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Time-resolved measurement of Landau-Zener tunneling in different bases
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A comprehensive study of the tunneling dynamics of a Bose-Einstein condensate in a tilted periodic potential
is presented. We report numerical and experimental results on time-resolved measurements of the Landau-Zener
tunneling of ultracold atoms introduced by the tilt, which experimentally is realized by accelerating the lattice. The
use of different protocols enables us to access the tunneling probability, numerically as well as experimentally,
in two different bases, namely, the adiabatic basis and the diabatic basis. The adiabatic basis corresponds to the
eigenstates of the lattice, and the diabatic one to the free-particle momentum eigenstates. Our numerical and
experimental results are compared with existing two-state Landau-Zener models.
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I. INTRODUCTION

Quantum transport is an essential topic in solid-state
physics and electronic applications. Bloch oscillations,
Landau-Zener (LZ) tunneling, and Wannier-Stark ladders
[1–9] are fundamental quantum effects occurring in a system
of electrons moving in a periodic potential and driven by an
electric field. Due to complications such as impurities, lattice
vibrations, and multiparticle interactions, clean observations of
these effects have been difficult [10]. In recent years, ultracold
atoms and Bose-Einstein condensates in optical lattices have
been increasingly used to simulate solid-state systems and the
above-mentioned phenomena [6–8,11–16].

Optical lattices are easy to realize in the laboratory, and
their parameters can be perfectly controlled both statically
and dynamically, which makes them attractive as model
systems for crystal lattices. The LZ model for transitions [1,2]
between two energy states at an avoided level crossing is
one of the few exactly solvable examples of time-dependent
quantum mechanics. LZ transitions have been investigated
for Rydberg atoms [17], molecular nanomagnets [18,19],
field-driven superlattices [20], current-driven Josephson junc-
tions [21], Cooper-pair box qubits [22], and using light
waves in coupled waveguides [23–25]. While the asymptotic
tunneling probability can be calculated accurately [26] and
has an intuitive interpretation as a statistical mean value of
experimental outcomes, the concept of tunneling time and its
computation are still the subject of debate even for simple
systems [21,27–31]. The tunneling time is the time required
for a state to evolve into an orthogonal state.

In this paper, we present numerical as well as experimental
results on the Wannier-Stark system. This system is realized
with ultracold atoms, forming a Bose-Einstein condensate,
in an optical lattice subjected to a static tilting force [8].
The tilt is experimentally implemented by accelerating the
optical lattice [6,7,13,15,32–36]. We explore the LZ tunneling
between the Bloch bands of a Bose-Einstein condensate in
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such an accelerated lattice. The lattice depth controls the
tunneling barrier, while its acceleration controls the time
dependence of the Hamiltonian. At large accelerations, LZ
tunneling leads to significant interband transitions for the
condensate [15,26]. This tunneling process is detected by
measuring the atomic momentum distributions.

Following our previous work, in which we presented
time-resolved observations of LZ tunneling [36], in the present
article we report more detailed investigations. We measure the
time dependence of the tunneling probability by performing
a projective quantum measurement on the eigenstates in a
given basis of the Hamiltonian describing the Bose-Einstein
condensate within the optical lattice. Our measurements
resolve the steplike time dependence of the occupation
probability. Using different numerical as well as experimental
protocols, we are able to perform our calculations and
experiments both in the adiabatic basis of the lattice eigenstates
and in the diabatic basis of the free-particle momentum
eigenstates. We present theoretical and experimental results
which clearly show that the time dependence of the transition
probability exhibits a steplike structure with a finite transition
time and oscillations with a finite damping time, all of them
depending on the choice of the measurement basis.

The paper is organized as follows. Section II collects the
necessary theoretical background to describe the probability
and transition time for the LZ transition tunneling. The limits
one faces in applying this theory to the Wannier-Stark problem,
and the essential theoretical and numerical tools to describe
our time-resolved measurements are reported in Sec. III.
Section IV presents numerical and experimental data. We
discuss and summarize our results in Sec. V.

