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Giant resonances near the split band edges of two-dimensional photonic crystals
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We conduct a numerical study on the giant optical resonances near the split photonic band edges of two-
dimensional square lattices. Their quality factors are 1 order of magnitude higher than those near the regular
band edges. Such enhancement results from the efficient interference of multiple Bloch waves, which minimizes
light leakage from the periodic pattern of finite size. The variation of the quality factor with the pattern size is
nonmonotonic for the split band edge resonance, leading to an optimal size for the maximal quality factor.
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I. INTRODUCTION

Photonic crystals (PCs) have the potential for full control
of light propagation and localization [1–4]. One attractive
feature of PCs is the anomalous dispersion of photonic bands
[5–7]. Near a photonic band edge (BE), the derivative of
frequency ω to the Bloch wave vector k approaches zero,
and the group velocity is greatly reduced [8–11]. The slow
light can drastically enhance light-matter interactions, for
example, light amplification and nonlinear wave mixing, thus
having important applications to lasers, optical modulators,
and switches [2,3,12,13].

Unlike the transmission resonance of a finite-sized PC, the
quasimode has a complex frequency ω = ωr + iωi . The real
part ωr represents the frequency and the imaginary part the
decay rate from light leakage through the PC boundaries. The
quality (Q) factor, defined as the ratio of the energy stored
in the PC to the energy being lost in one cycle, is equal to
Q = ωr/2ωi . The Q factor of a BE mode in a finite-sized
PC depends on the closeness of its frequency ω to the BE
frequency ω0 at which the group velocity vanishes. Usually
ω is not equal to ω0 because of the quantization of k. For
example, in a one-dimensional (1-D) PC made of isotropic
media, the BEs are located at the center or the boundary of the
first Brillouin zone (BZ), where the Bloch wave vector k0 = 0
or ±π/a (a is the lattice constant). The first band edge mode,
the one closest to a BE in frequency, has k1 = k0 ± π/Na,
where N is the number of unit cells and Na is the total length
of PC. At a regular band edge (RBE), the frequency of the first
BE mode is ω1 = ω0 + α(k1 − k0)2 = ω0 + α(π/Na)2. Since
vg is nonzero at ω1, the RBE resonance has a finite lifetime or
Q factor. The larger the N , the closer ω1 to ω0, and the higher
the Q. At a degenerate band edge (DBE), the dispersion curve,
ω = ω0 + β(k − k0)4, is flatter than that at a RBE (Fig. 1).
The frequency ω1 of the first BE mode can be much closer
to ω0 for the same N or k1 [14,15]. Thus the DBE resonance
may have significantly smaller vg and higher Q than the RBE
resonance. Instead of pushing ω1 closer to ω0 by increasing
N , an alternative way of enhancing Q is bringing a stationary
point (where dω/dk = 0) to ±k1 with a split band edge (SBE).
It has been shown that a DBE can split into two RBEs in a 1-D
periodic structure made of anisotropic materials [16,17]. This
band edge configuration is referred to as the split band edge
(Fig. 1). The dispersion relation is ω = ω0 + α(k − k0)2 +

β(k − k0)4, where α/β < 0. As plotted schematically in Fig. 1,
vg = 0 at k = k0, ± kb. kb deviates from k0 and may coincide
with k1 for an appropriate choice of N , leading to a vanishing
vg for the SBE resonance. This naı̈ve argument suggests the
SBE resonance be much stronger than the RBE and DBE
resonances. As demonstrated in the microwave experiment, the
Q factor of a SBE resonance even exceeds that of a localized
defect resonance in a 1-D anisotropic PC with N = 16 [17].

So far, most studies on the DBE and SBE resonances, both
theoretical and experimental, have been conducted on 1-D PCs
[14–35]. The Bloch dispersion relation of a periodic layered
structure (a 1-D PC) can display a DBE or a SBE only if some
of the layers are made of anisotropic materials with strong
linear birefringence and misaligned optical axes [14,15]. At
optical frequencies, such materials are not readily available.
On the other hand, there are no fundamental restrictions on
the existence of a DBE or a SBE in PCs with 2-D and 3-D
periodicity. Such PCs can be made of any transparent optical
materials, which provides a big practical advantage.

