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Frequency-bin entangled photons
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A monochromatic laser pumping a parametric down-conversion crystal generates frequency-entangled photon
pairs. We study this experimentally by addressing such frequency-entangled photons at telecommunication
wavelengths (around 1550 nm) with fiber-optics components such as electro-optic phase modulators and narrow-
band frequency filters. The theory underlying our approach uses the notion of frequency-bin entanglement. Our
results show that the phase modulators address coherently up to eleven frequency bins, leading to an interference
pattern which can violate by more than five standard deviations a Bell inequality adapted to our setup.
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I. INTRODUCTION

Entanglement is one of the most fascinating aspects of
quantum mechanics, used both for fundamental tests of
physical principles and for applications such as quantum
key distribution (QKD). Many different kinds of photonic
entanglement have been produced, including entanglement in
polarization [1,2], momentum [3], angular momentum [4], and
time-energy. Investigation of the latter degree of freedom has
been mainly inspired by two-photon bunching experiments
first carried out by Ou and Mandel [5] (see [6,7]) and by
Franson’s proposal [8] for addressing the entanglement in the
time domain (see [9–14]). Photons entangled simultaneously
in both time-energy and other degrees of freedom have also
been studied [15,16]. Time-energy entanglement can also be
viewed as frequency entanglement, as demonstrated in recent
works [17,18]. Here, we show how to address time-energy
entangled photons directly in the frequency domain. This
is realized in optical fibers by using commercially available
telecommunication components.

Before presenting our approach, it may be useful to recall
Franson’s proposal [8] which is based on three key ideas.
First, a continuous pump laser produces time-entangled photon
pairs: The emission time of each photon is uncertain, but
both photons are emitted simultaneously. Second, one uses
measurements that resolve the arrival time of the photons. This
leads to the concept of time bin: two photons whose arrival
time cannot be distinguished by the detectors belong to the
same time bin. Third, different time bins are made to interfere
by using unbalanced Mach-Zehnder interferometers. These
ideas provide a powerful platform to investigate quantum
entanglement, yielding seminal works such as long-distance
violation of Bell inequalities [11] and entanglement-based
QKD [13].

Here we also use the time-energy degree of freedom, but
the way it is addressed is very different. However, at the
conceptual level, there is an instructive parallel between our
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approach and that of Franson. First, a narrow-band pump laser
produces frequency-entangled photon pairs: the frequency of
each photon is uncertain, but the sum of the frequencies is well
defined. Second, our detectors are preceded by narrow-band
filters that resolve the frequency of the detected photons. This
leads to the concept of frequency bin (introduced previously
in [18]): two photons whose frequency is so close that they
cannot be distinguished by the filters are said to lie in the
same frequency bin. Third, different frequency bins are made
to interfere by using electro-optic phase modulators.

Our work is inspired by, or related to, earlier proposals for
manipulating qubits in the frequency domain [19–25]. Our
experimental techniques follow closely those of QKD systems
in which the quantum information is encoded in frequency
sidebands of an attenuated coherent state [19–21]. Such
systems allow efficient transmission of quantum information
at telecommunication wavelengths. The main advantage of
this method for encoding and carrying out transformations
on optical qubits is that one does not need to stabilize
paths in optical interferometers. Rather, one must only lock
the local radio-frequency (RF) oscillators used by Alice
and Bob, which is much easier. Furthermore, information
encoded in sidebands is unaffected by birefringence in the
optical fiber used for transmission. Recent improvements to
these experiments have included dispersion compensation and
long-distance synchronization of the sender and receiver [22],
so that this approach constitutes now the only commercial
alternative to time-bin-based QKD.

