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Open quantum systems approach to atomtronics
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We derive a quantum master equation to treat quantum systems interacting with multiple reservoirs. The
formalism is used to investigate the atomic transport of bosons across a variety of lattice configurations. We
demonstrate how the behavior of an electronic diode, a field-effect transistor, and a bipolar junction transistor
can be realized with neutral, ultracold atoms trapped in optical lattices. An analysis of the current fluctuations is
provided for the case of the atomtronic diode. Finally, we show that it is possible to demonstrate AND logic gate
behavior in an optical lattice.
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I. INTRODUCTION

The emerging field of atomtronics [1–3] aims to construct
analogies of electronic components, systems, and devices
using ultracold atoms. In atomtronics, ultracold atoms move
in an optical or magnetic potential in direct analogy with
electrons moving in a semiconductor crystal. The motivation to
construct and study atomtronic analogs of electronic systems
comes from several directions.

First, the experimental atomtronic realizations promise to
be extremely clean. Imperfections such as lattice defects or
phonons can be completely eliminated. This allows one to
study an idealized system from which all inessential complica-
tions have been stripped. Interest in such complixity-reduced
systems lies parallel to the recent research efforts in single-
electron transistors in mesoscopic systems [4] and molecules
[5], where many themes common with atomtronics emerge.
A consequence of the near-ideal experimental conditions for
optical lattice systems is that theoretical descriptions for
atomtronic systems can be developed from first principles. This
allows theorists to develop detailed models that can reliably
predict the properties of devices.

Second, atomtronics systems are richer than their electronic
counterparts because atoms possess more internal degrees
of freedom than electrons. Atoms can be either bosons or
fermions, and the interactions between atoms can be widely
varied from short to long range and from strong to weak. This
can lead to behavior that is qualitatively different from that
of electronics [6–9]. Consequently, one can study repulsive,
attractive, or even noninteracting atoms in the same exper-
imental setup. Additionally, current experimental techniques
allow the detection of atoms with fast, state-resolved, near-unit
quantum efficiency [10]. Thus it is possible, in principle, to
follow the dynamics of an atomtronic system in real time.

Third, neutral atoms in optical lattices can be well isolated
from the environment, reducing decoherence. They combine a
powerful means of state readout and preparation with methods
for entangling atoms [11]. Such systems have all the necessary
ingredients to be the building blocks of quantum signal
processors. The close analogies with electronic devices can
serve as a guide in the search for new quantum information
architectures, including novel types of quantum logic gates that
are closely tied with the conventional architecture in electronic
computers.

Fourth and finally, recent experiments studying transport
properties of ultracold atoms in optical lattices [12–14] can
be discussed in the context of the atomtronics framework. In
particular, one can model the short-time transport properties
of an optical lattice with the open quantum system formalism
discussed here.

In this paper, we present a derivation of the master equation
used to treat these specific open quantum systems. Afterward,
we provide a detailed analysis of atomtronic analogies of
the most elementary electronic components. These include
conducting wires, diodes, and transistors. This work builds on
a previous paper [3], providing a comprehensive explanation
of the underlying analytical and numerical methods, and
additional analysis of the components. Finally, we suggest
how AND logic gate behavior can be recovered in this open-
quantum-system setting.

This paper is organized as follows. In Sec. II we discuss the
general master equation formalism, introducing the specific
systems to be investigated, the defining properties of the
reservoir, and the appropriate approximations necessary to
complete the derivation for the models. In Secs. III and IV we
apply the derived model to a variety of one-dimensional optical
lattice systems in different open quantum system settings.
The result is a collection of atomtronic devices that emulate
electronic components.

II. MODEL

A. System

Unlike the typical behavior of their electronic counterparts,
atomtronic devices operate at the few-particle level. The nec-
essary repulsive correlations between particles are generally
caused by either strong interactions for bosons or quantum
statistical effects due to the Pauli exclusion principle for
fermions. In this paper, we focus on bosonic current carriers,
partly to draw the contrast with the electronic case.

The optical lattice provides a clean, controllable en-
vironment for atomtronics components. Strong atom-atom
interactions can be precisely tuned if the atoms are confined
in a tight optical lattice. Holding the atoms in a lattice has two
primary advantages. First, the strength of the interactions is
enhanced due to the confinement within the lattice wells and,
second, by cooling of the atoms deep into the lowest Bloch
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band regime, the center-of-mass motion of the atoms can be
reduced to hopping between neighboring lattice sites. This
results in a simple theoretical description as well as a clean
experimental realization.

