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In the present work, we offer a unifying perspective between the dark soliton stripe and the vortex multipole
(dipole, tripole, aligned quadrupole, quintopole, etc.) states that emerge in the context of quasi-two-dimensional
Bose-Einstein condensates. In particular, we illustrate that the multivortex states with the vortices aligned along
the (former) dark soliton stripe sequentially bifurcate from the latter state in a supercritical pitchfork manner. Each
additional bifurcation adds an extra mode to the dark soliton instability and an extra vortex to the configuration;
moreover, the bifurcating states inherit the stability properties of the soliton prior to the bifurcation. The critical
points of this bifurcation are computed analytically via a few-mode truncation of the system, which clearly
showcases the symmetry-breaking nature of the corresponding bifurcation. We complement this small(-er)
amplitude, few mode bifurcation picture, with a larger amplitude, particle-based description of the ensuing
vortices. The latter enables us to characterize the equilibrium position of the vortices, as well as their intrinsic
dynamics and anomalous modes, thus providing a qualitative description of the nonequilibrium multivortex

dynamics.
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I. INTRODUCTION

One of the most fundamental and thoroughly studied type of
excitations in the realm of Bose-Einstein condensates (BECs)
is the matter-wave vortex; see the reviews [1-6]. In two- (but
also often in higher-) dimensional settings these structures
are also of particular interest not only in nonlinear optics [7,8]
(see also the reviews [9,10]) but also more broadly in nonlinear
field theories in various branches of science [11]. Nevertheless,
BEC:s represent a pristine setting where numerous features of
the exciting nonlinear dynamics of single- and multicharge
vortices, as well as of vortex crystals and vortex lattices, can
be not only theoretically studied but also experimentally ob-
served. More specifically, from the viewpoint of experiments,
the first experimental observation of vortices [12] by means
of a phase-imprinting method between two hyperfine spin
states of a 8’Rb BEC [13] paved the way for a systematic
investigation of their dynamical properties. Stirring the BECs
[14] above a certain critical angular speed [15-17] led to the
production of few vortices [17] and even of robust vortex
lattices [18]. Other vortex-generation techniques were also
used in experiments, including the breakup of the BEC
superfluidity by dragging obstacles through the condensate
[19], as well as nonlinear interference between condensate
fragments [20]. In addition, apart from unit-charged vortices,
higher-charged vortex structures were produced [21] and their
dynamical (in-)stability was examined.

In the BEC context, a theme that has received somewhat
lesser attention, chiefly from the theoretical point of view, is
that of “crystals” or clusters consisting of small numbers of
vortices. In an important earlier work [22], the emergence
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of vortex dipole states out of dark soliton stripes via a
symmetry-breaking bifurcation was illustrated. Furthermore,
in Refs. [23,24], more complicated states such as vortex
dipoles, tripoles, and quadrupoles [23] were illustrated, and en-
ergetic arguments concerning their instability were provided;
in particular, it was argued that all these states correspond to
energy maxima. Later, in Ref. [24], a linear stability of these
states led to the result that they are, in fact, unstable through
different types of mechanisms (that we will discuss in more
detail later in the article). A dynamical perspective, focusing
especially on the vortex evolution and the vortex interactions,
was adopted in Ref. [25]; note that in this work, the vortices
were considered in the vicinity of the linear or weakly
interacting limit. More recently, in Ref. [26], the bifurcation
of the vortex dipole state from the dark soliton stripe was
reproduced and a relevant explanation was attempted through
a variational approximation; additionally, in the same work,
the precessional dynamics of the vortex dipole near its
equilibrium (as well as the potential for more complicated
large-amplitude trajectories) was revealed. It should also be
noted that similar vortex clusters have been considered in other
settings, including toroidal traps as, e.g., in the earlier works
of Refs. [27,28] as well as the more recent considerations
of Ref. [29], rotating condensates with pinning sites of laser
beams [30], or rotating anisotropic traps (which may enforce
a linear arrangement of the vortices [31]).

At this point, it is also relevant to discuss the connection of
vortex dipoles with the states out of which they were shown to
emerge, namely the dark solitons (see the recent review [32]).
The earlier experiments demonstrated the existence of these
structures in BECs with repulsive interatomic interactions;
the dark solitons were found to be unstable, exhibiting short
lifetimes, mainly due to thermal [33,34] and dimensionality
[35] effects. Regarding the latter, Ref. [35] reported the exper-
imental observation of the onset of the transverse modulational
instability of dark soliton stripes, as well as their concomitant
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decay into vortex structures, in accordance to the theoretical
predictions [36,37] and similar findings in nonlinear optics
[9,38,39]. The transverse instability of dark solitons exhibiting
radial symmetry [40] was also systematically studied [41,42].
Other theoretical works have investigated the possibility of
avoiding the transverse instability of dark solitons, e.g., by
using sufficiently tight traps [43,44], highly anisotropic traps
[i.e., quasi one-dimensional (1D) traps], or narrow external po-
tential sheets [45], that would enable the persistence of stable
dark solitons [46]. From the viewpoint of experiments, the use
of quasi-1D traps eventually allowed the recent experimental
observation of robust, long-lived dark soliton states [47-50].
Motivated by these works, as well as by the very recent
experimental observations of robust vortex dipoles [51,52]
and of three-vortex states in Ref. [53], our aim in this work
is to revisit this subject, providing a picture that (a) unifies
the earlier findings and (b) connects them more firmly to
the recent experiments. As far as the latter are concerned,
in Ref. [51], vortex dipoles were produced by dragging a
localized light beam with appropriate speed through the BEC,
while in Ref. [52] they were distilled through the Kibble-Zurek
mechanism [54] that was first experimentally reported for
vortices in Ref. [55]. Note that in Ref. [52], near-equilibrium
dynamics of the vortices was also observed, along with small
amplitude motions of the dipole constituents, as well as large
(distinct) amplitude, nearly decoupled precessional motions
thereof. Furthermore, in Ref. [53], different types of three-
vortex configurations were produced by applying an external
quadrupolar magnetic field on the BEC. Among them, an
aligned tripole configuration with a vortex of one topological
charge straddling two other oppositely charged vortices, and an
equilateral triangle of three same charge vortices were found
to be prevalent within the experimental observations. Having
in mind these findings, as well as the earlier results in this
context, this work offers the following unifying perspectives
in the context of quasi-two-dimensional (2D) BECs confined
in harmonic, nonrotating traps. (i) We illustrate that the
dimensionality-induced destabilization of the dark soliton
leads, through a supercritical pitchfork bifurcation, to the
formation of the vortex dipole. Further destabilizations of the
dark soliton lead to the formation of the stationary tripole,
aligned quadrupole, quintopole, and so on. (ii) We clarify
the relevant nature of such supercritical pitchfork bifurcations
and illustrate their symmetry breaking character, through a
few mode expansion that enables an analytical prediction
of the bifurcation point of the emergence of these states.
(iii) We systematically study the stability of each of these
states by elucidating their complete linearization spectrum,
anomalous modes, and imaginary, as well as complex eigen-
frequency instabilities; we also showcase the connections of
this spectrum with the bifurcation picture presented through
general principles of bifurcation theory. (iv) We formulate a
complementary physical picture, which considers the vortices
as individual particles precessing within the parabolic trap and
interacting with each other through the modification of each
other’s local velocity field. This picture allows us to predict
not only the equilibrium position of the vortices, e.g., in a
dipole setting, but also (and perhaps even more importantly)
the near-equilibrium dynamics, e.g., the anomalous modes
of the vortex pair and the epicyclic motions associated with
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the nontrivial one among these modes. (v) Finally, we use
this particle picture as a guide toward some of the more
complex vortex dynamics which we corroborate through direct
numerical simulations; clearly, however, the latter is arich area
that merits additional investigation.