II. SURVIVAL PROBABILITY AND TRANSITION TIME

A. LZ theory in a nutshell

Quantum-mechanical systems having two discrete energy
levels are omnipresent in nature. For crossing levels, there
is a possibility of a transition if the degeneracy is lifted
by a coupling and the system is forced across the resulting
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avoided crossing by varying the parameter that determines
the level separation. This phenomenon is known as LZ
tunneling. LZ theory, developed in the early 1930s in the
context of atomic scattering processes and spin dynamics in
time-dependent fields [1–4], demonstrated that transitions
are possible between two approaching levels as a control
parameter is swept across the point of minimum energy
separation. The phase accumulated between the incoming
and outgoing passages varies with, e.g., the collision energy,
giving rise to Stückelberg oscillations in the populations [3].

In its basic form, the LZ problem can be described by a
simple two-state model and allows for a simple expression
for the transition probability. The LZ Hamiltonian for a single
crossing taking place at time t = 0 can be written as the
following 2 by 2 matrix:

HLZ =
(

αt �E/2

�E/2 −αt

)
. (1)

The off-diagonal term, �E/2, is the coupling between the
two states, and α is the rate of change of the energy levels
in time. The dynamics of the system can be measured in
different bases: diabatic and adiabatic. The diabatic basis is
the eigenbasis of the bare states of Eq. (1) when there is no
off-diagonal coupling. The adiabatic basis, on the other hand,
is the basis of a system with a finite �E/2 coupling between
the two states. The Hamiltonian has two adiabatic energy levels
E± = ± 1

2

√
(2αt)2 + �E2.

Assuming that the system is initially, at t → −∞, in the
ground energy level E− and if the sweeping rate is small
enough, it will be exponentially likely that the system remains
in its adiabatic ground state E− at t → +∞. The limiting
value of the adiabatic LZ survival probabilities (for t going
from −∞ to +∞) is [26]

Pa(∞) = 1 − exp

(
−π

γ

)
, (2)

where we introduce a dimensionless parameter, the so-
called adiabaticity parameter γ = 4h̄α/�E2. This survival
probability is valid for both E− and E+ initial states, and
the same equation is valid for the diabatic case. A small
adiabaticity parameter corresponds to a small velocity of the
state displacement along the energy scale compared to �E2,
such that the system follows the adiabatic trajectory of Fig. 1.

0

2αt/∆E

0

E
/∆

E

E
+

E
-

FIG. 1. Energy levels as a function of time. The dashed lines
show the so-called diabatic levels, i.e., the energies of states in the
absence of the interaction. The solid lines demonstrate the so-called
adiabatic levels, i.e., the eigenstates of the system corresponding to
the instantaneous Hamiltonian.

Thus, there is a large coupling between the diabatic states; and
at the avoided crossing at t = 0, an almost complete transition
from the initial diabatic state to the final diabatic state takes
place. On the other hand, for a large value of the adiabaticity
parameter γ , the coupling between the two states is small, and
consequently the system remains in its initial state following
the diabatic trajectories of Fig. 1.

B. Jump times

A careful study of the transition from an initial state to
a final state can reveal the time required to complete the
transition. Moreover, in the case of multiple level crossings, as
in our experimental realization of Ref. [36], it is necessary to
know whether a transition has been completed before the next
avoided crossing. The LZ approach may be applied when a
transition between two coupled quantum states takes place in a
small time interval around the avoided crossing and successive
crossings are independent from each other.