The dynamics of these ultracold atoms in this regime are
accurately described by the Bose-Hubbard model [15,16]. In
the lowest Bloch band, the Bose-Hubbard Hamiltonian is

ĤBH =
N∑

i=1

(
εiN̂i + 1

2
UiN̂i(N̂i − 1)

)

+
∑
〈i,j〉

(Jij â
†

i âj + H.c.), (1)

where i and j are lattice site indices, N is the total number of
lattice sites, εi is the site energy, Ui is the on-site interaction
energy, Jij is the hopping energy, the sum 〈i,j 〉 is taken
between adjacent lattice sites, and N̂i = â

†
i âi . Here, â

†
i and âi

are bosonic creation and annihilation operators, respectively,
for an atom in the lowest Wannier orbital centered at site i. The
precise tunability of the experimental parameters εi , Ui , and
Jij in the laboratory today make the realization of the custom
lattices discussed in this work possible.

B. Reservoir

The reservoirs serve two purposes in atomtronics: they are
“sources” and “sinks” of particles. The reservoirs themselves
could be experimentally realized in a variety of different ways.
For instance, a reservoir source of atoms could be a one-
dimensional optical lattice (Fig. 1), or a strongly-interacting
1-dimensional, harmonically trapped ultracold gas. Both of
these systems have a desired Fermi sea-like energetic distribu-
tion that is discussed below. A reservoir sink of atoms could
be a coupling of the system to vacuum modes of atoms in an
untrapped state or the densely spaced modes of a nearly empty
potential well. For modeling purposes, suitable reservoirs must
meet several requirements. The system-reservoir correlations
must decorrelate from the system faster than the time scale over
which the state of the system changes appreciably. This allows

(a)

(b)
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FIG. 1. (Color online) Illustration of an optical lattice, energeti-
cally tailored to have the transport response of an electronic diode,
connected to two reservoirs whose respective chemical potentials
induce an atomic transport from left to right.

one to make the Markov approximation. We will also assume
that system and reservoirs are weakly coupled so that we
can make the second-order Born approximation. Additionally,
we assume that the density of states varies slowly over the
spectrum of the system.

In the model used in this work, it is assumed that the reser-
voirs are strongly interacting bosons and, at low temperatures,
the states in the reservoir are filled to the chemical potential,
and all states above the chemical potential are empty. This is
analogous to the situation in a semiconductor crystal, where
to a good approximation the electrons occupy all states up
to the Fermi energy. Labeling the single-particle excitations
of the reservoir by a quantum number k, we can write the
Hamiltonian of the reservoir as

ĤR =
∑

k

εkR̂
†
kR̂k, (2)

where εk and R̂
†
k are the energy and creation operator for the

kth reservoir mode, respectively.
Such a reservoir can be constructed out of bosons trapped

in a deep optical lattice potential. If the interactions between
the atoms are very strong, and the temperature of the system is
much lower than the interaction strength, the system enters the
Mott-insulator regime, and by adjusting the chemical potential
one can achieve a situation where each lattice site is occupied
by precisely one atom. The atoms in this system could then
be coupled to the atomtronic device to furnish a source of
particles, as depicted in Fig. 1. By tailoring of the distribution
of the energies εk in the reservoir, it is possible to achieve a
situation reminiscent of the Fermi sea reservoir. We may then
represent the reservoir by a collection of uncoupled harmonic
oscillators.

C. Elimination of the reservoir: Master equation formulation

The quantum master equation approach is often used in
quantum optics for describing open quantum systems [17–20].
In essence, it allows one to calculate observables associated
with the evolution of a closed system without having to account
for the free evolution of the reservoir. In this section we provide
a detailed derivation of the master equation formulation for the
system and reservoir described above. The derivation involves
deriving an equation of motion for the reduced density operator
for the system. Here we construct this equation of motion in a
Liouville representation, since (as we discuss below) this form
makes clear how one can go beyond the Born approximation,
a necessity in this zero-temperature, unconventional setting.

The coupling of the system to the reservoir is by means of
the exchange of particles between the system and the reservoir.
The Hamiltonian for this interaction is

ĤV =
∑
k,q

gkqR̂
†
kâq + H.c., (3)

where âq is the annihilation operator for a particle in a system
lattice site q and gkq is the coupling matrix element between
reservoir mode k and site q.

The Hamiltonian for the system-reservoir interaction is
given by

Ĥ = ĤS + ĤR + ĤV , (4)
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where ĤS = HBH [Eq. (1)] in this work. For each part of the
Hamiltonian we introduce an operation L̂x , defined by its
action on an arbitrary operator �̂ by

iL̂x�̂ = 1

ih̄
[�̂,Ĥx] where x ∈ {S, R, V}. (5)

We denote the density matrix of the system and reservoir with
ρ̂. From the full density matrix, the reduced density matrices
σ̂S and σ̂R of system and reservoir are defined by tracing over
the reservoir and system Hilbert spaces, respectively,

σ̂S,R = TrR,S[ρ̂]. (6)