Our presentation will be structured as follows. In Sec. II,
we present our model and briefly review the dynamics of a
single unit-charge vortex. In Sec. III, we present our theoretical
analysis for the few-mode bifurcation picture, which is
particularly relevant close to the linear limit. We complement
this with a large-amplitude perspective, whereby dynamical
equations for two or more isolated vortices are considered, and
their static, stability, and dynamical implications are examined.
Subsequently, in Sec. IV, we embark on a detailed numerical
bifurcation study of the states emerging from the dark soliton
stripe (as well as of a few that do not arise from it). In Sec. V, we
corroborate some of the near-equilibrium static (linearization)
picture with direct numerical simulations; we also consider a
few more exotic dynamical implications of the original model
[and of its underlying ordinary differential equation (ODE)
counterpart]. Finally, in Sec. VI, we summarize and present our
conclusions, as well as speculate on some interesting potential
directions for future studies.

II. MODEL AND BACKGROUND
A. The 2D mean-field model and BdG analysis

We consider a quasi-2D (alias “disk-shaped”) condensate
confined in a highly anisotropic trap with frequencies w,
and w; along the longitudinal and transverse directions,
respectively. In the case w; < w, and u <K hw, (Where u is
the chemical potential), and for sufficiently low temperatures,
the transverse part u(x,y,t) of the macroscopic BEC wave
function obeys the following (2 + 1)-dimensional Gross-
Pitaevskii equation (GPE) [6]:

h2
ihou = [—ﬂvi + V(r) + gaplul* — Mi| u, 9]

where 2 = x2 + yz, Vi = Bf + 83 is the transverse Lapla-
cian, while the potential is given by V(r) = (1 /2)ma)f_r2
(where m is the atomic mass). The effective 2D nonlinearity
strength is given by g2p = g3p/v2ma, = 2+/2maahw,, with
g3p = 4nh*a/m,a and a. = /i/mw. denoting, respectively,
the three-dimensional (3D) interaction strength, the s-wave
scattering length, and the longitudinal harmonic oscillator
length. Equation (1) can be expressed in the following
dimensionless form,

idu =[-3V>+ V@) + ul* — u]u, )

where the density lu|?, length, time, and energy are, re-
spectively, measured in units of (2+/2waa,)™", a., w; !, and
ho,. Finally, the harmonic potential is now given by V(r) =
(1/2)Q%r?, with Q = w, /w.. From here, all equations will be
presented in dimensionless units for simplicity.

In the following, we will analyze the existence and
linear stability of the nonlinear modes of Eq. (2). Note that
numerically the relevant nonlinear states will be identified
as a function of the chemical potential by means of a
fixed point (Newton iteration) scheme over a rectangular
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two-dimensional grid with suitably small spacing.' Linear
stability will be explored by means of the Bogoliubov-de
Gennes (BdG) analysis. The latter, involves the derivation of
the BAG equations, which stem from a linearization of the
GPE Eq. (2) around the stationary solution u((x,y) by using
the ansatz

u = uo(x,y) + [aCx,y)e + b*(x,y)e "], 3)

where * denotes complex conjugate. The solution of the
ensuing BdG eigenvalue problem yields the eigenfunc-
tions {a(x,y),b(x,y)} and eigenfrequencies w. As concerns
the latter, we note that due to the Hamiltonian nature of
the system, if w is an eigenfrequency of the Bogoliubov
spectrum, so are —w, ¥, and —®*. Note that a linearly
stable configuration is tantamount to Im(w) =0, i.e., all
eigenfrequencies being real.

An important quantity resulting from the BdG analysis
is the amount of energy carried by the normal mode with
eigenfrequency w, namely,

E = /dxdy(|a|2 — bPw. “4)

The sign of this quantity, known as the Krein sign [56],
is a topological property of each eigenmode. For one of
the eigenvalues of each double pair this sign is negative.
The corresponding mode is called the anomalous mode [1],
the negative-energy mode [57], or the mode with the negative
Krein signature [56]. If such a mode becomes resonant with a
mode with a positive Krein signature, then, typically, complex
frequencies appear in the excitation spectrum, i.e., a dynamical
instability arises [56].

B. Vortex states

Vortices are characterized by their nonzero topological
charge S whereby the phase of the wave function has a phase
jump of 27 S along a closed contour surrounding the core of
the vortex. Exact analytical vortex-state solutions of Eq. (1)
are not available. Nevertheless, in the noninteracting limit, a
linear state analogous to the vortex consists of a superposition
of the energetically degenerate first excited states (see in the
following). Then, in the (nonlinear) case where interatomic
interactions are present, a vortex state can be found by
performing a continuation from such a linear state.

Following the recent work [58], the equations of motion for
the vortex center (x,, y,) take the form (for small displacements
of the vortex from the center of the trap),

; s (A (5)
v = —o-—In - vy
o 2 Q Y

"We opt to use the chemical potential as a relevant parameter here,
rather than the nonlinearity strength. This will have two significant
advantages. On the one hand, it will render more transparent the
connections of the nonlinear states to the linear limit eigenstates
of the problem. On the other hand, it will enable us to exploit the
two-mode theory of nonlinear states arising from linear states (and the
symmetry-breaking bifurcations from these); see, e.g., G. Theocharis,
P. G. Kevrekidis, D. J. Frantzeskakis, and P. Schmelcher, Phys. Rev.
A 74, 056608 (2006).
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FIG. 1. Dependence of the numerical factor A [see Egs. (5)
and (6)] on the initial displacement R, of the vortex from the center
of the trap, for u = 3.

. Q? n
Yy = Sﬂ In A§ X, (6)

where S denotes the topological charge (alias “vorticity”) and
A is an appropriate numerical factor, taking the value A =~
8.88 &2 24/27. Equations (5) and (6) suggest a precession of
the vortex in the harmonic trap with a frequency

Q? "
=—In|lA=|. 7
Wpr o 1’1( Q) (N

Naturally, the amplitude of the precession is fixed and fully
determined by the initial distance Ry = /x3 + y§ of the
vortex location from the trap center. While these results are
in excellent agreement with numerical computations for small
Ry, it is worth investigating the dependence of the precession
frequency on Ry for intermediate and/or large radii. In that
regard, Fig. 1, which shows the dependence of A on R (for
= 3), suggests that the value of the numerical factor A
changes for large initial displacements: in fact,up to Ry < 1.5,
the value A ~ 2+/27 (corresponding to infinitesimally small
displacements) yields a good approximation, while for larger
displacements Ry, the value of A is increased, indicating the
faster rotation of the vortices away from the condensate center.