The architecture reported in [19,20] was dedicated to QKD
using faint laser pulses, but it is inefficient when single photons
are used because weak modulation amplitudes are required. To
overcome this limitation, an alternative method was proposed
[21] in which information is encoded in both the amplitude and
relative phase of three frequency bands generated by electro-
optic phase modulators. This second approach is attractive
because in principle the phase modulators need not attenuate
the signal, because there is no need for a strong reference pulse
and because the phase modulators can address many frequency
sidebands simultaneously. Here we transpose, with appropriate
modifications, the setup of [21] to the entangled-photon case.
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In the following, we first describe our experiment and
give the principle of our method. Then we present our ex-
perimental results and demonstrate that the phase modulators
can coherently address up to eleven frequency bins. Note that
high-dimensional entanglement has been studied in a number
of earlier experiments; see, for example [15,16,26–30]. We
finally show that the two-photon interference pattern we obtain
can in principle violate by more than five standard deviations
a Bell inequality adapted to our setup.

II. EXPERIMENTAL SETUP, THEORETICAL
DESCRIPTION, AND RESULTS

Our all-fiber experiment is schematized in Fig. 1. Photon
pairs are generated by parametric down conversion in a 3-cm-
long periodically poled lithium niobate (PPLN) waveguide
(HC Photonics). PPLN waveguides have emerged as the
preferred photon-pair source at telecommunication wave-
lengths because of their very high spectral brightness [31,32].
The narrow-band pump laser (Sacher Lasertechnik, λp =
773.865 nm, Pp ≈ 6 mW) is removed with a drop filter, ensur-
ing 125-dB isolation. The identically polarized photon pairs,
distributed around λ0 = 1547.73 nm = 2πc/ω0, are separated
with a 3-dB coupler. Interesting cases occur when the photon
pair is split: one photon is sent to Alice (A) and the other to
Bob (B). At the output of the coupler, the photons pass through
electro-optic phase modulators (PMA,B) (EOSPACE, 25-GHz
bandwidth, 2.5-dB loss, half-wave voltage Vπ ≈ 2.9 V), whose
active axes are aligned with the linear polarization of the
photons (preserved thanks to polarization-maintaining fiber
components) and to which are applied sinusoidally varying
voltages at frequency �/2π = 12.5 GHz, with amplitudes
(VA,B) and phases α, β, which can be controlled. The in-
duced time-dependent optical phases φA(t) = a cos(�t − α)
and φB(t) = b cos(�t − β), where a = πVA/Vπ and b =
πVB/Vπ , lead to the unitary transformations

|ω〉A →
∑
p∈Z

|ω + p�〉AUp(a,α), (1)

|ω〉B →
∑
q∈Z

|ω + q�〉BUq(b,β), (2)

where subscripts A and B refer to Alice and Bob’s photons,
Up(a,α) = Jp(a)eip(α−π/2), Uq(b,β) = Jq(b)eiq(β−π/2), and
Jp,q is the p,qth-order Bessel function of the first kind. The
range of values of a,b which were experimentally accessible
are limited to {0,2.74} due to the finite power of the RF genera-
tor used. The photons are then sent through narrow-band filters
which consist of a fiber Bragg grating (FBGA,B) preceded
by a circulator. Losses are 0.2 dB for the FBGs and 0.8 dB
for the circulators (round trip). The spectral characteristics
of the FBGs are as follows: full width at half maximum
(FWHM) ≈ 3 GHz and more than 30 dB isolation at 6.25 GHz;
see Fig. 1, inset (a). Alice’s filter is kept fixed on angular
frequency ωA = ω0. It is athermally packaged to reduce
central wavelength deviation to 1 pm/K. The temperature of
Bob’s filter is controlled by a Peltier module, which allows
continuous tuning of the reflected frequency ωB over a 1-nm
range around ω0. The use of such narrow-band filters together
with a spectrally bright PPLN source of entangled photons