We define the projection operator P̂ by

P̂�̂ ≡ σ̂R ⊗ TrR[�̂] (7)

and its complement by Q̂ = 1̂ − P̂ . Under these definitions,
P̂ and Q̂ satisfy the usual projection operator relationships
P̂ 2�̂ = P̂�̂, Q̂2�̂ = Q̂�̂, and P̂ Q̂�̂ = 0. Using the projec-
tion operators, the reduced density matrix for the system can
be written as

σ̂S = TrR[P̂ ρ̂]. (8)

To find the equation of motion for σ̂S , we start from the
evolution of the full density matrix ρ̂:

dρ̂

dt
= −iL̂ ρ̂, (9)

where L̂ = L̂S + L̂R + L̂V . By noting that P̂ + Q̂ = 1̂, this
equation can be written as

d(P̂ + Q̂)ρ̂

dt
= −i(P̂ + Q̂)L̂ (P̂ + Q̂)ρ̂. (10)

Acting with P̂ and Q̂ separates this equation into the coupled
equations

dP̂ ρ̂

dt
= −i[P̂L̂ P̂ ρ̂ + P̂L̂ Q̂(Q̂ρ̂)], (11)

dQ̂ρ̂

dt
= −i[Q̂L̂ P̂ ρ̂ + Q̂L̂ Q̂(Q̂ρ̂)]. (12)

The solution of Eq. (12) is

Q̂ρ̂ = −i

∫ t

0
e−iQ̂L̂ Q̂τ Q̂L̂ P̂ ρ̂(t − τ ) dτ, (13)

where we have assumed that the system and reservoir are
initially uncorrelated, i.e., Q̂ρ̂(0) = 0. Using this result to
eliminate Q̂ρ̂ in Eq. (11), we obtain

dP̂ ρ̂

dt
= −iP̂L̂ P̂ ρ̂ − P̂L̂ Q̂

∫ t

0
e−iQ̂L̂ Q̂τ Q̂L̂ P̂ ρ̂(t − τ ) dτ.

(14)

Tracing over the reservoir Hilbert space leads to the equation
of motion for the reduced density operator of the system,

dσ̂S(t)

dt
= −iL̂Sσ̂S(t) +

∫ t

0
R(τ )σ̂S(t − τ ) dτ, (15)

where we have introduced the memory kernel

R(τ ) = −TrR[L̂V e−i(L̂S+L̂R+Q̂L̂V Q̂)τ L̂V σ̂R]. (16)

The first term on the right-hand side of Eq. (15) is the free sys-
tem evolution while the second term describes the irreversible
contribution due to the system-reservoir interaction.

Equation (15) is the exact master equation under the con-
dition that the system and reservoirs are initially uncorrelated.
All the dynamics due to the coupling to the reservoirs is
encapsulated in R(τ ). Once the memory kernel is known, we
can calculate the evolution of the reduced density matrix of
the system without having to take into account the reservoirs
explicitly. However, it turns out to be impossible to solve for the
memory kernel exactly in even the simplest of circumstances,
so approximations must be made to continue from this point.

Calculation of the memory kernel and its action on the
system density matrix is straightforward under the Markov and
Born approximations. The Markov approximation assumes
that the correlation time τc between system and reservoir is
much shorter than the time scales over which the reduced
density matrix of the system changes appreciably, i.e.,

τc

dσ̂S

dt
� σ̂S . (17)

The Markov approximation consists of treating the system
density matrix as a constant over time intervals of order τc,
and accordingly we can pull it out of the integral in Eq. (15).
The short correlation time also allows us to extend the limit of
integration in Eq. (15) to infinity.

The Born approximation takes the memory kernel to second
order in L̂V and is thus a weak-coupling approximation.
In the conventional Born approximation, L̂V is eliminated
from the exponential term in the memory kernel. We cannot
simply employ such an approximation here, however, since
we are assuming that the strongly interacting boson gas obeys
a zero-temperature Fermi-Dirac distribution characterized by
µF . The hard edge at the Fermi energy causes logarithmic
divergences in the second-order energy shifts of system
levels as µF approaches system resonances. This divergence
occurs because, under the second-order approximation, as µF

approaches a system resonance, the number of reservoir modes
that the system is coupled to goes to 1—not a continuum of
modes. This would induce Rabi flopping of the atom between
the system and the reservoir and not the irreversible reservoir
action intended. In reality, the interaction of the system with
the reservoir taken to all orders mixes the modes and leads to
decay, in this situation. Exact simulations on small systems
show that we can recover the proper dynamics at the hard edge
by including the influence of higher-order terms of the memory
kernel expansion in L̂V . We find that the fourth-order term in
the expansion provides a good estimate for the higher-order
corrections of the full memory kernel, yielding

R(τ ) ≈ −TrR[L̂V L̂V (−τ )σ̂Re−[i(L̂S+L̂R )+η]τ ], (18)

where L̂V (τ ) = exp[−i(L̂S + L̂R)τ ]L̂V . The evaluation of
the fourth-order term shows that the decay η is independent of
µF unless µF approaches eigenenergies of the system. Even
then, the dependence is small. Therefore, we take η to be the
mean value of the decay rate, which is where µF is equal
to the system eigenenergy difference: η = D |gq |2π/(2h̄2),
where D is the density of reservoir modes, assumed to be
constant in the region of interest and gq is defined in Eq. (27).
Introducing the rate at which particles enter or leave the system
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	0 ≡ D |gq |2/h̄2, we have η = π	0/2. It is reasonable to take
this value for η because η is important only in the calculation
for small deviations of µF about system resonances. The
modified memory kernel in Eq. (18) captures the correct
long-time behavior of the exact memory kernel.