Having discussed the dynamics of a single vortex in the trap,
let us now consider the vortex-vortex interaction. Based on the
analogy with fluid vortices [59], it has been argued that the
superfluid vortices considered herein have similar interaction
laws and corresponding kinematic equations. In particular, on
a homogeneous background, and for large distances of the
vortices compared to the size of the vortex core, the kinematic
equations for vortices with centers (x,,,y;,,) and (x,,y,) take
the form [5,60]

5 Ym — Yn
m = —BS,———, 8
o — BS Xm — Xn (9)
Ym = n 2,02 s

with p = /(tm — X2)> + m — Yu)?, S, = %1 the vorticity
of the vortex n and an appropriate numerical factor B; in the
case of the homogeneous condensate, the latter takes the value
B ~ 1.95.
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III. THEORETICAL ANALYSIS

A. Dark soliton stripe bifurcation picture

Let us now proceed by investigating the existence and
possible bifurcations of the lowest macroscopically excited
states of Eq. (2). In the following, we fix the trap strength using
© = 0.2. In the noninteracting (linear) case, the Hamiltonian
describing the stationary states can be written as H = H, +
FI_V, with H, and FI_\, being the Hamiltonian of a single particle
in a harmonic trap oriented along the x and y directions,
respectively. Therefore, the linear states factorize as well and
can be written as W,,,,(x,y) = ¥,,(x)¥,,(y) with ¥,,(x) and
¥ (y) being the states associated to the nth and mth eigenvalue
of H, and I:Iy, respectively. The resulting states W,,,,, (x,y) with
energy u = (n + m + 1)Q2 denote the eigenstates of the linear
limit. Due to the rotational symmetry of the problem, one can
rotate any solution around the center of the trap obtaining
another solution. Hence, when we consider in the following a
solution with a distinct symmetry direction one needs to have
in mind that the direction may be chosen arbitrarily.

The top panel of Fig. 2 shows the number of atoms N
as a function of the chemical potential for different branches
of possible solutions. The bottom panel in this figure shows,
for better clarity of exposition, the atom difference AN =
N — Nys between the atom number N of a particular branch
and the atom number Ny for the dark soliton branch. We
have not shown the branch of the ground state starting at
u = € = 0.2 from the linear limit, as the stable ground state
of the system will not be relevant in our discussion hereafter.

The first branch, with the largest atom number (among the
ones considered therein) for fixed chemical potential, is the
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FIG. 2. (Color online) (Top) Number of atoms as a function of
the chemical potential for the different states for 2 = 0.2. (Bottom)
Corresponding number of atom difference between the different
branches and the dark soliton stripe branch.
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single-vortex (sv) state located at the center of the trap. It is
well established that this solution is dynamically stable [1-6],
despite of the fact that it possesses an anomalous mode in
its excitation spectrum (the eigenfrequency of the anoma-
lous mode coincides with the small amplitude precession
frequency; see, e.g., Ref. [58]). In the linear limit, this state is
given by Wy, (x,y) = ¥1(x)o(y) + io(x)¥1(y). Therefore,
it is “initialized” at an energy of pu = 2Q. For increasing
chemical potential the atom number increases monotonically.
Furthermore, no other states bifurcate from this one (given its
existence properties and its absence of stability changes).

The second (and most critical for our discussion herein)
branch starts from pu = 22 in the linear limit as well. The
wave function of this branch is given in the linear limit by
Wys(x,y) = Wio(x,y) = ¥1(x)y¥o(y) (without loss of general-
ity we assumed the relevant stripe to be oriented along the y
axis). This state, which has a density minimum along the y axis
and a phase jump across this minimum, is precisely the dark
soliton (ds) stripe with the line symmetry that characterizes
such a 2D generalization of the 1D dark soliton.

The essence of our discussion lies in the (symmetry-
breaking) bifurcations arising from the dark soliton stripe
solution. In particular, in the case of 2 = 0.2 considered in
Fig. 2, and for u & 0.68, the vortex dipole state emerges. This
is clearly a supercritical pitchfork bifurcation, as there are two
potential installments of such a dipole with opposite, between
them, relative positions of their S =1 and S = —1 vortex
constituents. The location of this bifurcation is sufficiently
close to the linear limit so that it can be predicted by
using a Galerkin-type approach [61] (see also Refs. [62,63]
for a general discussion). The dark soliton state is given,
close to the linear limit, by Wys(x,y) = Y1 (x)¥o(y). The
vortex dipole (vd) state occurs due to an admixture of the
W (x,y) = Yo(x)Ya(y) state to Wyg, but importantly with
a phase difference of 7/2 with respect to the Wy. Hence,
the bifurcation theory developed in Ref. [61] can be directly
applied but with the crucial difference of the relative phase
of the symmetry-breaking admixing state (with respect to
the original state) of ¢ = /2. In that case, one can repeat
the calculations of Ref. [61] [cf. Eq. (10) therein] to obtain
the relevant bifurcation point as:

w10 — W02

A (10)
where wjg 02 are the eigenvalues corresponding to the
states Wyo(x,y) and Wo(x,y), Ip = [ Wdxdy, and I =
[ W3, W5 dx dy. One can also determine the critical chemical
potential at which the symmetry breaking is expected to occur,
namely pe = wig + loNer [61]; for these parameter values,
this leads to pYd = %OQ (=2/3 for 2=0.2, see second
vertical thin dashed line in the case shown in Fig. 2), which is
in excellent agreement with our numerical findings.

For larger chemical potential, at 4 ~ 0.98, another branch
bifurcates from the dark soliton branch. The wave functions
of this branch contain three vortices (3v) oriented along a
line with adjacent vortices having opposite vorticity. It is
remarkable that although this bifurcation happens quite far
from the linear limit, one can still understand it through the
same supercritical pitchfork (symmetry-breaking) theoretical
framework. In particular, what is happening in this case is
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that the W3 state is providing the “admixture” element to the
“pure” dark soliton stripe state. In light of that, the analysis
presented here [and Eq. (10)] still holds but now wg; — wpz =
3Qand I = [ W}, W2,dx dy. Repeating the same calculation
as before, one finds ug’y = 86K2/19 (which in this case is
~0.91, see the third vertical thin dashed line in Fig. 2, in
reasonable agreement with the numerical result just provided).
Given the substantial departure from the linear limit and
the nonlinear deformation of the dark soliton stripe (still
represented in this phenomenology by its linear limit of W),
this slight discrepancy can be well understood. Furthermore,
the symmetry-breaking, supercritical pitchfork nature of the
bifurcation is again evident since two installments of the same
“vortex tripole” (as it will be called in the following) branch
may emerge, one with two S =1 vortices and an S = —1
centrally separating them and one with two S = —1 vortices
with an § = 1 between them.

At pu=1.26 a four-vortex (4v) state (an aligned
quadrupole), with the vortices oriented along a line, bifurcates
from the dark soliton state. At this point, the sequence of
symmetry breaking events is clear: now the Wy, is offering the
7 /2 out of phase admixture leading to a critical point through
the same procedure and the corresponding reformulation of the
previous constants of ,u‘c‘rv = 890€2/157; in connection to the
Q = 0.2 case of Fig. 2, we find Y &~ 1.13 (see fourth vertical
thin dashed line), with the slight progressive degradation of
the critical point attributable again to the further departure
from the linear limit. In this case also, the vortex parity
variation of § — —S§ for such a four-vortex line configuration
whose adjacent vortices possess opposite charges yields the
two bifurcating branches associated with this critical point.

However, we should note in passing here that a state with
four vortices exists even in the linear limit as is shown by the
branch starting at © = 32 in the linear limit: this represents
a four-vortex state, with vortices located at the vertices of a
square, i.e., a vortex quadrupole (vq). This is among the states
previously considered in Ref. [23,24], as well as independently
proposed as a member of a larger class of so-called vortex
necklace states in Ref. [64]. At the linear limit, this state can be
represented, e.g., as Wyq(x,y) = ¥a(x)Yo(y) + ivo(x)y(y)
and emerges from the linear limit at et =3 (= 0.6 in the
case of Fig. 2, cf. first vertical thin dashed line in the figure).
With increasing chemical potential the number of atoms of the
state monotonically increases. At u & 1.4 this branch crosses
the branch representing the dark soliton stripe. However, it
is important to note that due to the structural disparity of
those states, the crossing of the number of atoms (contrary
to the previous cases considered here) does not constitute a
bifurcation and therefore does not lead to any stability change.