FIG. 1. (Color online) Experimental setup. The quasi-
monochromatic pump laser (PUMP) creates photon pairs in the peri-
odically poled lithium niobate waveguide (PPLN) and is then removed
by a drop filter (F). Alice and Bob’s photons are selected passively
by a 3-dB splitter. The photons then pass through electro-optic phase
modulators (PMA,B). The phase modulators are driven by a 12.5-GHz
radio-frequency generator (RF GEN) whose output is controlled by
variable attenuators (VA,B) and phase shifters (α, β). RF isolators
(not shown) guarantee the independence of Alice and Bob’s settings
(75-dB isolation). Individual frequency bins are selected by narrow-
band filters which consist of a fiber Bragg grating FBGA,B preceded
by a circulator (CA,B). The photons are finally detected by avalanche
photodiodes (APDA,B) and the electronic signals sent to a time-to-
digital converter (TDC) to perform a coincidence measurement. A
typical figure recorded by the TDC, consisting of a background due
to accidental coincidences and a narrow peak when the photons arrive
in coincidence, is shown. Typical values for the signal-to-noise ratio
(SNR) (number of nonaccidental coincidences divided by number of
accidental coincidences) are SNR ≈ 100. Inset (a) shows a typical
transmission spectrum of the narrow-band filters. Inset (b) illustrates
how the phase modulators generate new frequencies: if a broadband
source passes through the narrow-band filter [as in (a)], and then
through a phase modulator, one obtains the spectrum of (b). The
height of the peaks is given by the norm square of the coefficients
in Eq. (1). When a ≈ 2.74 (corresponding to the maximum RF
power produced by the source) one can see eleven frequency bins
corresponding to the order of the peak p, see Eq. (1), ranging from
p = −5 to p = +5. In insets (a) and (b), λ is the wavelength and T the
transmission. Note that the horizontal scale is different in insets (a)
and (b).

013804-2



FREQUENCY-BIN ENTANGLED PHOTONS PHYSICAL REVIEW A 82, 013804 (2010)

has been reported previously in the context of four-photon
experiments [32,33]. Finally, the photons are detected by
two avalanche photodiodes operated in gated mode (id
Quantique, efficiency 15%, dark count rates 3.5 × 10−5/ns
and 8.0 × 10−5/ns) and a time-to-digital converter performs
a coincidence measurement. The maximum coincidence rate
was approximately 10 Hz, which is consistent with earlier
work [32,33].

A parametric down-conversion source pumped by a
monochromatic beam produces an entangled state which we
can idealize as

|�〉 =
∫

dω|ω0 + ω〉A|ω0 − ω〉B. (3)

The total energy of the photon pair is well defined, but
the energy of each photon is uncertain. For simplicity of
notation, we have not normalized Eq. (3). This does not
affect our predictions as we are interested in the ratios of
the probabilities of finding photon A at one frequency and
photon B at another frequency for different settings a,b,α,β

of the phase modulators. For a discussion of how to normalize
Eq. (3) so as to describe a rate of photon-pair production, see
the appendix.

Note that taking the Fourier transform of Eq. (3) would
yield a description of the state in terms of time entanglement:
the arrival time of each photon is uncertain, but the difference
between the arrival time of Alice’s and Bob’s photons is well
defined. The approximations leading to Eq. (3) consist in
neglecting the finite pump bandwidth (which is approximately
2 MHz) and the finite signal and idler photons bandwidths
(which are approximately 5 THz). This is legitimate, as they
are respectively much smaller than the bandwidths of the filters
FBGA,B [which are approximately 3 GHz; see Fig. 1, inset (a)]
and much larger than the bandwidth sampled by the phase
modulators [which is approximately 125 GHz; see Fig. 1,
inset (b)].

According to Eqs. (1) and (2), the phase modulators
realize interferences between photons whose frequencies are
separated by integer multiples of �. Thus, they play the
same conceptual role as the Mach-Zehnder interferometers
in Franson’s scheme, which realize interferences between
different time bins. Using Eqs. (1) and (2), one can readily
compute how the entangled state Eq. (3) is affected by the
phase modulators:

|�〉 →
∫

dω′ ∑
d∈Z

|ω0 + ω′〉A|ω0 − ω′ + d�〉Bcd (a,b,α,β) ,

(4)
with ω′ = ω + p�, d = p + q, and

cd (a,b,α,β) =
∑

p

Up(a,α)Ud−p(b,β) . (5)

According to Eq. (4), we should observe coincidences between
Alice’s and Bob’s photons only if the frequency bins ωA,B in
which they are detected are separated by integer multiples of
�: ωA + ωB − 2ω0 = d�, d ∈ Z.