With these approximations, the master equation becomes

dσ̂S

dt
≈ −iL̂Sσ̂S −

∫ ∞

0
e−ητ TrR[L̂V L̂V (−τ )σ̂R] dτ σ̂S(t).

(19)

Insertion of the Liouvillians into Eq. (19) yields

dσ̂S

dt
≈ −iL̂Sσ̂S − 1

h̄2

∑
k

|gkq |2
∫ ∞

0
dτ e−ητ

× (TrR{[â†
qR̂k,[âq(−τ )R̂†

k(−τ ),σ̂S σ̂R]]}
+ TrR{[âq R̂

†
k,[â

†
q(−τ )R̂k(−τ ),σ̂S σ̂R]]}), (20)

where we have used that

TrR[σ̂RR̂
†
kR̂k′] = δk,k′ 〈R̂†

kR̂k〉,
(21)

TrR[σ̂RR̂kR̂
†
k′] = δk,k′ 〈R̂kR̂

†
k〉,

because the reservoir is in thermal equilibrium.
We project Eq. (20) onto the energy eigenbasis of the system

and trace out the reservoir degrees of freedom. This allows us
to evaluate the τ integral and to find a more explicit form
of the master equation. Given two arbitrary system energy
eigenstates |a〉 and |b〉 and adopting the notation 〈a|�̂|b〉 =
〈�̂〉ab, we have

〈a|L̂Sσ̂S |b〉 = ωab〈σ̂S〉ab,
(22)〈a|â†(−τ )|b〉 = exp(−iωabτ )〈â†〉ab

with h̄ωab = (Ea − Eb) being the difference between the
eigenenergies of |a〉 and |b〉. Similarly,

〈k|R̂†(−τ )|j 〉 = exp(−iωkj τ )〈R̂†〉kj (23)

for the reservoir. Performing the integral over τ produces the
following closed form of the master equation:

d〈σ̂S〉ab

dt
= −iωab〈σ̂S〉ab − 1

2

∑
c,d

{〈â†
q〉ac[(	(out)

− )cd〈âq〉cd ]

×〈σ̂S〉db − [(	(out)
− )ac〈âq〉ac]〈σ̂S〉cd〈â†

q〉db

+〈σ̂S〉ac[(	(in)
− )cd〈âq〉cd ]〈â†

q〉db − 〈â†
q〉ac〈σ̂S〉cd

× [(	(in)
− )db〈âq〉db] + 〈âq〉ac[(	(in)

+ )cd〈â†
q〉cd ]〈σ̂S〉db

− [(	(in)
+ )ac〈â†

q〉ac]〈σ̂S〉cd〈âq〉db + 〈σ̂S〉ac

× [(	(out)
+ )cd〈â†

q〉cd ]〈âq〉db − 〈âq〉ac〈σ̂S〉cd
× [(	(out)

+ )db〈â†
q〉db]}, (24)

where

(	(in)
± )ab = 2

h̄2

∑
k

|gkq |2
η + i(±ωk − ωab)

〈R̂†
kR̂k〉, (25)

(	(out)
± )ab = 2

h̄2

∑
k

|gkq |2
η + i(±ωk − ωab)

〈R̂kR̂
†
k〉. (26)

Note that

lim
η→0

1

η + i(±ωk − ωab)

= −iP 1

±ωk − ωab

+ πδ(±ωk − ωab),

where P indicates that integrals are to be interpreted in
the Cauchy principal value sense. The real parts of the 	±
matrices then give decay rates that agree with the Fermi
golden rule result, while the imaginary parts give rise to
level shifts in analogy with the Lamb shift in the hydrogen
spectrum.

D. Reservoir model

The detailed physics of the reservoirs influences the
evolution of the system through the coupling matrix elements
gkq , the occupation expectation values of the reservoir modes
〈R̂†

kR̂k〉, and the density of states of the reservoir. The reservoir
model used below assumes strongly interacting bosons with a
zero-temperature, Fermi sea-like energetic distribution. Thus,
〈R̂†

kR̂k〉 = 1 for all modes below the chemical potential of the
reservoir and 〈R̂†

kR̂k〉 = 0 for all modes above. The coupling
of the reservoir modes to the system states is a slowly varying
function of the mode energy. We model it by a constant
coupling up to some high-energy cutoff ωc in order to quench
the ultraviolet divergence that would otherwise arise, taking
the form

|gkq |2 = |gq |2θ (ωc − ωk), (27)

with θ (ν) the Heaviside step function. The high-energy cutoff
ωc is much larger than any relevant frequency of the system,
and it does not affect the system’s dynamics.