In this article, we have performed numerical calculations
in search of the DBE and SBE resonances in 2-D PCs of
realistic parameters [e.g., using the refractive index of Gallium
Arsenide (GaAs) or silicon]. For the square lattices of air
holes in dielectric media, we find the SBE resonances but
not the DBE resonances. Their Q factors are over 1 order of
magnitude higher than those of the RBE resonances in the same
structures. We provide a qualitative explanation for such high
Q in terms of interference of multiple Bloch waves. The article
is organized as follows. Section II shows the SBE resonance
in an ideal 2-D square lattice of infinitely long air cylinders in
a dielectric medium. In Sec. III, we consider a more realistic
2-D structure, a PC slab of finite thickness, and find again the
SBE resonance. Section IV is the conclusion.

II. 2-D SQUARE LATTICE

We first search for the SBE resonance in a 2-D square
lattice of air cylinders in a dielectric medium. Let a be the
lattice constant and r the radius of air cylinders. We consider
the transverse electric (TE) polarization, namely, the magnetic
field is parallel to the cylinder axis. Figure 2(a) shows the first
and second photonic bands calculated with the plane wave
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FIG. 1. (Color online) Dispersion curves at the RBE (red solid
line), DBE (black dashed line), and SBE (blue dotted line).

expansion method [36]. The refractive index of the dielectric
host is n = 3.44, and r/a = 0.4. In the �-M direction, the
second band exhibits a SBE at the M point, as seen clearly
in Fig. 2(b). The dispersion curve around the M point
can be well fit by (ω − ω0)a/2πc = α(ka)2 + β(ka)4, with
ω0a/2πc = 0.302, α = −0.123, and β = 8.43. Since α/β <

0 and |α/β| = 0.01 � 1, the conditions for the realization of
high-Q SBE resonance are met [16]. We calculate the reso-
nances in 2-D PCs of finite size using a commercial program
(COMSOL) based on the finite element method. The boundaries
are parallel to the �-M directions. Cartesian coordinates are set
up [Fig. 3(a)] with the x and y axes along the �-M directions
and the z axis parallel to the air cylinders. The 2-D pattern
is symmetric with respect to the x and y axes. The lateral
dimension is L = (2N − 1)a/

√
2, where N is an integer.

The total number of unit cells is N2 + (N − 1)2. Owing to
light escape through the boundaries of the periodic structure,
the resonances have complex eigenfrequencies ω̃, with the
imaginary parts inversely proportional to the lifetimes.

Figure 3(a) shows the spatial profile of the highest Q

resonance in the vicinity of SBE for N = 15. The magnetic
field is parallel to the z axis and the electric field to the xy

plane. The spatial distribution Hz is symmetric with respect
to the x and y axes. The envelope of electric field intensity
|Ex |2 + |Ey |2 along the x axis or y axis has double maxima
[Fig. 3(b)]. Figure 4 plots the normalized frequency and Q

factor of this resonance as a function of N . While the frequency
changes slightly with N , the Q factor exhibits a more dramatic
variation. As N increases from 12 to 15, Q is enhanced by
nearly 1 order of magnitude. A further increase of N from 15
to 17 results in a rapid drop of Q. This behavior is very different
from the monotonic increase of Q with N for the RBE or DBE
resonance. The maximal Q value is ∼17,000, about 16 times
higher than that of the RBE resonance at the first band edge
of ωa/2πc = 0.26.