The rate at which Alice and Bob will detect photons at
angular frequencies ωA = ω0 + ω′ and ωB = ω0 − ω′ + d�

is proportional to

Q(ω0 + ω′,ω0 − ω′ + d�|a,b,α,β) = |cd (a,b,α,β)|2. (6)

(For a derivation of the proportionality factor, see the
appendix.)

Because of the symmetries of Eqs. (1), (2), and (3), the
quantity Q depends only on the absolute value of the index d

(but not on the sign of d, nor on ω0 and ω′) and on the phase
difference 	 = α − β (but not on α + β):

Q(ω0 + ω′,ω0 − ω′ + d�|a,b,α,β)

= Q(d|a,b,	) = Q(−d|a,b,	). (7)

The quantities Q(d|a,b,	) obey the normalization condition∑
d

Q(d|a,b,	) =
∑

d

|cd (a,b,α,β)|2 = 1 (8)

and satisfy

Q(d = 0|a,a,π ) = 1, Q(d �= 0|a,a,π ) = 0 . (9)

When the phase modulators are turned off (a = b = 0), the
correlations are trivial, and we have

Q(d = 0|a = b = 0) = 1, Q(d �= 0|a = b = 0) = 0 .

(10)
In the experiment reported here, we chose ω′ = 0. Because

the filters FBGA,B have a finite bandwidth, the actual values
of ω′ belong to a small interval [−ε/2,ε/2] of width approx-
imately 3 GHz centered on ω′ = 0. To resolve the frequency
bins, we need both ε < � and to have the filter transmission
(T) drop very steeply beyond ε/2. These conditions are exper-
imentally realized thanks to the properties of the filters; see the
previous description and Fig. 1, insets (a) and (b). The value of
d is chosen by adjusting the reflected frequency of Bob’s filter
to ω0 + d�, while the reflected frequency of Alice’s filter is
kept fixed on ω0. In Figs. 2 and 3, we compare the predictions of
Eqs. (6) and (7) to our experimental results for d =
0, 1, 2, 3, 4, 5.

Our experimental estimate, denoted Q̃, of the quantity
Q(d|a,b,	) given by Eqs. (6) and (7) is obtained from the
data recorded by the time-to-digital converter (see Fig. 1) by
taking the total number of coincidences and subtracting the
accidental coincidences, and then normalizing by the same
quantity when d = 0 and a = b = 0:

Q̃(d|a,b,	)

= Nc(d|a,b,	) − Nac(d|a,b,	)

Nc(d = 0|a = b = 0) − Nac(d = 0|a = b = 0)
. (11)

This ensures that Q̃ has the same normalization as Q [see
Eqs. (8) and (9)], since the coincidence rate is maximum when
a = b = 0 and d = 0.

In Figs. 2 and 3, the acquisition time per measured point
was constant, corresponding to a number of coincidences
approximately equal to 103P . Experimental values are plotted
with statistical vertical error bars, which is the main source of
uncertainty. The remaining discrepancies between theoretical
curves and experimental measurements are due to other
factors, such as lack of stability of the pump laser or limited
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FIG. 2. (Color online) Theoretical predictions (curves) and exper-
imental measurements (with error bars) of the normalized coincidence
rate Q(d|a,b,	) ≡ Q(d|a,a,0) when 	 ≈ 0 and the amplitude a is
scanned, for d = 0,1,2,3,4,5 [panels (a) to (f)]. The experimental
measurements are plotted entirely in terms of measured quantities,
and do not depend on any adjustable parameters. Values of a are
deduced from measures of the RF power. Horizontal error bars are
due to the limited resolution of the power meter used (we assumed a
relative uncertainty on a of 10−2). Vertical error bars are statistical.

visibility. Note also that when d = 5, the filter FBGB was
at the limit of its tuning range, and it may have not been
perfectly centered on ω0 + 5 �, in which case there would be
a systematic underestimation of Q(d = 5|a,b,	).