III. ATOMTRONICS APPLICATIONS

In order to analyze the response of specific optical lattice
configurations connected to reservoirs with different chemical
potentials, we consider the steady-state solution of Eq. (24)
and then proceed to solve for the matrix elements 〈σ̂S〉ab.
Once 〈σ̂S〉ab is known, expectation values of atomic currents
〈Ĵq〉 into (and out of) a system site q can be calculated from
the reservoir’s influence on the system population rates. For
the population of each state, d〈σ̂S〉aa/dt , we sum up net
rates out of the system state |a〉 and then subtract the net
rates into the state. We then sum over all of the system
states |a〉 to obtain the net current transport on system
site q:

〈Ĵq〉 =
∑

a

∑
c,d

{〈â†
q〉ac[(	(out)

− )cd〈âq〉cd ]〈σ̂S〉da

+〈σ̂S〉ac[(	(out)
+ )cd〈â†

q〉cd ]〈âq〉da − 〈â†
q〉ac〈σ̂S〉cd

× [(	(in)
− )da〈âq〉da] − [(	(in)

+ )ac〈â†
q〉ac]〈σ̂S〉cd〈âq〉da}

(28)
=

∑
a

∑
d

〈Ĵ 〉ad〈σ̂S〉da (29)

= TrS[Ĵq σ̂S], (30)
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(a) (b)

µL µR

FIG. 2. (Color online) Illustration of the analogy between (a) the
electronic circuit of a wire (with some inherent resistance) connected
to a battery and (b) its atomtronic counterpart.

where

〈Ĵq〉ad

=
∑

c

{〈â†
q〉ac[(	(out)

− )cd〈âq〉cd ] + [(	(out)
+ )ac〈â†

q〉ac]〈âq〉cd

− [(	(in)
− )ac〈âq〉ac]〈â†

q〉cd − 〈âq〉ac[(	(in)
+ )cd〈â†

q〉cd ]} (31)

is the current operator for site q projected onto the system
eigenbasis. Using this convention, the sign of TrS[Ĵq σ̂S]
reveals whether the current flows into (−) or out of (+) the
system.

A. Atomtronics analogy of a simple circuit

Here we analyze the atomtronics counterpart to a simple
circuit of a battery connected to a resistive wire. As seen in
Fig. 2, the analogy of a wire is an energetically flat optical
lattice, with uniform tunneling rates and interaction energies
(εj ≡ ε, Uj ≡ U , and Jij ≡ J for all neighboring sites). For
this system, which is very weakly coupled to the reservoirs, we
calculate the atomic current as a function of chemical potential
difference. This numerical experiment is carried out by initially
setting both left and right chemical potentials (µL and µR) to
zero. We raise µL so that an atomic transport is induced across
the system from left to right and calculate the current out of
the right side of the system 〈JR〉 as a function of µL. As shown
in Fig. 3, the current increases with the chemical potential
difference, but in quantized jumps that correspond directly to
the left chemical potential overcoming the on-site interaction
energy needed to introduce a greater number of atoms onto
the left site. A closer examination of the numerical simulation
implemented in Fig. 3 reveals two subtle features. As we move
from left to right across the graph in Fig. 3, at the first current
jump, occurring at (µL − ε)/U = 0, the current increases in
two steps where one might expect to observe a single jump,
since the condition to put a particle in the lattice is µL � ε.
This is a result of the fact that the degeneracy of the Fock
states in the one-particle manifold is split by 2J in the system
state eigenbasis. In addition, the jump in current is broadened
slightly by the nonzero η and the system-reservoir coupling.
This broadening, which makes the jump in current a smooth
transition, is more apparent in the atomtronic devices presented
below, where the system reservoir-coupling is taken to be
orders of magnitude larger. Although the exact details for the
second and third jumps are more complicated, the reasoning
is the same: The eigenenergies are split by approximately 2J ,

−1 0 1 2 3
0

2

4

6

8

10

(µL − ε)/U

I/
[|g

q
|2 D

(ω
)/
h̄

2
]

FIG. 3. (Color online) Current of the atomtronic wire, in the case
of weak coupling to the reservoirs, as a function of the left chemical
potential. The current monotonically increases in quantized jumps
as the on-site interaction energy to put on an additional particle is
overcome. The parameters used to model the atomtronic wire in this
simulation are ε/U = 3, J/U = 3 × 10−2, and h̄	0/U = 10−6.

and the overall jump is smoothed out by η. These are general
properties of all of the numerical experiments described in this
work.

