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Quantum phases of a dipolar Bose-Einstein condensate in an optical lattice
with three-body interaction
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We investigate the quantum phases of a dipolar Bose-Einstein condensate (BEC) in an optical lattice based on
the extended Bose-Hubbard model taking into account the three-body scattering. Accordingly, the phase diagrams
from the superfluid state to the Mott-insulator state for such BEC systems are obtained and analyzed, employing
both the mean-field approach and the functional-integral method. In particular, we explore the combined effects
of three-body interaction and dipole-dipole interaction on the insulating lobes in detail. The experimental scenario
is also discussed.
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I. INTRODUCTION

The effects of dipole-dipole interactions on the quantum
phases of a Bose-Einstein condensate (BEC) in an optical
lattice have attracted huge interest recently for at least three
reasons [1]. First, the possibility of engineering lattice models
almost at will provides one of the most promising routes
in searching for exotic quantum phases which escape clean
demonstration in condensed-matter systems [2–5]. Second,
significant experimental progress has been made in recent
years in the cooling and trapping of polar molecules and of
atomic species that have a large magnetic moment [6–9]. These
amazing experimental achievements have therefore opened
new windows in investigating degenerate gases with dominant
dipole-dipole interactions. Finally, due to the long-range and
anisotropic properties that characterize dipolar interactions,
the physics of a BEC system is significantly enriched [1,10].
In particular, dipolar forces have been shown to considerably
modify the ground-state and collective excitations of trapped
condensates [11–13], whereas the interplay of short-range
scattering and long-range interaction may give rise to such
phenomena as ferromagnetic order, spin waves, and other
exotic phases [14–16]. Moreover, since dipole-dipole inter-
actions can be quite strong relative to the short-range (contact)
interactions, dipolar particles are considered to be promising
candidates for the implementation of fast and robust quantum-
computing schemes [1,17,18].

Along this line, intensive theoretical investigations have
been carried out so far on the BEC system trapped in an
optical lattice that has dipole-dipole interaction [1]. To our
best knowledge, however, these investigations have ignored the
interaction among three or more bosonic atoms. In particular,
most previous investigations were based on an extended
Bose-Hubbard model (BHM) that highlights the competition
between the kinetic energy, which is gained by delocalizing
particles over lattice sites, and the combined repulsive on-site
interaction and the dipole-dipole interaction, which disfavors
having more than one particle at a given site. Hence, an im-
portant question immediately arises on the unique role played
by three-body interaction in the BHM for a dipolar BEC.
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In particular, the three-body interaction arising from
triple collisions can be obtained by studying the three-body
scattering problem and is characterized by the three-body
coupling constant within the context of pseudopotentials. The
theoretical determination of the three-body coupling constant
in a dilute BEC has a long history of research, dating back
to 1959 when Wu [19] predicted a general form, that is,
g3 = 16πh̄2a4

s (4π − 3
√

3) ln(C
√

na3
s )/m, for a Bose gas of

hard spheres. Here, the constant C was only determined
recently by Braaten and Nieto [20] using effective field theory.
This general expression for g3 was confirmed by Köhler in a
recent paper [21] which derived the explicit three-body contact
potential for a dilute Bose gas from microscopic theory. On
the other hand, there have also been efforts in identifying
experimentally accessible systems that have three-body or
higher interactions. In particular, Büchler et al. [22] reported
that polar molecules interacting via dipolar interactions driven
by microwave fields can manifest themselves as a BHM with
two- and three-body interaction between nearest neighbors.
For on-site interactions, however, Johnson [23] has shown
that the two-body collisions of atoms confined in the lowest
vibrational states of a three-dimensional optical lattice can
generate effective three-body and higher interactions.

In this paper, we launch a systematic investigation on a
dipolar BEC in an optical lattice based on an extended BHM
taking into account the three-body scattering. In particular,
we explore the quantum phases of such BEC systems by
employing a mean-field approach to the BHM and, accord-
ingly, we obtain phase boundaries between the superfluid
and the Mott-insulator phase. A detailed analysis for the
combined effects of three-body interaction and dipole-dipole
interaction on the insulating lobes is presented, using the
functional-integral method. Finally, the experimental scenario
is also discussed.