Analytical estimates for the LZ transition times have been
derived in Refs. [29,30] using the two-state model of Eq. (1).
In a given basis, e.g., adiabatic or diabatic, different transition
times are obtained. Vitanov [29] calculated the time-dependent
diabatic and adiabatic survival probability at finite times.
The LZ transition times were derived in [30] using some
exact and approximate results for the transition probability.
Figure 2 shows a typical time dependence of the adiabatic
survival probability, similar to that predicted in [29], that we
measured for Bose-Einstein condensates in optical lattices for

1.0

0.8

0.6

0.4

0.2

P
a(

t)

1.00.80.60.40.20.0

t / TB

FIG. 2. (Color online) Time-resolved measurements of the adia-
batic survival probability for the Bose-Einstein condensate tunneling
in an optical lattice at fixed dimensionless force F0 = 1.197 and
different lattice depths: V/Erec = 2.3 (filled squares), 1.8 (open
circles), 1 (open squares) and 0.6 (filled circles); all parameters are
introduced in detail in Sec. III A. For the Bose-Einstein condensate
evolution the crossing time is t = TBloch/2, where the step of the
survival probability is one-half of the final value. The dashed and
dot-dashed lines are the results of numerical simulations using the
cutoff and adiabatic method, respectively (see Sec. III C). The lattice
depth for the numerical simulations was corrected by up to ±15%
with respect to the experimentally measured values to give the best
possible agreement.
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experimental parameters to be discussed in Sec. IV. Notice
that in the Bose-Einstein condensate case, the crossing occurs
at the time t = TB/2 defined below. The t → ∞ asymptotic
value is given by Eq. (2).

The LZ jump time in a given basis can be defined as the time
after which the transition probability reaches its asymptotic
value. From this definition, one can expect to observe a
steplike structure, with a finite width, in the time-resolved
tunneling probability, as in Fig. 2. Because the step is not
very sharp, it is not straightforward to define the initial and
final times for the transition. It is even less obvious how to
define the jump time for both small and large couplings. Some
possible choices have been used by Lim and Berry [28] and
Vitanov [29,30]. The problem is even more complicated when
the survival probability shows an oscillatory behavior on top of
the step structure as seen in Fig. 2, which shows experimental
and numerical results for a single LZ transition measured in
the adiabatic basis (the numerical and experimental methods
will be described in detail later in this paper). The oscillations
give rise to other time scales in the system, namely, an
oscillation time and a damping time of the oscillations
appearing in the transition probability after the crossing.
Therefore, a measurement of the tunneling time depends very
much on how these times are defined and also which basis is
considered.

In [29], the jump time in the diabatic and adiabatic bases is
defined as

τ jump
x = Px(∞)

P ′
x(0)

. (3)

where x = d or a, and Pd (Pa) is the transition probability
between the two diabatic (adiabatic) states. P ′

x(0) denotes the
time derivative of the tunneling probability evaluated at the
crossing point. The diabatic jump time τ

jump
d ≈ √

2πh̄/α is
almost constant for large values of the adiabaticity parameter
γ [29]. Instead, for γ � 1 it decreases with increasing γ ,
τ

jump
d ≈ 2

√
h̄(γα)−1 [29]. In the adiabatic basis, when γ is

large, the transition probability resembles the one of the
diabatic basis with an equal jump time. For a small adi-
abaticity parameter, because of the oscillations appearing
on top of the transition probability step structure, it is not
straightforward to define the initial and final times for the
transition. Vitanov [29] defines the initial jump time as the
time t < 0 at which the transition probability is very small;
i.e., Pa(τ ) = εPa(∞), where ε is a proper small number. The
final time of the transition t > 0 is defined as the time at which
the nonoscillatory part of Pa(τ ) is equal to (1 + ε)Pa(∞).
Using these definitions, Vitanov derived that the transition
time in the adiabatic basis depends exponentially on the
adiabaticity parameter, τ

jump
a ≈ (4/ε)1/6 γ −1/3exp [π/(6γ )]√

h̄/α, [29].
In principle, the experimental and numerical methods

presented in the following could be used for a quantitative
study of the tunneling time (or jump time) as a function
of the parameters of the system. For the purposes of the
present paper, however, we concentrate on a careful analysis
of the possibilities and limitations of our methods, and in
particular on measurements of LZ tunneling in different
bases.