Nevertheless, at higher values of u (e.g., for u & 1.54 in
the case of Q2 = 0.2 of Fig. 2), a five-vortex (5v) state (a vortex
quintopole) bifurcates from the dark soliton stripe. Once again,
the vortices are oriented along a line and adjacent vortices have
opposite vorticities. Furthermore, the bifurcation shares the
standard supercritical pitchfork character of the earlier ones,
and its characterization through analytical tools presented
here reveals a critical point at pu)¥ = 726€/107 (which, for
Q = 0.2, leads to w2 ~ 1.36, see last vertical thin dashed
line in Fig. 2). According to our results here, the structural
progression of these symmetry-breaking events is clear and
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we will not proceed to characterize higher ones among them,
especially given the dynamical instability of the ones beyond
the vortex dipole state (that will be discussed in more detail in
the following).

However, let us add a short note about the physical intuition
of the general picture. What is happening in the present
setting is that there exists a sequence of supercritical pitchfork
bifurcations in which the W, gets mixed progressively with
each of the W, modes. In so doing, the m-fold symmetry of the
latter breaks the line symmetry of the former. In addition, the
/2 relative phase between them introduces a picture which
locally at each perpendicular intersection of the m nodal lines
of the latter with the nodal line of the former resembles a
Wy &£ i Wy (with the pluses alternating with the minuses due to
the field structure of the W, ). As aresult, at each of these nodal
line intersections, vortices with alternating (between adjacent
ones) charges emerge, progressively formulating the dipole,
tripole, aligned quadrupole, quintopole, and so on.

B. Vortex particle complementary picture

This discussion and bifurcation picture is especially rel-
evant close to the point of emergence of these multivortex
solution branches. A complementary aspect of our description
concerns the case (for larger chemical potentials) where the
vortices are well separated, individual interacting entities
which can be regarded as interacting particles subject to
the precessional effect due to the parabolic confinement. In
that picture, it is relevant to develop (kinematic) equations
of motion characterizing the vortex dynamical evolution,
as well as their potential equilibrium positions and their
near-equilibrium behavior, similarly to what was done, e.g., for
characterizing the oscillations and interactions of dark solitons
in quasi-one-dimensional settings in Ref. [49] (see also
Ref. [65]). In that light, we combine Egs. (5) and (6), describing
the interaction of the background density of a condensate in a
trap with each single vortex, and Eqs. (8) and (9) describing
the interaction of (any pair of) two vortices on a homogeneous
background, to provide the total contribution to the superfluid
local velocity at the vortex location. This way, the vortex
motion can be described as follows:

Ym — Yn

X = _Smwprym - BSn 21031” s (11)
N Xm — Xn
Ym = Smwprxm + BS/12—2~ (12)

mn

It is worth noticing that although these equations refer to the
case of two vortices, indexed by m and n, the relevant general-
ization to an arbitrary number of (precessing and interacting)
vortices is imminently evident through the conversion of the
second term in the right-hand side of Eqgs. (11) and (12) into a
sum over all n # m.

By focusing on the two-vortex setting for definiteness, our
description yields a number of interesting conclusions. For

S1 = —S, = 1 the equations possess fixed points at
X =x=0, (13)
’ (14)
Y1==—y2= 4o
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These are anticipated to be the equilibrium locations of the
vortices within the vortex dipole. Furthermore, the lineariza-
tion of the dynamical equations (11) and (12) around these
equilibrium points offers insight into the fate of small pertur-
bations around these steady-state locations. Part of the special
appeal of this analysis is that it can provide explicit, analytical
predictions for the internal modes of the vortex system. These
are in fact, precisely, the anomalous modes of negative Krein
signature or the unstable imaginary eigenfrequency modes
pertaining to this non-ground-state type of structure, as we
will illustrate in our numerical computations of the full system
in the following; see also the corresponding discussion for a
single vortex in Ref. [58] and for the quasi-1D analog of this
picture in the dark soliton setting in Refs. [49,65]. The Jacobian
matrix of the linearization around the equilibrium vortex dipole
location offers the following insights. One of the vortex dipole
linearization modes has a vanishing frequency, i.e., a pair
of eigenfrequencies at w = 0. This is natural to expect: this
frequency pair merely corresponds to the neutral direction
associated with the “rotational freedom” of the vortex dipole
pair, i.e., the ability to equivalently locate it at any pair of an-
tidiametric points located at a distance given by Eq. (14) from
the trap center. The other nonvanishing pair of linearization
eigenmodes (of this 4 x 4 system) corresponds to a frequency:

o3 = £V 2wy (15)

This frequency characterizes the precessional motion of the
vortex pair around this equilibrium position which can be
naturally thought of as an “epicyclic” counter-rotation of the
oppositely charged vortices. We now turn to the examination
of these analytical findings by applying numerical existence
and stability tools.

IV. SOLITON AND VORTEX STATES
AND THEIR STABILITY

A. The single-vortex state

The single-vortex state has already been discussed in
several works. We briefly mention this state for reasons of
completeness and for comparison to the multivortex states.
This structure exists for p > 2. The contour plots of the
density (left) and its 27 winding phase (right) are shown
in the upper panels of Fig. 3. Naturally, its equilibrium
position is at the center of the trap (otherwise it would
precess). The bottom panel shows the eigenfrequencies w
of the Bogoliubov spectrum as a function of the chemical
potential w. All eigenfrequencies are real denoting that the
state is dynamically stable. However, one of the modes has
negative energy, indicating that the state is energetically
unstable. The negative-energy mode bifurcates in the linear
limit from the dipole (or Kohn) mode, which has a constant
magnitude equal to the trap frequency (in this case, 2 = 0.2).
As p increases, the frequency of the negative-energy mode
decreases, thus becoming the lowest excitation frequency
of the system. The frequency of the negative-energy mode
coincides with the precession frequency of the vortex around
the center of the trap. The dash-dotted line indicates the
precession frequency predicted by Eq. (7) with A = 24/27.
For large chemical potentials, the prediction of Eq. (7) agrees

PHYSICAL REVIEW A 82, 013646 (2010)

-10

0.4

0.3+

80.2

01}

W

FIG. 3. (Color online) The single-vortex state for a trap of
strength 2 = 0.2. The top panels show contour plots of the density
(left) and phase (right) of the wave function for = 3, while the bot-
tom panel shows the eigenfrequencies w of the Bogoliubov spectrum
as a function of the chemical potential . Theoretical predictions are
given by the dashed line w = u — 22 and the dashed dotted line
® = wy, see Eq. (7). Note that, in the color online version, within the
upper left panel, blue denotes zero and red maximal density. Similarly,
in the upper right panel blue to red denotes a phase going from 0 to 2.

very well with our numerical findings. Furthermore, for small
values of p, one mode departs linearly from zero (due to
the phase-induced breaking of the radial symmetry). The
corresponding analytical prediction is given by the dashed line
with the functional form w = p — 22 [58]. The sole remaining
pair of zero eigenfrequencies is associated to the atom number
conservation and the gauge invariance of the underlying model.