The paper is organized as follows. In Sec. II, we introduce
the effective Hamiltonian for a dipolar BEC in an optical lattice
with the three-body repulsive interaction within the context
of an extended BHM. In Sec. III, we present a mean-field
treatment of this extended BHM suitable for describing the
Mott-insulating phase transition. In particular, we calculate
the ground-state energy correct up to the fourth order of
the superfluid order parameter. We also derive the equation
for the phase boundary separating the Mott-insulator and
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superfluid regime, using the Landau order parameter expansion
for second-order phase transitions. In Sec. IV, we investigate
the quantum fluctuations in the Mott-insulating phase using
a path-integral method with the help of the Hubbbard-
Stratonovich transformation. Accordingly, we derive the
excitation spectrum of quasiparticles and quasiholes. Finally,
in Sec. V, we summarize our results and propose experimental
conditions for realizing our scenario.

II. EXTENDED BOSE-HUBBARD MODEL

In this paper, we discuss the situation where the laser
intensity is sufficiently large and the chemical potential µ

is small compared to the interband gap. We thereby confine
ourselves to the lowest Bloch band. The behavior of such
BEC systems can be described within the context of the
BHM, extended to account for the presence of dipole-dipole
and three-body interactions. The Hamiltonian of the extended
BHM using the single-band approximation is [1]

H = −t
∑
〈i,j〉

b
†
i bj − µ

∑
i

ni + U0

2

∑
i

ni(ni − 1)

+ W

6

∑
i

ni(ni − 1)(ni − 2) +
∑

�l

∑
〈〈i,j〉〉�l

U�l
2

ninj . (1)

Here, the operators b
†
i (bi) are the creation (annihilation)

particle operators relative to a particle at the lattice site i that
is in a state described by the Wannier function w(r − ri) of the
lowest energy band, localized on this site. The corresponding
particle number operator is ni = b

†
i bi . The chemical potential

µ is introduced to conserve the total number of atoms in
the grand-canonical ensemble. The notation 〈i,j 〉 represents
nearest neighbors, whereas 〈〈i,j 〉〉�l represents neighbors with
a relative displacement �l. Hamiltonian (1) is characterized
by four parameters: the tunneling rate t , the on-site s-wave
scattering interaction U0, the three-body interaction W arising
from triple collisions, and the dipole-dipole interaction at
different relative distances U�l .

The tunneling parameter t in Eq. (1) can be calculated from

t =
∫

w∗(r − ri)

(
− h̄2

2m
∇2 + Vopt(r)

)
w(r − rj ) dr, (2)

where i and j are indices of the neighboring sites, and Vopt(r)
is a three-dimensional external optical potential in the form

Vopt(r) = sER[sin2(qBx) + sin2(qBy) + sin2(qBz)]. (3)

Here, s is a dimensionless factor labeled by the intensity of the
laser beam, and ER = h̄2q2

B/2m is the recoil energy with h̄qB

being the Bragg momentum and m being the mass of an atom.
The lattice period is fixed by π/qB .

The on-site two-body interaction in Eq. (1) is characterized
by U0, which can be calculated as

U0 = 4πh̄2as

m

∫
dr|w (r) |4, (4)

where as is the s-wave scattering length.

The three-body interaction arising from triple collisions in
Eq. (1) is characterized by the parameter W given by [19,24]

W = 16πh̄2

m
a4

s ln(Cη2)
∫

|w(r)|6dr, (5)

where η = √|ψ |2a3
s is the dilute gas parameter and the

constant C was given in Ref. [21]. We point out that the three-
body scattering is treated here as a perturbation to the usual
two-body pseudopotential. In case of strong on-site three-
body interactions, one has to account for the loss of three-
body recombination. In this case, the coupling constant W

acquires an imaginary part which corresponds to the threshold
formation of dimer molecules and is related to the three-body
recombination rate constant K3 for a Bose gas through
2ImW/h̄ = −K3/6 [21]. In the presence of bound states,
the condensate can assume only a metastable state. The
change of its density, however, is negligible on time scales
comparable to collisional durations, so the present result of
Eq. (5) remains valid. For example, using the three-body loss
rate �6 × 10−30 cm6 s−1, the loss rate for n atoms in a 40-kHz
lattice is 2.5n2 s−1 and the lifetime for n = 3 atoms is �60 ms
[23]. The case involving strong three-body interaction is out
of the scope of this paper, and we confine ourselves to the
parameter regime where Eq. (5) remains valid. We also want
to point out that when a three-body bound state emerges
close to the zero-energy threshold, the real part of W can
assume all positive and negative values in complete analogy
to the two-body case. This phenomenon has been connected
with the formation of an Efimov state [25] in the three-body
energy spectrum in Ref. [26]. In this work, we focus on the
superfluid–Mott-insulator phase transition where both two-
and three-body interactions are far away from the resonant
point. Under this assumption, we can ignore the possibility of
forming an Efimov state.