III. LZ IN AN OPTICAL LATTICE POTENTIAL

A. Wannier-Stark problem and LZ limit

We generalize the two-level LZ theory to study the temporal
evolution of ultracold atoms loaded into a spatially periodic
potential subjected to an additional static force in the presence
of negligible atom-atom interactions, as in the experimental
conditions [36]. The dynamics of ultracold atoms in a tilted
optical lattice can be described by the well-known Wannier-
Stark Hamiltonian [9]

H̃ = − h̄2

2M

d2

dx2
+ V

2
cos(2kLx) + FLZx, (4)

where M is the atomic mass, V is the depth of the optical
lattice with the spatial period dL = λL/2 determined by the
laser wavelength λL, kL = 2π/λL is the wave number of the
laser light creating the periodic potential, and FLZ is the Stark
force. The characteristic energy scale of the system is the recoil
energy, which is defined as Erec = π2h̄2/2Md2

L.
The atomic motion produced by the force FLZ may be

interpreted in the upper left energy diagram of Fig. 3, where for
the case of FLZ = 0 the atomic energies E(q) for the n = 0,1,2
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FIG. 3. (Color online) Band structure in the optical lattice
potential and experimental protocols for measuring LZ dynamics
in the adiabatic and diabatic bases. After the initial loading into the
lattice and acceleration for a time tLZ (top), measurements of the
instantaneous populations in the two states are performed (bottom)
as explained in the text. In the top figures, the adiabatic (solid lines)
and diabatic (dashed lines) energies for an optical lattice of depth
V0 = 1 are shown.
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lower bands are represented versus the quasimomentum q

within the Brillouin zone of width pB = 2prec = 2πh̄/dL

[15,32]. Under the action of a constant force FLZ, the
quasimomentum of a condensate initially prepared at q = 0
in the n = 0 band scans the lower band in an oscillating
motion periodically with the Bloch period TB = 2h̄(FLZdL)−1.
At the edge of the Brillouin zone, where a level splitting �E

increasing with V [26] takes place, tunneling of the condensate
to the n = 1 energy band may occur.

The Wannier-Stark Hamiltonian of Eq. (4) can be written
in dimensionless units [26,37]

H0 = −1

2

∂2

∂x2
0

+ V0

16
cos(x0) + F0x0

16π
, (5)

where x0 = 2πx/dL, and energy and time are rescaled by
H0 = H̃ /(8Erec) and t0 = 8tErec/h̄, respectively. Moreover,
in dimensionless units, the lattice depth is given by
V0 = V/Erec and the force by F0 = FLZdL/Erec. The
translational symmetry of the given Hamiltonian, broken by
the static force, is recovered using a gauge transformation.
Substituting ψ̃(x0,t0) = exp(−iF0t0x0/16π )ψ(x0,t0), the
Schrödinger equation reads i∂ψ/∂t0 = H (t0)ψ , with H (t0)
the time-dependent Hamiltonian

H (t0) = 1

2

(
p̂ − F0t0

16π

)2

+ V0

16
cos(x0), (6)

and the momentum operator p̂ = −i∂/∂x0. In the following,
we analyze the Hamiltonian of Eq. (6) in the momentum basis.
In order to decompose the Hilbert space into independent
subspaces, we use the Bloch decomposition, and for that
we identify the momentum eigenstates of the free particle
(V0 = 0 = F0) for fixed quasimomentum q within the
Brillouin zone, i.e., p = q + n, p and q being indices in the
momentum and quasimomentum representations and n ∈ Z.
To calculate the time evolution of any momentum eigenstate
|p〉 = |q + n〉, we only need the Hamiltonian Hq acting on
the subspace with a given quasimomentum index q, as there
is no transition between states with different q, i.e.,