B. The dark soliton state

The top panel of Fig. 4 shows contour plots of the density
and phase of the dark soliton stripe for u = 3. The density
has a minimum along the y axis associated with a w phase
jump, characteristic of dark solitons. The dark soliton state
exists for > 0.4. The bottom panel shows the real and
imaginary parts of the eigenvalues of the BdG spectrum as
a function of the chemical potential. The real parts correspond
to oscillation frequencies, whereas the imaginary parts imply
dynamical instabilities. We note in passing that at some places
some level crossings are observed (accompanied by mergers,
e.g., for u € [1.1,1.3] of the real parts of the corresponding
eigenfrequencies). These correspond to collisions of eigen-
modes with opposite Krein signatures and lead to complex
eigenfrequency quartets. However, because these only happen
for small parametric regimes and the instabilities they induce
are far weaker than the ones associated with purely imaginary
eigenfrequencies (in fact, they appear as only “small bumps”
and are at least an order of magnitude weaker than the principal
instabilities in the bottom panel of Fig. 4), they will not be
considered further hereafter.

Let us at first investigate the real part of the eigenfrequen-
cies. The mode at w = Q is twofold degenerate and corre-
sponds to the dipolar mode which describes the oscillation of
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FIG. 4. (Color online) The dark soliton state for a trap strength
2 = 0.2. The top panels show contour plots of the density (left) and
phase (right) of the wave function for u = 3, while the bottom panel
shows the eigenfrequency w of the BdG spectrum as a function of the
chemical potential w.

the whole condensate with the trap frequency. The degeneracy
occurs due to the symmetry of the trap, i.e., the trap frequencies
in the x and y directions are equal. From this mode bifurcate
two modes. The mode with smaller magnitude decreases to
zero and becomes imaginary leading to a dynamical instability
and the symmetry-breaking bifurcation discussed previously.
The vanishing of the relevant eigenfrequency denotes the
point of bifurcation of the vortex dipole from the dark soliton
stripe (cf. Fig. 2). The other mode bifurcating from w = Q
has a negative energy or negative Krein signature. This mode
looks similar to the mode of a dark soliton in a 1D condensate.
In the latter setting, this mode is the only one with a smaller
magnitude than the dipolar mode. It bifurcates from the dipolar
mode and decreases with increasing chemical potential up
to a threshold in the Thomas-Fermi limit of large chemical
potentials. The general behavior of this mode is similar.
However in the 2D case there exist other modes that may
acquire a smaller real part than the dipolar modes. These modes
bifurcate at the linear limit from @ = n2 (one per multiple
of the trap frequency) and, upon decrease of their magnitude,
they eventually cross zero and become imaginary leading
to additional instabilities. When the negative-energy mode
collides with these modes, it may form a band of oscillatory
instability manifested in the quartet of complex eigenvalues,
e.g., for 1.1 < u < 1.2 (see also the previous discussion).
Every time one of these decreasing modes crosses zero,
another one of the bifurcations discussed previously will arise.
At the critical point of the bifurcation, the kernel of the dark
soliton stripe linearization is augmented and becomes four
(instead of two) dimensional. The additional pair of vanishing
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eigenfrequencies is associated with a rotational freedom that
is, in turn, inherited by the resulting multivortex state. It is
important to also mention here that given the supercritical
pitchfork nature of the bifurcation, the novel emerging state
(at each step of this bifurcation sequence) inherits the linear
stability properties of its dark soliton stripe ancestor just before
the bifurcation. In view of that, we have a clear roadmap of
what to expect of the multivortex states’ stability. In particular,
the vortex dipole emerging out of the stable dark soliton stripe
should itself be neutrally stable at least close to the bifurcation
point. On the contrary, the vortex tripole, aligned quadrupole,
quintopole, etc., should, respectively, inherit the one-, two-,
three-, etc., respectively, unstable eigendirections of the dark
soliton stripe at the critical parameter point of their bifurcation.
We should note in passing here that changing the aspect ratio
of the trap leads to a shift of the point where the individual
modes of the spectrum cross zero and may, thus, be used to
induce a stabilization of the dark soliton stripe. Eventually, the
dark soliton becomes stable for quasi-1D traps [43,44,46].

It is interesting to parallel these results with those of
Ref. [46], which also considered the destabilization of the dark
soliton stripe, although in a waveguidelike trap geometry and
through a fully numerical approach. The authors of Ref. [46]
recognized the progressive destabilization steps of the dark
soliton stripe as they augmented the transverse direction width
in their geometry. However, they attributed the instabilities to
single- or multivortex decay indicating that the multivortex
patterns observed “are by no means stationary but rather form
transient states” [46]. We believe that this picture strongly
supports the emergence of stationary bifurcating structures of
this multivortex type.

C. The vortex dipole state

We now turn to the first by-product of this bifurcation
picture, namely the vortex dipole, which is shown in Fig. 5.
The top panels of the figure show the contour plots of the
density and phase of this coherent structure. The middle
panel of Fig. 5 shows the dependence of the position of the
vortices on the chemical potential for Q2 = 0.1, 2 = 0.15, and
© = 0.2 (curves from top to bottom). The lines denote the
corresponding prediction by the system of ordinary differential
equations (ODEs) for the vortex centers through Eq. (14) for
A =242 and B = 1.35. The ODE prediction agrees very
well with the results of the full model. The bottom panel
shows the real and imaginary part of the eigenfrequencies
of the Bogoliubov spectrum as a function of the chemical
potential for u > 0.68 (where the dipole state exists).

Examining in more detail the spectrum of this vortex
dipole, we find the following. At w = €2, there exists again
the twofold degenerate dipolar modes which are associated
with the oscillation of the whole condensate in the x and y
directions with the trap frequency. From these modes, there
bifurcates toward lower frequencies a negative-energy mode,
similar to the case of a single vortex. However, in this case, the
negative-energy mode collides with the mode departing from
zero and forms a band of complex eigenfrequencies associated
with oscillatory instabilities. This is the sole (see also the
discussion to follow below) and predominant, albeit quite
weak, instability of the vortex dipole state. For larger chemical
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FIG. 5. (Color online) The vortex dipole state for a trap strength
2 =0.2. The top panels show contour plots of the density (left)
and phase (right) of the wave function for u = 3. The middle panel
shows the dependence of the position of the vortices on the chemical
potential for 2 = 0.1, 2 = 0.15, and 2 = 0.2 (curves from top to
bottom). The lines indicate the predictions of the ODE with A =
2427, B = 1.35. The bottom panels show the real and imaginary
parts of the eigenfrequencies w of the BAG spectrum as a function
of the chemical potential . The thin solid line shows the analytical
prediction a)gf = V2w,

potentials this degeneracy is lifted and the negative-energy
mode behaves similarly to the case of the single vortex.
However, in the vortex dipole case, the eigenfrequency of
this mode for sufficiently large chemical potentials is very
accurately predicted by Eq. (15), i.e., it is given by a);f =
:I:\/Ea)pr and directly reflects the epicyclic counter-rotation
of the two vortices around their equilibrium location. The
spectrum has two pairs of zero modes associated with the
gauge invariance of the model, as well as with the rotational
invariance of the dipole location (within the radially symmetric
trap). Notice that for the latter mode radial symmetry is
crucial and the corresponding eigenfrequency gets shifted in
the presence of planar anisotropy i.e., for w, # w,. To be more
precise the mode becomes imaginary thereby destabilizing the
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system, if the trap strength is increased in the direction of
the dipole. The magnitude of the imaginary mode increases
with the anisotropy of the trap. On the other hand, if the trap
strength is increased along the axis perpendicular to the dipole
axis, then the relevant eigenfrequency becomes real and no
instability arises.