In the tight-binding limit, W can be related to U 0 through
[24]

W = (3π )−3/2 ln(Cη2)

(
V0

ER

)3/4

e
−2

√
V0
ER a2

s k
2
LU

2
0, (6)

where a scaling with respect to zt has been applied so that both
W and U 0 are dimensionless. Usually, the experimental value
of a2

s k
2
L varies from 10−10 to 10−2 [27]. Within this range,

the effect of three-body interactions is very small compared
to two-body interactions according to Eq. (6) and is therefore
difficult to observe in experiments. However, as pointed out in
Ref. [22], by loading the polar molecules into an optical lattice
and adding an external microwave field, one can achieve a
situation where only observable three-body interaction exists.
Hence, it is necessary to investigate the unique role played by
three-body interactions in the BHM.

The dipole-dipole interaction, represented by the last term
in Eq. (1), is long range and anisotropic in nature, which brings
new features to the BHM. In particular, the contribution of
dipole-dipole interaction to the BHM can be decomposed into
an on-site component and a long-range component. The on-site
dipole-dipole interaction Ud is given by [28]

Ud = 1

2π

∫
dqṼ (q)ñ2(q), (7)
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where Ṽ (q) and ñ(q) are the Fourier transform of the dipole
potential and density, respectively [12]. On the other hand,
within the context of the tight-binding approximation, the
long-range part of the dipole-dipole interaction U�l can be well
represented by the interaction between two dipoles localized
at sites i and j , respectively:

U�l = D2[1 − 3 cos2(α�l)]/l3ninj , (8)

where D is the dipole moment, and l and α�l represent the
distance and orientation angle, respectively, between the two
dipoles. In particular, the main contribution to Eq. (7) arises
from dipoles in the nearest vicinity of each other; that is,
UNN = D2[1 − 3 cos2(α�l)]/l3nini±1.

The total on-site interaction U includes contributions from
both two-body and dipole-dipole interaction [28]: U = U0 +
Ud . The ratio between U and the nearest-neighbor dipole-
dipole interaction UNN characterizes the competition between
a short-range interaction and a long-range interaction. In this
work, we focus on the limit U � UNN, where the long-range
part of the dipole-dipole interaction can be ignored. In this
limit, the Hamiltonian (1) can be approximated as

H = −t
∑
〈i,j〉

b
†
i bj − µ

∑
i

ni + U0

2

∑
i

ni(ni − 1)

+
∑

i

Ud

2
nini + W

6

∑
i

ni(ni − 1)(ni − 2). (9)

In practice, the ratio U/UNN is usually adjusted by tuning
the on-site dipole-dipole interaction Ud from negative to
positive, either through changing the vertical confinement
or through changing the s-wave scattering length via a
Feshbach resonance [29]. An alternative approach was recently
proposed, using particles that possess large dipole moments
such as heteronuclear molecules and Rydberg atoms [1].

III. GROUND-STATE ENERGY AND PHASE DIAGRAM

In this section, we investigate the ground-state energy and
the phase diagram for the extended BHM (9) within the context
of mean-field approximation [30], in the limit U � UNN.

A. Ground-state energy

In analogy with Bogoliubov’s theory, the mean-field ap-
proach to Eq. (1) consists of introducing a superfluid order
parameter defined by

ψ = 〈b†i 〉 = 〈bi〉 = √
n0, (10)

where n0 is the condensate fraction at site i. Through introduc-
ing a new set of operators ci = bi − ψ and c

†
i = b

†
i − ψ , one

can cast Eq. (9) into an effective Hamiltonian that is correct
up to second order in ψ :

H eff = H (0) − ψ(c† + c) + |ψ |2, (11)

where

H (0) = (U 0/2)n(n − 1) − µn + (zUd/2)n2

+ (W/6)n(n − 1)(n − 2) (12)

is the dimensionless expression for the zero-order effective
Hamiltonian with U 0, µ, Ud , and W being dimensionless
quantities after scaling the corresponding counterparts with
zt . Also note that we have dropped the subscript i in Eqs. (11)
and H 0 because H eff

i is site independent.
The H (0) in Eq. (12) can be diagonalized in Fock space.