Hq = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . 0

(q̃ − 1)2 V0/16

V0/16 (q̃)2 V0/16

V0/16 (q̃ + 1)2

0
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

where q̃ = q − F0t0/16π .
The full dynamics of the Wannier-Stark system can be

locally approximated by a simple two-state model

hq = 1

2

(
q̃2 V0/16

V0/16 (q̃ + 1)2

)
. (8)

hq can be brought into the form of the Hamiltonian given by
Eq. (1) by properly shifting the diagonal parts (e.g., shifting
away the quadratic term in time t0). For q = 0 we thus
immediately obtain

1

8

(
2F0Erect0/πh̄ V0/4

V0/4 −2F0Erect0/πh̄

)
. (9)

The α, �E, and γ introduced in the LZ model of
Eq. (1) can be expressed in terms of our system parameters:
α = 2F0E

2
rec/πh̄ = 4Erec/(πTB), �E = V0Erec/2, and γ =

32F0/πV 2
0 . The LZ theory predicting the asymptotic behavior

of the tunneling probability can be used as a very good
approximation for our system for times far enough from the
avoided crossings. However, there are some limiting cases and
experimental parameters for which the simplified two-state
model is not a good approximation for the Wannier-Stark
system. The discrepancy is large for lattice depths larger
than the energy scale Erec of the system (V0 	 1), where
the gap between energy bands increases leading to quasiflat
bands and localized eigenstates. Therefore, several momentum
eigenstates contribute with a non-negligible amount to the
lowest energy eigenstate, and one would need to take into
account more components in the Hamiltonian matrix.

B. Initial conditions

Before analyzing the experiment results, we need to
address an additional problem, the finite coupling duration,
as in [30]: an experiment necessarily takes a finite time for
the measurement, whereas the standard LZ theory assumes
that the time taken for the transition runs from −∞ to ∞. The
experimental finiteness of the sweep time TB implies that for
the initial state at a finite distance from the transition point,
the diagonal and off-diagonal matrix elements in the system
Hamiltonian are comparable. The experiment we are dealing
with typically operates in the regime defined in [30] as a large
time, meaning that the time intervals from the turn-on and the
turn-off times to the crossing are larger than the jump time.
The presence of a jump time comparable to the Bloch time
may modify the temporal evolution of the survival probability
for the two mechanisms discussed in the following. Because at
large γ the ratio τ

jump
d /TB between jump time and sweep time

is given by π
√

F0/2, large F0 values may produce deviation
from the ideal theory of [29].

At t = −∞ the diabatic and adiabatic states coincide, and
hence, the preparation of the system in its ground state is
unambiguous. On the other hand, at a finite distance from
the transition point, the diabatic and adiabatic states do not
coincide. In a numerical approach any chosen initial state
can be evolved given the proper Hamiltonian, but from an
experimental point of view the system will be prepared in a
well-defined initial state, which depends both on the parameter
values and on the preparation protocol. It is not obvious
that this initial state can be chosen at will: most likely, the
experimental initial state will be the one corresponding to the
ground state of the complete Hamiltonian, i.e., the adiabatic
lower energy state, at a time equal to the time when the
sweep starts. The comparison between experiments and theory
performed for different initial states should clarify this issue,
because the evolution for different initial states is markedly
different, when observed both in the diabatic basis and in
the adiabatic basis, see Figs. 4(a) and 4(b) corresponding
to typical Bose-Einstein condensate experimental parameters.
The results of Fig. 4 show that for experimentally accessible
parameters, the two evolutions do not coincide in both
the diabatic and adiabatic bases [see Figs. 4(a) and 4(b),
respectively]. We have verified that the results of Fig. 4

013633-4



TIME-RESOLVED MEASUREMENT OF LANDAU-ZENER . . . PHYSICAL REVIEW A 82, 013633 (2010)

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1 1.25 1.5

t/T
B

0.8

0.9

1P
a (

t)

