21 in Eqs. (13). A similar description may be brought forward

for the decay of coherence components ρ
(2n±1)
31 in Eq. (8).
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FIG. 3. (Color online) Transmitted probe signals as in Figs. 2(c)
and 2(e) for different Doppler widths: �d = 671 kHz (green),
457 kHz (blue), 305 kHz (black), 205 kHz (red), 61 kHz (cyan),
and 0 (magenta), from bottom to top, associated with a temperature
of T = 1.43 mK, 665 µK, 296 µK, 134 µK, 11.9 µK, and 0,
respectively. Equations (9) and (10) are truncated at |n| = 1 for
�d = 671 kHz, |n| = 2 for �d = 457 kHz, |n| = 3 for �d = 305 kHz
and �d = 205 kHz, |n| = 4 for �d = 61 kHz, and |n| = 5 for
�d = 0, respectively, to ensure convergence in each case.

separated, meaning that the residual Doppler broadening may
safely be neglected when T <∼ 10 µK.

It is worth noting here that the preceding experiment has
been simulated in Ref. [32] with a different set of Maxwell-
Liouville equations. In fact, a set of lower-order truncated
equations was used there, retaining only the ρ

(0)
21 , ρ

(±1)
31 , and

ρ
(±2)
21 terms and adopting a very high dephasing rate for ρ

(±2)
21 .

This is an ingenious ad hoc procedure to mimic the effect of
Doppler broadening, which reproduces roughly the observed
data except for some of the fine details, for which, however,
a better fit is provided by our Eqs. (9)–(12). In Fig. 4(e) of
Ref. [32], the numerically calculated FW signal in fact deviates
from the experimentally observed FW signal for times between
3 and 5 µs and has an unexpected dip centered at 4.7 µs. In
Fig. 4(f) of Ref. [32], a few puzzling oscillations are also found
for the theoretical curves of both FW and BW signals between
3 and 5 µs. At variance with this, as shown in Fig. 4 for
comparison, our approach does not show such discrepancies
in the fine details of the experimental data.

A very important issue concerns the order at which the
Liouville Eqs. (9) and (10) should be truncated to ensure
numerical convergence. In Fig. 5 we plot the FW and BW
probe signals with different cutoff values of |n|. As we can
see, the curves for |n| = 2 and those for |n| = 3 are almost
indistinguishable, so we may conclude that the truncation at
|n| = 3 used in Fig. 2(e) is appropriate, while a lower-order
truncation would introduce significant errors. When only
the sample temperature is relevant, the appropriate cutoff
value simply decreases with the increasing temperature as the
Doppler broadening significantly suppresses the coupling to

FIG. 4. (Color online) Transmitted (circles) and reflected (trian-
gles) probe signals as in Figs. 2(c), 2(e), and 2(f). Curves with filled
symbols were obtained by adopting the method in Ref. [32] with
γ21 = 4.0 kHz for ρ

(0)
21 but γ21 = 102 kHz for ρ

(±2)
21 . Curves with open

symbols, however, were obtained with our approach.

higher-order coherence components. Within our approach, this
is apparent from the dependence of the complex dephasing
rates γ

(2n)
21 and γ

(2n±1)
31 on the product n × �, as discussed

after Eqs. (13). From the various cutoff values used to

FIG. 5. (Color online) Transmitted (a) and reflected (b) probe
signals as in Fig. 2(e) for different cutoff values of |n| with �d =
305 kHz and �b = 0. Green, blue, red, and black curves correspond,
from bottom to top, to |n| = 0, 1, 2, and 3, respectively.
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ensure numerical convergence in Fig. 3, it is clear that such
temperature effects are very effective in limiting the coupling
to higher-order coherence components.

On the contrary, in Fig. 2(f) we have truncated the Liouville
Eqs. (9) and (10) at |n| = 1 [i.e., retaining ρ

(0)
21 , ρ(±1)

31 , ρ(±2)
21 , and

ρ
(±3)
31 ] due to the large bichromatic detuning, �b = 3.0 MHz,

employed in this case. The suitability of such a truncation
has also been numerically checked as above. In this case, our
results confirm the validity of the proposal put forth in Ref. [32]
to take advantage of a large bichromatic detuning to suppress
the excitation of higher-order coherences and improve the
formation of an SLP. As a matter of fact, the efficient
coupling to higher-order coherences, which takes place when
no bichromatic detuning is employed and at extremely low
temperatures where the Doppler broadening is immaterial, is a
very significant mechanism of loss and diffusion that severely
affect SLPs as we have recently discussed [46].

To the best of our knowledge, the theoretical approach
presented here is the only one available to cover the limits both
of negligible and of significant Doppler broadening on equal
footing, without invoking additional approximations or ad hoc
assumptions. Finally, it is to be emphasized that the suitable
cutoff value of |n| to be used in actual numerical simulations
depends critically on the Doppler broadening width �d (i.e.,
the sample temperature T ) and on the bichromatic detuning
�b, as discussed previously, but it also depends in general on
the sample optical depth as well as on the SW coupling Rabi
frequencies.8

IV. CONCLUSIONS

In summary, we have established a rather general approach
to numerically examine the propagation dynamics of a weak
light pulse inside atomic samples where it is essential to take

8For instance, the Fourier-expanded Liouville equations are trun-
cated at |n| = 30 in Refs. [39], [40], and [46] because there the ultra-
cold (T = 0) atomic sample is much denser (N ∼ 1.0 × 1013 cm−3)
and the SW coupling is much stronger (�c+ ∼ �c− ∼ 25 MHz).

the Doppler broadening into account. The atomic samples are
assumed to be dressed by an SW coupling field with two
counter-propagating components so that the spin and optical
coherences consist of a series of Fourier components excited
by the successive Bragg scattering of FW and BW photons.
Because these coherence components decrease in amplitude
with their increasing orders, we are allowed to truncate the
Fourier-expanded Maxwell-Liouville equations at a suitable
integer without introducing appreciable errors.

A quite satisfactory check of our numerical results has been
carried out through a comparison with a recent experiment
on SLPs in cold thermal 87Rb atoms [32], whose formation
entails the presence of higher-order spin and optical coherence
terms even for atomic temperatures in the millikelvin range.
Neglecting the residual Doppler broadening or discarding the
higher-order coherence terms will lead to appreciable errors
in the theoretical curves relevant to the experimental data. A
large bichromatic detuning, however, allows us to truncate
the Maxwell-Liouville equations at a much lower integer yet
without introducing notable errors. This is because the higher-
order coherence terms are prevented from excitation in the
presence of a large bichromatic detuning.

We expect that this general approach may be further
extended to devise new schemes for lossless SLPs generation
and interaction, for example, in solid materials doped with
impurities such as Pr3+:Y2SiO5 and diamond containing N-V
color centers [50,51], where inhomogeneous broadening plays
an important role.
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