The resulting dimensionless zero-order ground-state energy is
given by

E(0)
g = min

{
E(0)

n

∣∣n = 0,1,2, . . .
}

= U 0

2
g(g − 1) − µg + zUd

2
g2 + W

6
g(g − 1)(g − 2),

(13)

where E(0)
n = U 0

2 n(n− 1) − µn+ zUd

2 n2 + W
6 n(n− 1)(n− 2)

is the eigenvalue of H (0) associated with eigenstate |n〉, of
which the state with n = g particles is the ground state.

After E(0)
g is obtained, we can then treat the last two terms

in Eq. (11) as a small perturbation. Following Ref. [31], we
find that the correction to E(0)

g in arbitrary order of ψ is given
by

E(n)
g = Tr

⎛⎝ ∑
{n−1}

Sk0
g V̂ · · · V̂ Skn

g

⎞⎠ , (14)

where {n} = {k0, . . . ,kn|k0 + · · · + kn = n|} and

Sk
g =

⎧⎨⎩
−|g〉〈g| if k = 0,∑
n	=g

|n〉〈n|(
E

(0)
g −E

(0)
n

)k if k > 0. (15)

Because of V̂ ∼ (c† + c), it follows from Eqs. (14) and (15)
that the energy corrections vanish for all odd order n.

Consequently, by summing Eqs. (13) and (14), one obtains
the dimensionless total ground-state energy Eg correct up to
the quadratic order in ψ as

Eg(ψ) = a0 + a2|ψ |2 + a4|ψ |4 + 0(|ψ |6), (16)

with

a2 = g

F (g) − µ
− g + 1

F (g + 1) − µ
+ 1 (17)

and

a4 = − (g + 1)(g + 2)

[F (g + 1) − µ]2H (g + 2)
+ g(g − 1)

[F (g) − µ]2H (g)

−
(

g

F (g) − µ
− g + 1

F (g + 1) − µ

)
×

(
g + 1

[F (g + 1) − µ]2
+ g

[F (g) − µ]2

)
. (18)

In Eqs. (17) and (18), functions F (g) and H (g) are respectively
defined as

F (g) = U 0(g − 1) + zUd

2
(2g − 1) + W

2
(g − 1)(g − 2)

(19)

and

H (g) = (2g − 3)U 0 + 2(g − 1)zUd + (g − 2)2W − 2µ.

(20)
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B. Phase diagram

We now investigate the quantum phases of the extended
BHM. In particular, we derive the equation for the phase
boundary between the superfluid regime and the Mott-
insulating regime, using the Landau order parameter expansion
for second-order phase transitions.

By minimizing the ground-state energy functional Eg(ψ) in
Eq. (16) with respect to ψ , one finds |ψ |2 = −a2/a4. Thus, by
setting a2 = 0 in Eq. (17), we obtain the equation for the phase
boundary between the superfluid and the insulator regime in
the phase diagram,

µ± = F (g) + F (g + 1) − 1 ± √
�

2
, (21)

where

� = [F (g + 1) − F (g) − (2g + 1)]2 − 4g(g + 1). (22)

The subscript ± in Eq. (21) refers to the upper and lower
halves of the Mott-insulating region of the phase space. Since
µ± must be real, Eq. (21) must satisfy the condition � � 0,
thereby providing a lower bound to the parameter space; that
is,

U 0 + zUd + (g − 1)W � (2g + 1) +
√

4g(g + 1). (23)

To investigate the quantum phases as a consequence of
the combined effects of the on-site s-wave interaction U0,
the on-site dipole-dipole interaction Ud , and the three-body
interaction W , we take the following two consecutive steps.

In the first step, we fix one of the three parameters
(U0,Ud,W ) while varying the other two. The results are shown
in Fig. 1. In Fig. 1(a), for example, we plot a three-dimensional
(3D) phase diagram by varying U0 and W while keeping Ud

fixed. The diagram shows that the increase in dipole-dipole
interaction not only fattens the insulating lobes but also shifts
them upward.