B. The atomtronic diode

A diode is a device with an approximately unidirectional
current characteristic. A voltage bias across the diode yields
a current in one direction but not in the opposite direction if
the voltage bias is reversed. Such behavior can be realized in
an optical lattice by constructing an energy shift in half of
an otherwise energetically flat lattice. We find that the diode
characteristic persists as the number of lattice sites is increased.
For simplicity, here we present the diode in a two-site lattice
system. For the simulations in the rest of this paper, we assume
ε/U = 3, J/U = 3 × 10−2, and 	0h̄/U = 10−2.

In the Fock basis for a two-site system, there exist three
states in the two-particle manifold: |20〉, |11〉, and |02〉, where
|nm〉 refers to n particles on the left site and m particles on
the right. The external energies of the two sites (ε1 and ε2) can
be chosen so that the eigenstates |20〉 and |11〉 are approxi-
mately degenerate, leaving both states far detuned from |02〉.
This configuration of the site energies is given by ε1 = ε and
ε2 = ε1 + U . We refer to this as the “resonance condition.”

Figure 4 illustrates how the resonance condition generates
reverse-bias and forward-bias behavior in a two-site optical
lattice. As seen in Fig. 4(a), if one holds the left reservoir
chemical potential at µL = 0 and raises the right reservoir
chemical potential µR , the system will undergo a transition
from |00〉 to |01〉. The states |01〉 and |10〉 are separated in
energy by U . As a result, most of the population remains
in the |01〉 state. Increasing µR above the point where the
transition from |01〉 to |02〉 is allowed causes the system to
remain almost completely settled in the |02〉 state.

As seen in the Fig. 4(b), if one holds µR = 0 and raises
µL, the system first undergoes a transition from |00〉 to |10〉.
However, increasing µL so that the system evolves to |20〉 leads
to a very different situation than in the above case: Since |20〉 is
resonant with |11〉, both states are simultaneously populated.
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(a) (b)

FIG. 4. (Color online) (a) Energy schematic of the reverse-bias
dynamics of the two-site atomtronic diode. The red arrows represent
the system transitions from an initially empty system. The gray
(dotted) arrows represent all other possible transitions. Regardless
of which state the system starts in, it evolves almost entirely to the
|02〉 state. (b) Energy schematic of the forward-bias dynamics of
the two-site atomtronic diode. Blue arrows illustrate transitions into
current-bearing cycles, while gray (dotted) arrows represent all other
possible transitions.

Since µR = 0 takes all particles out of the site on the right,
the system can make a transition from |11〉 back to |10〉. The
combined effect of setting µL and µR to these values is to force
the system to undergo a closed cycle of transitions between
|10〉, |20〉, and |11〉. The result is a net atomic transport (or
current flow) across the system. A second contributor to the
net current through the system simultaneously arises since µL

allows transitions from |11〉 to |21〉 as well. Thus, an additional
current-generating cycle exists: |11〉 to |21〉 to |20〉 and back
to |11〉. Both cycles contribute positively to a net current flow
across the system.

For systems consisting of N lattice sites, the diode
configuration consists of two connected, energetically flat
lattices whose energy separation is �ε = U . The dynamics
do not change for larger systems since the degeneracy
of the flat lattice allows for effective transport across the
lattice; a particle allowed to enter the left site of half of
the lattice is energetically degenerate with a particle found
at the junction. Thus, there exist current cycles generated
from the degeneracy between the |222 · · · 2〉 ⊗ |0 · · · 000〉 and
|222 · · · 1〉 ⊗ |1 · · · 000〉 states. Going in the other direction,
one can go to |0 · · · 000〉 ⊗ |222 · · · 2〉, but conditions are not
energetically favorable to allow atomic transport across the
junction. Figure 5 is a schematic of a four-site atomtronic
diode in the forward-biased direction.

Supporting the claim that the diode remains qualitatively
independent of the overall size of the lattice, Figs. 6(a) and

µL µR

FIG. 5. (Color online) Schematic of the four-site optical lattice
atomtronic diode.
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FIG. 6. (Color online) Current responses of (a) forward-bias
two-site diode, (c) four-site diode as a function of µL (with µR = 0),
(b) reverse-bias two-site diode, and (d) four-site diode as a function
of µR (with µL = 0). The chemical potentials of all figures are
normalized to the resonance condition, and the currents normalized
to 	0.

6(b) and 6(c) and 6(d) are numerical simulations of the
current responses of the two-site and four-site diodes, respec-
tively. The general features of both diodes are qualitatively
identical.