It is worthwhile to place these results, and more generally
the stability of the vortex dipole state, in the context of
earlier works that had predicted such a structure. The original
prediction of Ref. [22] cited the vortex dipoles as “extremely
robust” but only employed direct integration methods (under
noisy perturbations); hence, while suggestive, the findings
of Ref. [22] could not preclude a potential instability (or
trace its parametric regime). The subsequent investigation of
Ref. [23] seemed to suggest the opposite, namely that the
dipole was, in fact, unstable not only because of its constituting
an energy maximum but also due to a number of (tabulated)
values suggesting the presence of nonreal eigenfrequencies.
This was more systematically considered in Ref. [24], which
offered the imaginary parts of the relevant eigenfrequencies
indicating two types of instabilities, a universal weak one
(for all chemical potentials) and a stronger one for a narrow
parametric regime. For the former, it was indicated that, as
a result of its manifestation, the vortex dipole appears to
remain intact through rotation and it was argued that it can
be thought of as structurally stable, although dynamically
unstable. These results are worthy of a close inspection and
comparison with the bottom panel of Fig. 5. In fact, there,
we also observe an extremely weak (of the order of 1073 or
smaller) but apparently systematically occurring (for all w’s)
unstable eigenmode of imaginary eigenfrequency. However,
based on physical grounds, we argue that this mode is likely to
be a manifestation of the accuracy of the numerical eigenvalue
computations involved herein (cf. Ref. [66]). The underlying
physical principle of the rotational invariance of the vortex
dipole and of its neutrality clearly suggest the presence
of a vanishing eigenfrequency pair. We should note here
that we have confirmed that higher accuracy (smaller grid
spacing) computations reduce the magnitude of the relevant
eigenvalues, although their convergence to zero is slow. A
more detailed computational investigation of this effect and
its convergence to the physically relevant and symmetry
mandated zero eigenvalue pair, while worthwhile in its own
right is outside the scope of the present manuscript. Thus, we
conclude that the sole genuinely unstable mode is due to the
relevant eigenfrequency collisions and occurs over a narrow
parametric regime.

D. The vortex tripole state

The case of the vortex tripole is illustrated in Fig. 6. The top
panel of the figure shows the density and the phase of this three
vortex state for u = 3. The vortices are oriented along a line
with adjacent vortices having opposite vorticity. The bottom
panel shows the BAG spectrum for i > 0.98 (where the three
vortex state bifurcates into existence).

The real part of the spectrum looks similar to the case
of the vortex dipole. However, in this case, the anomalous
mode decreasing from the dipolar one and the mode departing
from zero cross without creating an oscillatory instability.
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FIG. 6. (Color online) The three-vortex state for a trap strength
2 = 0.2. The top panels show contour plots of the density (left) and
phase (right) of the wave function for = 3, while the bottom panel
shows the eigenfrequencies w (real and imaginary parts) of the BdG
spectrum as a function of the chemical potential w.

The spectrum contains two zero modes, as in the case of the
vortex dipole. The one among them which is (numerically)
very weakly nonzero is due to the rotational invariance of the
tripole and the corresponding neutrality of this equilibrium (cf.
the relevant discussion here and also the discussion of Ref. [24]
about the second instability mode therein). Furthermore, as
argued earlier on the basis of the general bifurcation approach
to this problem, there is always a purely imaginary mode. The
magnitude of the purely imaginary mode is comparable to the
magnitude of the trap frequency showing that the state is highly
unstable, as it inherits the already strong instability of the dark
soliton stripe at the chemical potential value where the tripole
arises. This is consonant with the discussion of Ref. [24] about
a “dominating mode which is roughly an order of magnitude
larger” than the other one.

One can extend the vortex particle approach described in
Sec. III B to the three-vortex state by adding the corresponding
interaction terms. The Jacobian matrix of the linearization
around the equilibrium positions of the vortex tripole leads to
the following eigenmodes. One of the modes has a vanishing
eigenfrequency, similar to the case of the vortex dipole state,
corresponding to the “rotational freedom” of the vortex tripole
state. Of the other two pairs of eigenmodes, one is real and
one is imaginary with respective eigenfrequencies

o) = £V/50p, (16)
w3y = +iNTwy. (17)

The former corresponds to the anomalous mode leading to an
oscillation of the vortices around their equilibrium positions,
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and the latter corresponds to the imaginary mode inducing the
instability of the system. The modes agree qualitatively with
our numerical findings.

The instability of the tripole does not involve the anni-
hilation of a vortex-antivortex pair. Instead, it involves the
drift of one of the outer vortices toward the boundary leading
to the formation of—essentially—a stable vortex dipole and
an outside drifting vortex; see also the relevant discussion of
Ref. [24]. The eigenvector of the BAG mode corresponding
to the imaginary eigenvalue reflects this tendency as well,
as is shown in Fig. 11. An investigation of the eigenvector
corresponding to the eigenvalue (17) shows that a similar
behavior is predicted by the vortex particle picture.

Itis interesting to make some relevant connections here with
the recent experimental observations reported in Ref. [53]. In
the that work, different types of three-vortex configurations
were created, over a large number of realizations of the
experimental protocol of excitation of the BEC under an
external quadrupolar magnetic field. The principal states
observed were an equilateral triangle of same-charge vortices
and the previously considered tripole vortex state. For the
latter, it was mentioned that it is likely metastable and was
observed to decay over long time scales. It was also implied
that the potential partial observability of the tripole may be
related with the cylindrical geometry used in this experiment
rather than the pancake one used here. The metastability
(but eventual long-term dynamical instability) of the linear
tripole is consistent with our observations here (especially for
BECs of large number of atoms, as used in Ref. [53] where
the relevant instability becomes weak), although of course
the issue of the consideration of the cylindrical geometry
remains a relevant question for future studies. Furthermore,
another question that arises is whether the equilateral triangle,
same-charge vortex configuration can emerge as a result of a
bifurcation similarly to the dipole, tripole, etc., considered
herein. However, this should arise from a fundamentally
different state than the rectilinear ones considered here. In that
connection, a relevant possibility is to consider bifurcations
from other solitonic states, such as, e.g., the ring dark soliton
[40—42]. This constitutes an additional interesting topic for
future investigations. Furthermore such a state (an equilateral
triangle) should be expected to rigidly rotate. This, in turn,
suggests the consideration of periodic orbits of vortices that
should be expected to exist in the present system. This
constitutes another interesting theme in its own right.

E. The aligned quadrupole state

We now briefly turn to the case of four vortices aligned
along the nodal line of the former dark soliton stripe. As in
previous figures, Fig. 7 shows some of the characteristics of the
four-vortex (4v) aligned state. The bottom panel of the figure
shows once again the BAG spectrum for & > 1.26 (where the
four-vortex state exists). Naturally, the real part of the spectrum
looks similar to the case of the three-vortex state. As in the
case of the vortex dipole and tripole, the rotational and gauge
invariances account for the two zero modes. On the other hand,
for this four-vortex case, there still exists a single negative-
energy mode. However, as anticipated from the stability of the
dark soliton stripe at the critical point of the four-vortex-line
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FIG. 7. (Color online) The aligned quadrupole state for a trap
strength 2 = 0.2. The top panels show contour plots of the density
(left) and phase (right) of the wave function for u = 3, while the
bottom panel shows the (real and imaginary) eigenfrequencies w of
the BAG spectrum as a function of the chemical potential .

bifurcation, in this case there exist two purely imaginary eigen-
frequencies in the spectrum. The magnitude of the two purely
imaginary modes is comparable to the magnitude of the trap
frequency showing that the state is highly unstable, similarly
to its dark soliton stripe ancestor in this parametric regime.