Although the giant resonance shown in Fig. 3 is related to
the SBE, its frequency ωs is not equal to that of a stationary
point. As shown in Fig. 5(a), there are three stationary
points around the SBE: one at the M point with k = k0

and ω = ω0 and the other two at k = k0 ± kb and ω = ωb.
ωs is between ω0 and ωb, ωb < ωs < ω0. The dispersion
curve gives k = k0 ± ks1,k0 ± ks2 at ω = ωs . For N = 15,
ks1 = k1 = π/L and ks2 = 3k1. The SBE resonance contains
two pairs of counterpropagating Bloch waves in the x direction
(�-M direction), with kx = k0 ± k1, k0 ± 3k1, and another
two pairs in the y direction (also �-M direction), with
ky = k0 ± k1,k0 ± 3k1. The destructive interference among the
multiple Bloch waves near the boundaries of the PC greatly
reduces light leakage, thus enhancing the lifetime or Q factor.
This effect is stronger than that for a RBE resonance which
has only one pair of counterpropagating Bloch waves in the x

(or y) direction to interfere. Hence the envelope of field inten-
sity for a SBE resonance has smaller tails at the boundaries
than that of a SBE resonance, as seen in Fig. 3(b). When
N is larger or smaller than 15, ks2 deviates from 3ks1. Since
k must satisfy the quantization condition kx,y − k0 = ±k1, ±
2k1, ± 3k1, . . . , ωs1 ≡ ω(kx,y = k0 ± k1) is no longer equal to
ωs2 = ω(kx,y = k0 ± 3k1). The two counterpropagating Bloch
waves with kx(y) = k0 ± k1 are frequency detuned from those
of kx(y) = k0 ± 3k1. Their interaction is weakened, leading to
a reduction in Q factor. For confirmation, we qualitatively
reconstruct the envelope function for the SBE resonance by
mixing waves with ±k and ±3k. The value of k0 is set to
0 as it does not affect the envelope function. Figure 5(b)
plots the spatial distribution of a function f (x,y) = [cos(kx) −
0.2 cos(3kx)][cos(ky) − 0.2 cos(3ky)]. It resembles the spatial

FIG. 2. (a) Photonic bands of TE polarization in a 2-D square lattice of air cylinders in a dielectric medium; n = 3.44 and r/a = 0.4.
(b) Expanded view of the photonic bands near the M point and along the �-M direction. Inset shows the first Brillouin zone of the square
lattice.
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FIG. 3. (Color online) (a) Spatial distribution of the magnetic field for the SBE resonance at ωa/2πc = 0.305, overlaid on the structure
of N = 15. (b) Electric field intensity along the x axis (or y axis) for the SBE resonance (red solid line) and the RBE (blue dashed line). The
electric field intensity is normalized such that its integration over the entire pattern area is equal to unity.

profile of the SBE resonance shown in Fig. 3(a). Therefore the
high Q of the SBE resonance is caused not by the vanishing
vg at the stationary point (ω = ωb) but by the interference
of multiple Bloch waves with the same frequency. Note that
ks2 cannot be equal to 2k1 when ks1 = k1. The envelope of
a standing wave formed by two counterpropagating Bloch
modes with kx(y) = k0 ± k has an even symmetry with respect
to the x(y) axis (Fig. 2), while that with kx(y) = k0 ± 2k has
an odd symmetry. Hence they cannot couple to form a SBE
resonance.

Let us remark that the previous consideration is based
on the assumption that the quasimodes are superpositions of
propagating Bloch waves. In close vicinity of a SBE, this
may not be the case because of possible contributions of the
evanescent Bloch waves. According to [14,15], the evanescent
contribution can be appreciable if the shape of the SBE is
very close to a DBE. Hence a quantitative explanation beyond
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FIG. 4. (Color online) Q factor and normalized frequency of the
SBE resonance in a 2-D square lattice as a function of the pattern
size N .

the scope of this article shall take into account the evanescent
waves.

III. PHOTONIC CRYSTAL SLAB

The preceding studies are performed on ideal 2-D PCs with
infinitely long cylinders. Experimentally, the cylinders always
have finite length. A 2-D periodic structure having a finite
thickness in the third dimension is referred to as a photonic
crystal slab. In this section, we study the SBE resonances in
the PC slabs.