FIG. 1. (Color online) Three-dimensional phase diagram of the
extended BHM for g = 2 obtained from second-order perturbation
theory. The areas enclosed within lobes indicate the insulating phase.
Space outside these curved surfaces represents the superfluid phase.
The parameters are given as follows: (a) the blue (brown, yellow)
surfaces correspond to Ud/zt = 0 (0.5,1), (b) the blue (brown, yellow)
surfaces correspond to W/zt = 0 (2,4), and (c) the blue (brown,
yellow) surfaces correspond to U0/zt = 0 (1,2).
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FIG. 2. (Color online) Two-dimensional phase diagram of the
extended BHM: plots of Eq. (21) as functions of one of the three
interaction parameters with the remaining two fixed. (a) Black
curve, µ̃ = µ/U0 and Ũ = U0/zt with g = 1–6 and W = Ud = 0;
long-dashed (green) curve, µ̃ = µ/Ud and Ũ = Ud/zt with g = 1–3
and W = U0 = 0; (red) dashed curve, µ̃ = µ/W and Ũ = W/zt

with U0 = Ud = 0. (b) For g = 1–3, black curve, W = Ud = 0; (red)
dashed curve, W = 0 and Ud/zt = 0.8; and (green) long-dashed
curve, W/zt = 3 and Ud = 0. (c) For g = 1–3, black curve, W =
U0 = 0; (red) dashed curve, W = 0 and U0/zt = 3; and (green)
long-dashed curve, W/zt = 3 and U0 = 0. (d) For g = 2–4, black
curve, U0 = Ud = 0; (red) dashed curve, Ud = 0 and U0/zt = 3; and
(green) long-dashed curve, Ud/zt = 0.8 and U0 = 0.

In the second step, we fix two of the three parameters and
plot the phase diagram with respect to the remaining one, as
shown in Fig. 2. Figure 2(a) shows the superfluid phase and
Mott-insulator lobes of the condensate having pure two-body
interaction, three-body interaction, and dipole-dipole interac-
tion, respectively. As shown in Fig. 2(a), both three-body and
dipole-dipole interactions considerably enlarge the areas of
Mott lobes. The Mott lobes for a BEC with pure two-body and
dipole-dipole interactions shrink with increasing g as can been
seen in Fig. 2(a), whereas Mott lobes induced by three-body
interaction enlarge with increasing g. In addition, the breadth
of different U0 lobes is 1, while the breadth of W and Ud

lobes is expanding according to (g − 1) and z, respectively.
Moreover, one can obtain the critical values for the on-site
interaction U0 + Ud and three-body interaction W for each
lobe from Eq. (23). By equating the left- and right-hand sides,
one finds Uc + (g − 1)Wc = 2g + 1 + 2

√
g(g + 1), where

Uc and Wc denote the critical values of U0 + Ud and W ,
respectively. In particular, the result Uc � 5.83 for g = 1 is
consistent with the corresponding one in Ref. [30].

IV. QUANTUM FLUCTUATIONS IN THE
MOTT-INSULATING PHASE: A PATH-INTEGRAL

APPROACH

In this section, we investigate the quantum fluctuations
in the Mott-insulating (MI) phase arising from the hopping
of atoms between sites which causes variations in the site
occupancy. Such fluctuations can be described as quasiparticle
and quasihole excitations. In what follows, we derive the
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quasiparticle and quasihole dispersions using the functional-
integral method [30,32].

Our starting point is the grand-canonical partition function

Z =
∫

D[ϕ̄,ϕ]e− 1
h̄
S[ϕ̄,ϕ], (24)

where the action S[ϕ̄,ϕ] corresponding to Hamiltonian (9) is
given by

S[ϕ̄,ϕ] =
∫ h̄β

0
dτ

[ ∑
i

ϕ̄i

(
h̄

∂

∂τ

− µ

)
ϕi −

∑
〈i,j〉

tij ϕ̄iϕj

+ U0

2

∑
i

ϕ̄i ϕ̄iϕiϕi + Ud

2

∑
〈i,j〉

ϕ̄i ϕ̄j ϕjϕi

+ W

6

∑
i

ϕ̄i ϕ̄i ϕ̄iϕiϕiϕi

]
. (25)

In Eqs. (24) and (25), [ϕ̄,ϕ] = [{ϕi},{ϕ̄i}] represents sets
of complex functions of imaginary time τ . In Eq. (25),
β = 1/kBT with T being the temperature, tij = t for nearest
neighbors, and tij = 0 otherwise.