Given the current characteristics of the diode, one might ask
how much the signal fluctuates. Recalling the current operator
from Eq. (31), we can calculate the autocorrelation function
for the current,

〈Ĵq(τ + t)Ĵq(t)〉 = TrS[Ĵq(τ + t)Ĵq(t)σ̂S], (32)

using the quantum regression theorem.
To simulate an actual measurement, we convolve this

correlation function with an exponentially decaying filter
exp(−t/T ). The Fourier transform of this convolution yields
a time-averaged spectral density function S(ω,T ). Our time-
averaged signal-to-noise ratio RSN as a function of T is then

RSN(T ) = 〈Ĵq〉√∫ ∞
0 S(ω,T ) dω

. (33)

For long averaging times T we find, for the conditions of Fig. 6,

RSN(T ) ≈
√

8	0

√
T . (34)

For typical optical lattice experiments, U ∼ 1 kHz is achiev-
able, which implies that

√
8	0 ∼ 10

√
Hz. Therefore, a signal-

to-noise ratio of 10 can be achieved by averaging the atomic
current for about 1 s.

C. The atomtronic field-effect transistor

A field-effect transistor (FET) is a device that allows an
externally applied field to affect the current through the device.
This characteristic allows the FET to be utilized as an amplifier.
Since the diode is optimized when the resonance condition
is imposed on the optical lattice, small deviations from the
resonance condition lead to large changes in maximum current
propagating across the lattice. This is precisely the behavior
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FIG. 7. (Color online) Current response of the atomtronic FET
as a function of the chemical potential. Small changes in ε2 lead to
appreciable changes in the current response. That is, as the system
is detuned from its resonance condition, there is a falloff of the net
current value across the device.

of a FET where a current is controlled by an applied voltage.
In Fig. 7, we plot several current results for the forward-bias
configuration as the separation in the external energy of the
second site is raised past the resonance condition by fractions
of J , the smallest system parameter in the model.

D. The atomtronic bipolar junction transistor

A bipolar junction transistor (BJT) is a three-terminal
device in which the overall current across the emitter and
collector is controlled by a much weaker current via the base.
Two practical applications of the BJT are signal amplification
and switching (on and off) of the emitter current.

Realization of BJT-like behavior in atomtronic systems
requires at least three sites connected to three different
reservoirs. If the atomtronic diode is considered an atomtronic
p-n junction, one might guess that the atomtronic n-p-n
transistor would entail raising the external energy of the left
and right (collector and emitter) sites higher than the middle
(base) site by the on-site interaction energy. This configuration
is illustrated in Fig. 8(a).

The degeneracy between the Fock states |110〉, |020〉, and
|011〉 causes this configuration to yield BJT-like behavior.

We implement numerical simulations of this lattice con-
figuration by fixing a chemical potential difference across
the lattice. The left reservoir chemical potential µL is set to
maintain one particle on the left site and the chemical potential
of the right reservoir µR is set to zero. The middle chemical
potential µM starts at zero and is increased to allow a single
atom to enter the middle site.

When there are no atoms on the middle site, the config-
uration of the reservoirs pumps the system into the |100〉
Fock state [as seen in Fig. 8(b)]. The |100〉 and the |001〉
states are degenerate with each other, but the system must
undergo a second-order, off-resonant transition via the |010〉
state from |100〉 to |001〉. Such transitions are suppressed
by a factor of (J/U )2 and thus become less likely as the
energy difference between |100〉 and |010〉 increases. Thus,
when the middle reservoir is set to maintain zero atoms
on the middle site, the net current out of the emitter is
minimal.

(a)

µL

µM

µR

(b)

|110
2 + U

|020
2 + U

|011
2 + U

|100
+ U

|001
+ U

|010

|000
0

FIG. 8. (Color online) (a) Illustration of the BJT lattice-reservoir
system. (b) The energy schematic of the three-site optical lattice
under the extended resonance condition. Here the left reservoir is set
to maintain an occupancy of one atom on the left site, and the right
is set to remove all atoms. If the middle reservoir is set to remove
all particles, then the system evolves to the |100〉 state (red dotted
arrow). If the middle reservoir is set to maintain an occupancy of one
atom on the middle site, then the degeneracy between states |110〉,
|020〉, and |011〉 allows current to traverse the system.

When the middle reservoir’s chemical potential is increased
to allow a single atom into the middle site of the system,
the degeneracy between the |110〉, |020〉, and |011〉 states is
accessed, which allows atoms to travel across the system.
One issue with this configuration is the following: in order
to get to |011〉, the system has to make a transition through
the |020〉 state. Since the middle reservoir is set to maintain
an occupancy of one, but not two, atoms on the middle site,
one of the atoms can be lost to the middle reservoir, leading
to a loss of current out of the emitter. If the couplings of all
three reservoirs to the system are equal, then the result is that
the current measured passing through the base turns out to be
even greater than the current measured out of the emitter. Thus,
the system represents an inefficient transistor realization. On
the other hand, if the middle reservoir were to be coupled
weakly compared to the other reservoirs, then current would
predominantly leave the system via the emitter, which is the
desired behavior.