In Fig. 2, the normalized coincidence rate Q(d|a,b,	)
is plotted as a function of the modulation amplitudes a = b

(taken to be equal) when 	 = 0. The number of frequency bins
that interfere together is approximately given by the number
of values of d for which Q takes a significant value, and it
increases when a,b increase. In our experiment, we were able
to scan the values a,b ∈ {0,2.74}. When a ≈ b ≈ 2.74, there
are contributions from d = 0 to d = 5 [and by the symmetry
of Eq. (7) there should also be contributions from d = −1 to
d = −5]. This shows that at least eleven frequency bins are
coherently addressed by the phase modulators.

Figure 3 is obtained by scanning the phase 	 when a ≈
b ≈ 2.74. Note that when 	 = π, only d = 0 contributes, as
predicted by Eq. (9). The quantity Q(d = 0|a = b = 2.74,	)
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FIG. 3. (Color online) Theoretical predictions (curves) and exper-
imental measurements (with error bars) of the normalized coincidence
rate Q(d|a,b,	) ≡ Q(d|2.74,2.74,	) when a ≈ b ≈ 2.74 and the
phase 	 is scanned, for d = 0,1,2,3,4,5 [panels (a) to (f)]. To plot
the experimental measurements we used the value indicated by the
mechanical phase shifter – call it x – and converted it to a phase value
using the relation 	 = µx + ν. Parameters µ and ν were adjusted to
get a good fit with the theoretical predictions. Horizontal error bars
are due to the limited resolution of the phase shifter used (we assumed
an absolute uncertainty on 	 of 5 × 10−2 rad). Vertical error bars are
statistical.

vanishes for specific values of 	 = 	∗; see the theo-
retical curve in Fig. 3(a). This allows us to estimate
the visibility of interferences through the usual formula
V = (Qmax − Qmin) / (Qmax + Qmin), where we take Qmax =
P (d = 0|a = b = 2.74, π ) and Qmin = Q(d = 0|a = b =
2.74,	∗). From the data reported in Fig. 3(a), we estimate
that the visibility is equal to 98 ± 1%.

III. NONLOCAL CORRELATIONS

Now we show how frequency-bin entangled photons
addressed locally by phase modulators can in principle be
used to realize quantum nonlocality experiments. That is, we
show that the correlations between Alice’s and Bob’s detectors
should not be explainable by a local hidden variable (LHV)
model.
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Our starting point is the Clauser-Horne [34] inequality,
which must be satisfied by any LHV model:

P (00|A1B1) + P (00|A1B2) + P (00|A2B1) − P (00|A2B2)

� P (0|A1) + P (0|B1), (12)

where A1,A2 are two possible settings of Alice’s measurement
apparatus and B1,B2 are two possible settings of Bob’s
measurement apparatus. Each measurement has two possible
outcomes, and 0 denotes one of the outcomes of the mea-
surements. The other outcome does not intervene explicitly in
the inequality. Thus P (00|AB) denotes the probability of both
Alice and Bob finding outcomes 0 given settings A and B;
and P (0|A) = ∑

x P (0x|AB) denotes the probability of Alice
finding outcome 0. Since Alice’s and Bob’s measurements are
independent, P (0|A) does not depend on B.

In our case, the measurement settings correspond to a choice
of amplitude and phase applied to the phase modulators: A1 =
(a1,α1), A2 = (a2,α2), B1 = (b1,β1), B2 = (b2,β2). We take
the outcome 0 in Eq. (12) to correspond to the photon being
registered in the frequency bin centered on ω0.

The probabilities P (00|AiBi) can be estimated directly
with our setup as they are proportional to the number of
coincidences if both filters FBGA,B are centered on frequency
ω0; see Eq. (11).