It is interesting to observe the count of (stable and) unstable
eigenfrequencies of the vortex system in connection to the
vortex “particles” participating in the respective state. In the
case of two vortices, the epicyclic precession and the vanishing
rotational eigenmode accounted for the two modes of the
two-particle system. In the case of the tripole, we expect
three modes out of the three pairs of ODEs, one of which
accounts for the remnant of the epicycles, one for the rotational
invariance and one for the mode instability (associated with the
outward drift of the outermost vortices toward the condensate
boundary). In the aligned quadrupole, there are four modes:
the epicycle, the neutral, and the two unstable eigenmodes.
For five aligned vortices (see the following), there exist three
unstable modes, and so on. As another interesting aside, we
note that in none of the earlier studies of Refs. [22-24,26]
does this aligned quadrupole state seem to be noted (although,
as discussed earlier, its quadrupolar analog was illustrated in
Refs. [23,24,64]). However, higher order (such as five and six
vortices aligned) were discussed in the anisotropic trap setting
also involving rotation in Ref. [31].

F. The vortex quadrupole state

We now make a brief interlude to discuss the quadrupole
vortex state of Fig. 8, previously identified in Refs. [23,24,64],
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FIG. 8. (Color online) The vortex quadrupole state for a trap
strength 2 = 0.2. The top panels show contour plots of the density
(left) and phase (right) of the wave function for pu =3, while
the bottom panel shows the (real and imaginary parts of the)
eigenfrequencies w of the BAdG spectrum as a function of the chemical
potential x. The dashed line shows the theoretical prediction for the
mode departing from zero w = Z‘S—ﬁ(u —3Q).

again for completeness, although it does not structurally
collide with or bifurcate from the dark soliton stripe (instead, as
argued here, it emerges from the linear limit). Figure 8 shows
density and phase plots of such a state. The bottom panel shows
the real and imaginary eigenfrequencies of the BdG spectrum
of the quadrupole state as a function of the chemical potential.
At v = Q and w = 222 one finds the dipolar and quadrupole
modes representing oscillations of the whole condensate. For
the vortex quadrupole, negative-energy modes bifurcate from
both of these locations. The one departing from the dipolar
mode is twofold degenerate, crosses the mode departing from
zero, and thus becomes the lowest excitation of the state.
The mode departing from the quadrupole limit collides with
the mode departing from zero and thus forms an instability
band associated with eigenfrequency quartets, as illustrated in
the middle and bottom panels of Fig. 8. For larger chemical
potentials, this degeneracy is lifted and the negative-energy
mode crosses the dipolar mode and becomes the second
smallest excitation frequency of the state. Similar to the
single-vortex state one can predict the behavior of the mode
departing from zero using a small parameter expansion as
described in Sec. V B of Ref. [67] yielding

C-D
C+D’

0 =2(u—-39Q) (18)

with the overlap integrals of the one-dimensional harmonic
oscillator eigenfunctions C = [ dxyo(x)* [ dxy(x)* and
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FIG. 9. (Color online) The five-vortex state for a trap strength
2 = 0.2. The top panels show contour plots of the density (left) and
phase (right) of the wave function for = 3, while the bottom panel
shows the real and imaginary parts of the eigenfrequencies w of the
BdG spectrum as a function of the chemical potential u.

D=] f dx wo(x)zwz(x)z]z. Evaluation of the integrals yields

42
5
which is found to be in good agreement with the corresponding

numerical result (see dashed line in the real BdG spectrum of
Fig. 8).

(n —3%), 19)

w =

G. The vortex quintopole state

Last, we briefly mention the five-vortex state in Fig. 9. The
presentation of the mode is similar to the earlier ones, with
density and phase of a typical representative of this family of
solutions being shown in the top panel and real and imaginary
eigenfrequencies being demonstrated in the middle and bottom
panels. The spectrum looks similar to the spectrum of the
earlier states, but as argued earlier, it possesses three purely
imaginary eigenfrequencies with two of them being essentially
degenerate, as is illustrated in the bottom panel of Fig. 9. Of
course, once again the large magnitude of the corresponding
eigenfrequencies illustrates the strong dynamical instability of
the pertinent structure.

V. VORTEX DYNAMICS: NUMERICAL RESULTS

A. Microscopic displacements

In this section we show results obtained by direct numerical
integration of Eq. (1), using as initial conditions stationary
states perturbed along the direction of eigenvectors associated
with particular eigenfrequencies. Since we are interested in
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the dynamics of the position of the vortex center we choose
eigenfrequencies associated with instabilities or negative-
Krein-sign eigenmodes. We should recall at this point that
anomalous modes are connected to the oscillation frequencies
of the vortices therefore a perturbation along the direction of
an eigenvector associated to an anomalous mode leads to a
precessional motion of the vortices. In order to determine the
position of the vortex as a function of time we first compute
the fluid velocity (see, e.g., Ref. [68])
i u*Vu —uVu*
2 |u|?
The fluid vorticity is then defined as wy, = V X v,. Due to
our setup, the direction of the fluid vorticity is always the z
direction and, therefore, we can treat this quantity as a scalar.
For well-separated vortices, each vortex leads to a maximum
of the absolute value of the fluid vorticity at its location.
This allows us to determine the position of the vortices by
determining the maxima of the absolute value of the fluid
vorticity wyo. Note the advantages of this definition over
alternative techniques such as those discussed in Ref. [26]
which attempt to deal with phases and identifying plaquettes
of 2r windings. This is evident in the figures illustrated in
the following in comparison to the coarse features observed
in Figs. 7 and 8 of Ref. [26] (although different grid spacings
may be partially responsible too for such differences between
our simulations and those of Ref. [26]).

The top panel of Fig. 10 shows the time evolution of the
center of the vortices when the vortex dipole state is perturbed

Vg = — (20)

ot

4y -2 0 2 4
X

FIG. 10. (Color online) Time evolution of the center of the

vortices for the two-vortex state perturbed by the eigenvector of

the anomalous mode (top panel) and the eigenvector associated to

the zero eigenvalue connected to the rotational invariance (bottom

panel) at u = 1.5. The filled circles represent the initial positions of
the vortices.
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FIG. 11. (Color online) Time evolution of the center of the
vortices for the three-vortex state perturbed by the eigenvector of
the purely imaginary mode at u = 2.0. The initial positions of the
vortices are depicted by the filled circles.

by the eigenvector corresponding to the anomalous mode for
u = 1.5. Both vortices are initially shifted in the x direction
from the equilibrium position toward the center of the trap
and in the y direction both were shifted in the same direction
namely in the positive half plane. So the vortices are still
equidistant from the center of the trap leading to the same
value of the background density. During the time evolution the
vortices perform an epicyclic (counter-rotating) motion around
their respective equilibrium points.