We consider a 2-D square lattice of air holes in a dielectric
slab. The refractive index of the dielectric material is 3.45,
similar to that of GaAs or Si. The slab has a thickness t and is
surrounded by air from above and below. Light is confined to
the plane of the slab via index guiding. Figure 6(a) shows the
guided photonic bands of TE polarization in a PC slab with
r/a = 0.4 and t/a = 0.61. The shaded areas represent the
light cones. The second band has a SBE at the M point (M2),
similar to an ideal 2-D PC. The dispersion curve can be fit by
(ω − ω0)a/2πc = α(ka)2 + β(ka)4, with ω0a/2πc = 0.351,
α = −0.0942, and β = 7.66. The absolute values of α and β

are slightly smaller than those of the ideal 2-D PC with the
same n and r/a, indicating that the dispersion curve is a little
flatter for the PC slab.

Next we calculate the SBE resonances in PC slabs of
different N using the 3-D FDTD program. Light may escape
vertically through the top and bottom interfaces of the slab into
air and laterally through the boundary of the periodic pattern
to the unpatterned part of the slab. The vertical leakage rate is
characterized by the out-of-plane energy loss per optical cycle
Q−1

⊥ , the lateral by Q−1
|| . The total loss rate is described by

Q−1
tot = Q−1

⊥ + Q−1
|| . Figure 6(b) shows the spatial distribution

of electric field intensity for the TE-polarized SBE resonance
with N = 15. Its Qtot � 33,000, and Q||/Q⊥ ∼ 0.3. Since
the in-plane leakage is three times larger than the out-of-
plane leakage, it dominates the total loss. The nonmonotonic
variation of Q|| with N results in a local maximum of Qtot

at N = 15 (Fig. 7). Despite the additional loss in the vertical
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FIG. 5. (Color online) (a) Schematic diagram showing that the SBE resonance consists of Bloch waves with k = k0 ± ks1,k0 ± ks2. The
frequency ωs of the SBE resonance is between ω0 and ωb, where dω/dk = 0. (b) Reconstructed envelope function of the SBE mode based on
the 3k1 = k3 relation.

FIG. 6. (Color online) (a) Guided TE bands in a PC slab of square lattice; r/a = 0.4, n = 3.45, and t/a = 0.61. (b) Spatial distribution of
electric field intensity of the SBE resonance at M2 point; N = 15.

FIG. 7. (Color online) Q factors of the SBE resonance (squares)
and the RBE resonance (crosses) as a function of the pattern size N ;
r/a = 0.4, n = 3.45, and t/a = 0.61.

direction, Qtot of the SBE resonance in the PC slab is about a
factor of 2 larger than that in the 2-D PC with the same N and
n. This is because Qtot is determined mostly by Q||, which is
larger than that of the 2-D PC because of the flatter dispersion
curve near the SBE in the PC slab [37]. Figure 7 also plots Qtot

of the RBE resonance at the M1 point [Fig. 6(a)]. It increases
monotonically with N , as expected. At N = 15, the Qtot of the
SBE resonance is about 25 times larger than that of the RBE
resonance.

IV. CONCLUSION

We have found the SBE resonances in 2-D PCs and PC
slabs. Their Q values are over an order of magnitude higher
than those of the RBE resonances in the same structure. Such
high Q factors are attributed to the efficient interference of
multiple Bloch waves, which minimize light leakage from the
periodic pattern of finite size. The variation of the Q value
with the pattern size is nonmonotonic for the SBE resonance,
leading to an optimal size for the maximal Q.

The SBE resonances offer exciting opportunities for the
application of on-chip lasers and optical sensors. The SBE
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laser may combine the advantages of the PC defect mode
laser and the regular band edge laser to obtain simultaneously
low lasing threshold and strong emission intensity. On one
hand, the SBE modes have much higher Q factor than the
RBE modes, and thus the lasing threshold is significantly
lower. On the other hand, they have much larger spatial

overlap with the gain materials than the defect modes so
that the laser emission can be much stronger. Moreover,
the SBE resonances may greatly enhance the sensitivity of
label-free optical sensors because they simultaneously have
narrow line width and high field intensity in the detection
region.
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