(a)

(b)

FIG. 4. Comparison between the time evolution of the Bose-
Einstein condensate survival probability, in the (a) diabatic and (b)
adiabatic basis, for different initial conditions, prepared at a temporal
distance �t = TB/2 from the crossing point. The dashed line is
the evolution in a possible experimental setup, i.e., the evolution
following an initial preparation in the ground state of the adiabatic
basis; the solid line is the evolution following an initial preparation
in the ground state of the diabatic basis. Parameters are F0 = 1.197
and V0 = 2.3, corresponding to γ = 2.3, leading to a jump time in
both adiabatic and diabatic bases 1.9 times the Bloch period TB .

following an initial preparation in the ground state of the
diabatic basis (solid lines) coincide with the finite coupling
duration predictions of Ref. [30].

It is not at all obvious that an initial state chosen as the
adiabatic ground state at a finite time from the transition point
(which is likely to be the initial experimental state) should
coincide with the state obtained evolving from t = −∞,
projected onto the adiabatic basis. We computed the survival
probability simulating different Bose-Einstein condensate
initial states, see Fig. 5. For our experimental parameter
set, the discrepancy is not very large but certainly important
for a precise description of the temporal evolution of the
tunneling. Therefore, the approach of [29] yields some elegant
theoretical results for the LZ transition, but care is needed in
comparing them with the experiment due to the presence of the
additional time scale connected to the finite distance between
the experimental starting point and the transition point.

C. Numerical calculation

In [38] some of us have introduced an easily computable
quantity to determine in a good approximation the survival
probability in the adiabatic basis:

Pa(t) =
∫ ∞

−pc

dp|�(p,t)|2, (10)

where �(p,t) is the Bose-Einstein condensate wave function
in momentum representation, and pc � 3prec is an ad hoc
cutoff. Equation (10) can be interpreted as the projection of
�(p,t) onto the support of the initially prepared condensate
at t = 0 (in the presence of the optical lattice but at FLZ = 0),
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FIG. 5. Comparison between the time evolution of the Bose-
Einstein condensate adiabatic survival probability, starting from
initial ground states prepared at different time distances from the
transition point. Survival probabilities measured for F0 = 1.197 and
V0 = 0.3 in (a), and for F0 = 1.197 and V0 = 3.0 in (b). The dotted
lines show the evolution obtained evolving the survival probability
from the ground state in the adiabatic basis at t = −∞; the solid lines
illustrate the evolution obtained evolving the survival probability from
the ground state which simulates a possible experimental initial state,
i.e., the ground state in an adiabatic basis, at a finite time from the
transition point.

which is illustrated in Fig. 6(a). Since Eq. (10) measures the
decay only after the Bose-Einstein condensate wave packet
�(p,t) has extended beyond −pc [= −3prec in Fig. 6(a)], we
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FIG. 6. (Color online) (a) Momentum distribution at time
t = 10TB (dashed lines) starting from the initial momentum dis-
tribution (solid lines) under the action of a force directed toward
negative p values. The vertical dash-dotted line shows the cutoff
value pc = 3prec in the definition of Eq. (10). (b) Temporal evolution
of the survival probability in the adiabatic basis using the mentioned
definition. Simulation parameters: V0 = 2.07, F0 = 1.197.
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must resort to the acceleration theorem [6,26] to identify time
t with t − TB , i.e., we must rescale time by the traversal time
of the Brillouin zone TB .