Figure 9(a) is a numerical simulation of the current out of
the emitter and the base as a function of the base chemical
potential. The coupling strength of the base connected to
the reservoir is one-fifth the collector and emitter reservoir
coupling. It should be noted that the region where the proposed
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FIG. 9. (Color online) Characteristics of the atomtronic BJT.
(a) For a fixed collector-emitter voltage bias, the current response
measured through the base leg (green, dashed curve) and the emitter
leg (blue curve) are plotted as a function of the base chemical
potential. (b) The current out of the emitter is plotted vs the current
out of the base. Here a large linear gain is observed.
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TABLE I. AND gate truth table where the two inputs are labeled
by A and B, the output labeled by O, and the 1 or 0 entries represent
on and off. (a) Truth table describing the device characteristics.
(b) Numerical simulation of the atomtronic AND gate normalized
to the maximal output current O. Here, the inputs A and B are the
respective chemical potentials measured with respect to the on-site
interaction energy (µA/U µB/U ), and the output is the atomic current
normalized by the maximum output current (I/Imax). In practice, the
logical ins and ‘outs are never really 0 or 1’ but are defined by setting
threshold values. Since the maximal output current is larger than all
other output values by at least a factor of 6.25, we can conclude that
there exists logic gate behavior in this optical lattice setup.

(a) AND gate
(b) Atomtronic AND gate

simulation

A B O A B O

0 0 0 0 0 0.00
1 0 0 3.2 0 0.01
0 1 0 0 3.2 0.16
1 1 1 3.2 3.2 1.00

atomtronic transistor mimics the electronic BJT is limited to
the transition region, or current jump. One can increase the
length of this region by increasing the overall system-reservoir
coupling strength. Figure 9(b) shows that the gain of this device
is fairly linear.

IV. DISCRETE ATOMTRONICS LOGIC

Integrated circuits are designed with a very large number of
transistor elements to perform a desired function. The demon-
strated ability to realize atomtronic diodes and transistors thus
motivates the question as to whether higher functionality can
be realized with these ultracold atomic systems. Here we look
at the most fundamental of these, the atomtronic AND logic
gate.

A traditional logic element is a device with a given
number of inputs and outputs, composed of switches, that
generates a series of logical responses. Such logical behavior
can be expressed in a truth table composed of 1’s and
0’s (“ons” and “offs”). Logic elements are the fundamental
building blocks of computing and discrete electronics. In Table
I(a) the truth table for the AND logic gate is given as an
example. The next level of complexity in emulating electronic
systems is to create logic elements from the atomtronic
components.

An AND gate is a device with two inputs (A and B)
and one output (O). As illustrated in Table I(a), the device
characteristic of the AND gate is that O remains off unless
both A and B are on. In electronics, such a device can
be constructed by connecting two transistors in series [as
illustrated in Fig. 10(a)]. By analogy, if the atomtronic
BJTs are connected in the same series configuration [as
illustrated in Fig. 10(b)], the AND gate truth table can be
generated.

In the construction of practical logic circuits, the values of
the 1’s and 0’s are not strict values, they are defined within
a given range. The data in Table I(b) have been generated

(a)

A B

Out

(b)

µL µR

µA µB

FIG. 10. (a) Electronic schematic for the AND logic gate, a device
constructed by cascading two transistors in series. (b) Atomtronics
and schematic. The atomtronic AND logic gate is constructed exactly
like its electronic counterpart, i.e., by cascading two transistors in
series. A chemical potential bias µL − µR across the device attempts
to drive a current across the device. No substantial current is observed,
however, unless both µA and µB supply atoms onto the base terminals
of their respective transistors.

in a numerical experiment of the configuration depicted in
Fig. 10(b). For this particular experiment, the maximal current
out of the device is at least a factor of 6.25 greater than any other
measured current out. Thus a discernible difference between
on and off is observed, and the output currents reproduce
the AND gate truth table. Such a difference can also be
enhanced by increasing the on-site interaction energy U of the
lattice.

V. CONCLUSIONS

In this paper, we have derived a general model for treating
a specific class of open quantum systems where the reservoirs
act as sources and sinks for particles moving into and out of the
system. Such a formalism can be used to study atomic transport
across arbitrary multiple potential well configurations. Here,
the formalism was used to show how neutral atoms in custom
optical lattices can exhibit electronic diode, FET, BJT, and and
gate behavior.

Looking forward, we aim to develop more complicated
atomtronic devices such as additional logic elements, flip-
flops, and constant current sources by cascading our cur-
rent atomtronic components in a manner analogous to the
development of more sophisticated electronic devices. The
simulation of the AND gate is promising since it demonstrates
the possibility of cascading atomtronic components to make
more sophisticated devices.
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