To explicitly explore the effects of hopping, characterized
by t , on quantum fluctuations, we decouple the hopping
term in Eq. (25) using the standard Hubbard-Stratonovich
transformation [32]. By inserting a fat unity

1 =
∫

D[
̄,
]e
− 1

h̄

∫ h̄β

0 dτ
∑
〈i,j〉

tij (
̄i−ϕ̄i )(
j −ϕj )
(26)

into Eq. (24), one transforms Eq. (24) to the phase space of
new field variables {
̄,
}:

Z =
∫

D[
̄,
] exp

(
− 1

h̄

∫ h̄β

0
dτ

∑
〈i,j〉

tij 
̄i
j

)

×
〈

exp

(
1

h̄

∫ h̄β

0
dτ

∑
〈i,j〉

tij (ϕ̄i
j + 
̄iϕj )

)〉
0

. (27)

Here, 〈· · ·〉0 = ∫
D[ϕ̄,ϕ] exp(− 1

h̄
S(0)[ϕ̄,ϕ])(· · ·) stands for the

functional expectation value of an observable with

S(0) =
∫ h̄β

0
dτ

[ ∑
i

ϕ̄i

(
h̄

∂

∂τ

− µ

)
ϕi + U0

2

∑
i

ϕ̄i ϕ̄iϕiϕi

+ Ud

2

∑
〈i,j〉

ϕ̄i ϕ̄j ϕjϕi + W

6

∑
i

ϕ̄i ϕ̄i ϕ̄iϕiϕiϕi

]
(28)

corresponding to H (0) in Eq. (12).
Information on excitations can be extracted from the

grand-canonical partition function represented with new field
variables {
̄,
}. To this end, we cast Eq. (27) into an effective
expression

Zeff =
∫

D[
̄,
]e− 1
h̄
Seff [
̄,
]. (29)

Here, the effective action Seff[
̄,
] can be determined from
explicitly calculating the functional expectation term 〈· · ·〉0 in
Eq. (27). This can be achieved by first applying the Taylor
expansion for exponential function ex = ∑

xn/n! and then
carrying out the functional integration over the original field

configuration {ϕ̄,ϕ}. Moreover, based on the fact that the site
occupancy is fixed in the ground state of a MI phase [30], one
has

〈ϕi〉0 = 〈ϕ̄i〉0 = 0,
(30)

〈ϕ̄iϕj 〉0 = 〈ϕj ϕ̄i〉0 = 〈ϕiϕ̄i〉0δij .

As a result, terms in odd powers of {ϕ̄,ϕ} in the series of
expansion must vanish. After some elaborated algebra, we
obtain the effective action in Eq. (29) correct up to the second
order in the hopping rate t as

Seff[
̄,
] =
∫ h̄β

0
dτ

∑
〈i,j〉

tij 
̄i
j − 1

h̄

∫ h̄β

0
dτ

∫ h̄β

0
dτ ′

×
∑
〈i,jj ′〉

〈ϕ̄i(τ )ϕi(τ
′)〉0tij tij ′
̄j ′ (τ ′)
j (τ ). (31)

To obtain the spectrum of the quasiparticle and quasihole
excitations, however, it is more advantageous to transform
Eq. (31) to the momentum-frequency space. The Fourier
transformation of Eq. (31) reads

Seff[
̄,
] =
∑
n,k

|
kn|2εk

{
1 + εk

[
g

E
(0)
g − E

(0)
g−1 − ih̄ωn

+ g + 1

E
(0)
g − E

(0)
g+1 + ih̄ωn

]}
, (32)

with 
i(τ ) = 1√
Ns

∑
k eikxi 
k(τ ) and 
k(τ ) = 1√

h̄β∑
n e−iωnτ
kn. Here, Ns is the number of lattice

sites and the Matsubara frequencies are h̄ωn =
2nπ/(h̄β) with n being integers for bosons; εk =
2t

∑d
j=1 cos(kja), and E(0)

g < {E(0)
n ,n 	= g} has the same

form as Eq. (16) except without being scaled by zt . The
quasiparticle (quasihole) spectra can then be obtained by
replacing iωn → ω in Eq. (32) and scaling with zt as before.
In a dimensionless form, one finds

h̄ωqp,qh = −µ + F (g) + F (g + 1) − ε̄k ± √
�k

2
, (33)

with

�k = [F (g + 1) − F (g) − ε̄k(2g + 1)]2 − 4ε̄2
k g(g + 1)