The quantities P (0|A1) and P (0|B1) cannot be measured
directly with our setup, as we only had two detectors, one on
Alice’s side and one on Bob’s side. However, we can estimate
these quantities by making the following assumption (identical
in spirit to the one made by Clauser-Horne in [34]):

P (0|A1) = P (0|B1) = P (0|a = 0) = P (0|b = 0)

= P (00|a = b = 0). (13)

The quantum theory of our experiment implies—assuming
infinite signal and idler photons bandwidths—that Eq. (13) is
true; see Eqs. (7)–(10). Here, we assume that Eq. (13) is also
obeyed by LHV models. That is, we assume, both in quantum
theory and in LHV models, that the number of photons detected
by Alice (Bob) in the frequency bin centered on ω0 is the same
when Alice’s (Bob’s) detector has setting A1 (B1) and when
Alice’s (Bob’s) phase modulator is turned off, that is,when
a = 0 (b = 0).

We then insert Eq. (13) into Eq. (12) and divide by
P (00|a = b = 0) to obtain

P (00|A1B1)

P (00|a = b = 0)
+ P (00|A1B2)

P (00|a = b = 0)

+ P (00|A2B1)

P (00|a = b = 0)
− P (00|A2B2)

P (00|a = b = 0)
� 2. (14)

If we assume that the probabilities are proportional to the
number of coincidences minus the number of accidental
coincidences, we obtain the inequality

S = Q̃(ω0,ω0|A1B1) + Q̃(ω0,ω0|A1B2)

+ Q̃(ω0,ω0|A2B1) − Q̃(ω0,ω0|A2B2) � 2, (15)

where Q̃ is given by Eq. (11).
In order to investigate whether Eq. (15) can be violated ex-

perimentally, we took for simplicity the modulation amplitudes
to be equal, a1,2 = b1,2, and numerically optimized the phases

TABLE I. Experimentally investigated amplitudes a1 = a2 =
b1 = b2 and the corresponding optimal phases for the violation of
Eq. (15).

a1,2 = b1,2 α1 α2 β1 β2

0.51 0 1.42 3.85 2.43
1.01 0 1.02 3.65 2.63
1.50 0 0.72 3.50 2.78
1.95 0 0.56 3.42 2.86

α1,2, β1,2. We considered four different values of modulation
amplitude which correspond to different optimal phases listed
in Table I. As one can see in Fig. 4, these choices lead to a
strong violation of the bound 2.

However, the observed correlations do not reach the
theoretical optima for large values of a = b. It is difficult
to reach the optimal value for large values of a = b because
the curve Q(d = 0|a = b,	) is more strongly peaked around
	 = π for large values of a = b, and for the optimal values,
	 = α − β lies on the slopes of this peak; see Fig. 3(a).

We have estimated what could be the effect of slight errors
on a and b (in particular, letting b1,2 be slightly different of
a1,2) and of slight errors in the phases αi,βi . In the experiment,
the error on βi was probably larger than the error on αi because
the phase shifter used to choose β was of lesser quality. By
letting a,b vary by a × 10−2 around the estimated value, letting
α vary by 5 × 10−2 around the ideal value, letting β vary
by 10 × 10−2 around the ideal value, and taking the worst
case, we obtained the curve indicated by dashes in Fig. 4.
These estimates of the errors—deduced from the resolution
of the components used—thus provide a possible explanation
for the discrepancy between the theoretical optima and the
observed violation of Eq. (15).

without errors
with errors

0 0.5 1 1.5 2
2

2.2

2.4

a

S

FIG. 4. (Color online) Violation of the inequality Eq. (15)
as a function of the modulation amplitudes a1,2 = b1,2 = a. The
experimentally determined values of S are given by the left hand
side of Eq. (15). They include statistical error bars (vertical axis) and
RF amplitude error bars (horizontal axis). The top curve shows the
theoretical evolution of the maximal value of S when α1,2 and β1,2 are
numerically optimized. The dotted curve takes into account possible
errors on ai,bi,αi,βi : it shows theoretical predictions when phases
and amplitudes are allowed to fluctuate around optimal values (see
text for a detailed description).
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IV. CONCLUSION