The bottom panel shows the time evolution of the centers
of the vortices for the state being perturbed by the eigen-
vector associated to the (near-) vanishing eigenfrequency
corresponding to the rotational invariance at u = 1.5. Both
vortices are displaced symmetrically from the fixed points in
such a way that the distance to the origin and the distance
between the vortices remains constant. Subsequently they
rotate around the center of the trap. After a rotation of
¢ = /2 they rotate backward. The forward and backward
trajectories deviate slightly; yet, despite that, the trajectories
are closed. One of the vortices rotates forward on the outer
and the other on the inner trajectory and backward vice
versa.

In the case of the three-vortex state, on the other hand,
there exists an imaginary eigenfrequency mode. Hence, we
expect a dynamical manifestation of this strong instability.
Figure 11 shows the time evolution of the center of the
vortices for the vortex tripole being perturbed by the eigen-
vector of the imaginary eigenfrequency mode. One of the
vortices immediately moves toward the outer regions of the
background density (cf. with the corresponding dynamical
description of Ref. [24]). The negative-energy and anomalous
modes of the states with the vortices oriented along a line
lead to similar dynamical evolutions as the corresponding
cases discussed here. As an aside, we note that among the
rest of the considered states, the one containing a higher
multiplicity of anomalous modes is the vortex quadrupole.
The twofold degenerate mode with smaller magnitude leads
to an in-phase precession of adjacent vortices around the
fixed points, whereas the anomalous mode with larger mag-
nitude leads to an out-of-phase precession of the adjacent
vortices.
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FIG. 12. (Color online) Time evolution of the centers of two
vortices for a vortex with positive vorticity and one with neg-
ative vorticity initially placed at (x¢,yo) = (3.9,0) (white circle)
and (xo,y0) = (—2.4,0) (black circle), respectively (left panel),
and (xg,y0) = (0.75,0.3) (white circle) and (x¢,yo) = (—4.5, — 0.3)
(black circle), respectively (right panel), for © = 3. The thick solid
lines depict the predictions of Egs. (11) and (12) and the thin solid
lines the predictions of Eq. (1).

B. Macroscopic displacements

In this section we show the dynamical evolution of vortices
placed at different initial positions and compare the results
obtained by direct time integration of Eq. (2) with the results
obtained by integrating the corresponding ODEs. We will
restrict the investigation in this subsection to two vortices with
different vorticities since higher vortex states are unstable. In
order to place a vortex at a certain point we use the following
procedure. We define the pure vortex wave function as quotient
of the single-vortex state in a trap and the background density
profile. This pure vortex wave function is then placed at the
corresponding point. This procedure excites the background
density as well, leading to a small amplitude oscillation of
the vortices around a trajectory with large amplitude and
frequency. We checked that random numerical noise is not
responsible for these fluctuations.

The left panel of Fig. 12 shows the time evolution of two
vortices initially placed at (xg, yo) = (3.9,0) (white circle) and
(x0,¥0) = (—2.4,0) (black circle), respectively. The vortices
oscillate around the center of the trap with an approximately
constant distance to the trap center. The thick solid lines
denote the predictions of Eqgs. (11) and (12). They agree
very well with the trajectories obtained by integrating Eq. (1)
(depicted by thin solid lines). However, the latter results
perform an additional small amplitude oscillation due to the
excitation of the background condensate as explained earlier.
The right panel of Fig. 12 shows the time evolution for vortices
initially placed at (xo,yo) = (0.75,0.3) (white circle) and
(x0,y0) = (—4.5, — 0.3) (black circle), respectively. Due to the
nonzero displacement in the y direction one does not obtain an
oscillation with constant amplitude around the origin but more
complicated trajectories of the vortices with varying distances
to the trap center. However, the trajectories of the vortices
are well separated, i.e., they do not cross. The predictions
of Egs. (11) and (12) (thick solid lines) agree qualitatively
well with the corresponding results of the PDE (1) (thin solid
lines); however, the oscillation frequency deviates due to the
dependence of the integration constants (A, B) on the position
of the vortices. The left panel of Fig. 13 shows the evolution
for (xp,y0) = (4.5,0) (white circle) and (xg,yp) = (—4.5,0)
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FIG. 13. (Color online) Time evolution of the center of two
vortices for a vortex with positive vorticity and one with neg-
ative vorticity initially placed at (x¢,yo) = (4.5,0) (white circle)
and (xp,y0) = (—4.5,0) (black circle), respectively (left panel),
and (xo,yo) = (0.75,0.75) (white circle) and (x¢,y9) = (—1.5, —1.5)
(black circle), respectively (right panel), for = 3. The thick solid
lines depict the predictions of Egs. (11) and (12) and the thin solid
lines the predictions of Eq. (1).

(black circle). Due to the symmetrical displacement of the
vortices with respect to the center of the trap, they perform
oscillations around their fixed points. The right panel of Fig. 13
shows the evolution for (xg,yo) = (0.75,0.75) (white circle)
and (xo,y0) = (—1.5, — 1.5) (black circle). Both vortices are
shifted with respect to their fixed points toward the center of
the trap. They perform complicated oscillations around the
center of the trap. Once again the qualitative agreement of
the prediction by the ODE (11) and (12) is good; however,
the exact oscillation frequency cannot be predicted.

In conclusion the trajectories of the two vortices depend
strongly on the initial conditions. The qualitative predictions
by the ODE agree remarkably well with the PDE results;
however, they cannot predict the exact oscillation frequencies.
Here, we have attempted to explore, at both the PDE and ODE
level, some of the salient features of such “choreographies,” as
associated with instability and anomalous or invariant modes
of the system. Clearly, a more detailed investigation of the
possible orbits is warranted and will be forthcoming.

VI. CONCLUSIONS

In this work, we have considered the existence, stability
and dynamics of states associated with a dark soliton stripe,
as well as of a few related states such as the single vortex and
vortex quadrupole, although the latter are not directly related to
the solitonic stripe. We have unveiled a systematic cascade of
bifurcations from the former state into aligned vortex clusters
(or crystals). The symmetry-breaking, supercritical pitchfork
nature of the bifurcations was elucidated and a few-mode
expansion was employed to identify the corresponding critical
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points. Although satisfactory approximations to the first four
bifurcations were given, the approach is especially successful
in the vicinity of the linear limit (and the bifurcation of
the vortex dipole state). A complementary viewpoint was
also formulated based on a particle picture enabling the
development of an ordinary differential equation framework
for the evolution of the vortex centers. This approach not
only allowed the identification of the equilibrium positions
of the vortex clusters but also assisted in the formulation of the
vortex linearization problem and the analytical approximation
of the vortex epicyclic near-equilibrium motions (e.g., for the
vortex dipole), as well as that of the unstable eigenmodes of
states such as the tripole. These results were systematically
corroborated by existence and numerical linear stability
techniques offering good agreement between the analytical
approximations and the numerical findings in the relevant
regimes.

These results constitute a generalization of both the bifurca-
tion but also, importantly, the particle methods revealed in the
realm of one-dimensional dark solitons. This illustrates the
strengths of the relevant methodology and suggests various
interesting tests, examining its potential generalizations. For
example, it could be considered whether similar types of
bifurcations may arise from states like the two-dark soliton
stripe, i.e., Wy (in conjunction with higher order modes with
perpendicular nodal lines to it), and whether these could lead
to more complicated vortex clusters than the ones discussed
here. On the other hand, the relevant considerations are
by no means necessarily restricted to the two-dimensional
realm. Computational capabilities are on the verge of enabling
similar expensive yet tractable bifurcation calculations in
three-dimensional settings (associated with bifurcations of
vortex rings, etc.). Exploring such generalizations of the
present framework and phenomenology would be an exciting
direction for future research.
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