(34)

and

εk = 1

d

d∑
j=1

cos(kja). (35)

Here, the parameters with an overbar denote the dimensionless
form for corresponding quantities after scaling. In Eq. (33), ±
stands for excitations of quasiparticles (adding particles to
sites) or quasiholes (removing particles from sites), respec-
tively. The critical values for a transition from the superfluid
to the Mott insulator are determined by requiring �k � 0:

U 0 + zUd + W (g − 1) � [(2g + 1) +
√

4g(g + 1)]ε̄k.

(36)

Let Uc and Wc denote the critical value of on-site two-
body interaction U 0 + Ud and three-body interaction W ,
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respectively. Equation (36) shows that both Uc and Wc exhibit
dependence on the parameter g, but in different ways. Pre-
cisely, Uc increases with increasing g, whereas Wc decreases
as (g − 1)−1 until asymptotically arriving at a fixed value 4εk .
In particular, εk = 1 for k = 0 and Eq. (36) approaches the
phase boundary described by Eq. (23). Furthermore, for g = 1,
Wc is divergent and Uc = 5.83, while in the opposite case,
g → ∞, Wc = 4, and Uc = 0, all in good agreement with
Ref. [24].

V. POSSIBLE EXPERIMENTAL SCENARIOS
AND CONCLUSION

The work presented in this paper is based on an extended
BHM that highlights the competition between kinetic energy
and repulsive interactions that include both dipole-dipole
and three-body interactions arising from triple collision. In
particular, the physics of our model is characterized by the
interplay among four parameters: the tunneling rate t , the
two-body s-wave repulsion U0, the dipole-dipole interaction
Ud , and the three-body interaction W characterized by the
three-body coupling constant. All these quantities are ex-
perimentally controllable using state-of-the-art technologies.
First, tremendous progress has been achieved over the past
few years in cooling and trapping polar molecules and atomic
species that have a large magnetic moment [1]. This opened
new windows in investigating degenerate gases with dominant
dipole-dipole interactions. Second, the interatomic interaction
can be controlled in a very versatile manner via the technology
of Feshbach resonances [33], whereas the depth of an optical
lattice s can be changed from 0ER to 32ER almost at
will [2–5]. Third, there has been progress in identifying

experimental accessible systems that exhibit three- and many-
body interactions. In particular, Ref. [22] has pointed out
that, by loading the polar molecules into the optical lattice
and adding an external microwave field, one can achieve a
situation where only observable three-body interaction among
neighboring atoms exists. In addition for on-site interactions,
Johnson [23] recently showed that there are effective three-
body and higher interactions generated by the two-body
collisions of atoms confined in the lowest vibrational states of a
three-dimensional optical lattice. Consequently, for cold atoms
loaded in an optical lattice, the ratio between the competing
kinetic energy and the repulsive interactions can be readily
changed by varying the dimensionless lattice depth V0/ER .
The phenomena discussed in this paper, therefore, should be
observable within the current experimental capability.

In summary, we investigated the quantum phases of a
dipolar BEC in an optical lattice with both two- and three-body
repulsive interactions. This was accomplished within the
context of the extended BHM by using both the mean-field
approach and the functional-integral approach. Accordingly,
the phase diagrams from the superfluid state to the Mott-
insulator state in such BEC systems were obtained. In par-
ticular, the combined effects of three-body and dipole-dipole
interactions on the insulating lobes were explored in detail.
The experimental scenario was also discussed.
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J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, Phys. Rev.
Lett. 101, 133004 (2008).

[9] A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau,
Phys. Rev. Lett. 94, 160401 (2005).

[10] C. Menotti, M. Lewenstein, T. Lahaye, and T. Pfau, in Dynamics
and Thermodynamics of Systems with Long-Range Interaction:
Theory and Experiments, AIP Conf. Proc. No. 970, edited by
A. Campa, A. Giansanti, G. Morigi, and F. Sylos Labini (AIP,
New York, 2008).

[11] S. Yi and L. You, Phys. Rev. A 61, 041604(R) (2000); 63,
053607 (2001).
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