In summary, we have demonstrated how by using phase
modulators and narrow-band filters, one can accurately address
in the frequency domain photons belonging to a high-
dimensional entangled state. In view of the proven success of
sideband encoding for long-distance QKD [19–22], this seems
to be a promising technique for quantum communication.
On the other hand, the class of unitary transformations
explored in this work is somewhat limited, as it depends
only on two parameters; see Eqs. (1) and (2). However,
the use of nonsinusoidal voltages would give rise to much
more general families of unitary transformations. We hope to
explore this in future work. We will also focus on studying
other Bell inequalities, such as the Clauser-Horne-Shimony-
Holt (CHSH) [35] and Collins-Gisin-Linden-Massar-Popescu
(CGLMP) [36] inequalities.
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APPENDIX: NORMALIZATION

We take the state |ω〉 to be normalized to

〈ω|ω〉 = δ(0) = T

2π
. (A1)

We rewrite Eq. (3) as

|�〉 =
∫ +∞

−∞
dωf (ω)|ω0 + ω〉A|ω0 − ω〉B , (A2)

where f (ω) takes into account the finite bandwidth of
the signal and idler photons. We consider the case where
f is a slowly varying function which can be considered
approximately constant when ω changes by order �.

Using Eq. (A1), we have

〈�|�〉 = T

2π

∫ +∞

−∞
dx|f (x)|2, (A3)

which means that the photon pairs are produced at the rate

R = 1

2π

∫ +∞

−∞
dx|f (x)|2. (A4)

Consider now the operator that projects onto a frequency
bin of width ε:

ω =
∫ ω+ε/2

ω−ε/2
dω′|ω′〉〈ω′|. (A5)

The rate of coincidences in two frequency bins of width ε

symmetrically spaced on either side of ω0 is

〈�|A
ω0+ωB

ω0−ω|�〉 = T

2π

∫ ω+ε/2

ω−ε/2
dx|f (x)|2

= T Rε(ω). (A6)

The quantum state after it passes through the phase
modulators is [see Eq. (4)]

|� ′〉 =
∫

dω
∑
p,q

|ω0 + ω + p�〉A|ω0 − ω + q�〉B

×Up(a,α)Uq(b,β)f (ω) (A7)

=
∫

dω′ ∑
d

|ω0 + ω′〉A|ω0 − ω′ + d�〉B

×
[∑

p

Up(a,α)Ud−p(b,β)f (ω′ − p�)

]
(A8)

�
∫

dω′f (ω′)
∑

d

|ω0 + ω′〉A|ω0 − ω′ + d�〉B

×
[∑

p

Up(a,α)Ud−p(b,β)

]
(A9)

=
∫

dω′f (ω′)
∑

d

|ω0 + ω′〉A|ω0 − ω′ + d�〉B

× cd (a,b,α,β), (A10)

where in obtaining line (A9) we have used the fact that, for
fixed a,b, UpUd−p decreases rapidly with p and that f varies
slowly so that f (ω′ − p�) � f (ω′) for the relevant p. The
coefficients cd are given by Eq. (5).

The rate of coincidences in two frequency bins displaced
one with respect to the other by d� is

〈� ′|A
ω0+ω′

B
ω0−ω′+d�|� ′〉

= |cd (a,b,α,β)|2 T

2π

∫ ω+ε/2

ω−ε/2
dx|f (x)|2

= |cd (a,b,α,β)|2 Rε(ω′) T . (A11)

Since Rε(ω′) varies slowly with ω′, the quantity Q(d|a,b,	) =
|cd (a,b,α,β)|2 can be estimated as described in Eq. (11).

Note that the normalization condition Eq. (8)∑
d |cd (a,b,α,β)|2 = 1 expresses the fact that the

transformation |�〉 → |� ′〉 is unitary and that no photons are
lost in the process.
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