While many previous experimental results proved in very
good agreement with simulations based on Eq. (10), see
[34–36], a better numerical method is needed for the new
generation of experiments reported here. The dash-dotted
lines in Fig. 2 were produced using Pa(t) of Eq. (10). These
simulations well reproduce the height of the steps in agreement
with the LZ prediction given in Eq. (2). They do not, however,
reproduce the oscillations of the experimentally measured
survival probability, due to the artificial cutoff used for
evaluating Pa(t). While the sequence of steps—corresponding
to a sequence of LZ tunneling events—is observable in
Fig. 6(b), no oscillations are visible. To reproduce the
oscillatory behavior of the experimental data in Fig. 2, instead
of Eq. (10) we determine Pa(t) in the following way: |φ(n,q)〉
shall denote the band solution for the ground band n = 0 as
shown in the lower left panel of Fig. 3. Then the adiabatic
survival probability is just the projection of the condensate
wave function �(p,t) onto φ(n = 0,q) integrated over the full
Brillouin zone, i.e.,

Pa(t) =
∫ prec

−prec

dq|〈�(p = q,t)|φ(0,q)〉|2. (11)

The survival probabilities Pa(t) shown in Figs. 4 and 5 have
been calculated in this way.

On the other hand, following the procedure sketched in the
lower right panel of Fig. 3, the survival probability determined
in the diabatic basis of free-momentum eigenstates is given by

Pd (t) =
∫ prec

−prec

dq|〈�(p = q,t)|p = q〉|2, (12)

with p = q within the first Brillouin zone in the notation of
Sec. II A. Equation (12) is used to simulate the experimental
results of Figs. 7(a) and 7(b) presented in the next section.

IV. RESULTS

In our experiments we realized the Wannier-Stark Hamilto-
nian of Eq. (4) with Bose-condensed rubidium atoms inside an
optical lattice [13,32–36]. Initially, we created Bose-Einstein
condensates of 5 × 104 87Rb atoms inside an optical dipole
trap (mean trap frequency around 80 Hz). A one-dimensional
optical lattice created by two counter-propagating, linearly
polarized Gaussian beams was then superposed on the Bose-
Einstein condensate by ramping up the power in the lattice
beams in 100 ms. The wavelength of the lattice beams was
λ = 842 nm, leading to a sinusoidal potential with lattice
constant dL = λ/2 = 421 nm. A small frequency offset �ν(t)
between the two beams could be introduced through the
acousto-optic modulators in the setup, which allowed us to
accelerate the lattice in a controlled fashion and hence, in
the rest frame of the lattice, to subject the atoms to a force
FLZ = MaLZ with aLZ = dL

d�ν(t)
dt

.

In several previous experiments [32–35], we had already
measured the LZ tunneling probability by first loading the
Bose-Einstein condensate into a lattice, then accelerating the
lattice for one Bloch period (i.e., across the zone edge and then
to the center of the second Brillouin zone) and subsequently

measuring the number of atoms left in the fundamental band.
This was done by accelerating the lattice further with a smaller
value of asep and a larger lattice depth Vsep chosen such as to
ensure that atoms in the fundamental band did not undergo
LZ tunneling at subsequent crossing of the zone edge and that
atoms in higher bands tunneled with almost 100% probability.
In that way it was possible to separate atoms in the fundamental
band in momentum space so that after a time of flight they
could be easily measured.

The time-resolved measurements we are interested in for
the purposes of the present paper initially followed the same
procedure. Rather than accelerating the lattice for a full Bloch
period, however, we had to interrupt the LZ tunneling event
at some time t �= nTB in general. The exact protocol then
depended on whether we wanted to measure in the adiabatic
or in the diabatic basis.

For measurements in the adiabatic basis, we proceeded as
follows, see Fig. 3. After loading the Bose-Einstein condensate
into the optical lattice, the lattice was accelerated with
acceleration aLZ for a time tLZ. The lattice thus acquired a
final velocity v = aLZtLZ. At time t = tLZ the acceleration was
abruptly reduced to a smaller value asep and the lattice depth
was increased to Vsep in a time tramp � TB . These values were
chosen in such a way that at time t = tLZ the probability for
LZ tunneling from the lowest to the first excited energy band
dropped from between ≈0.1 and 0.9 (depending on the initial
parameters chosen) to less than ≈0.01, while the tunneling
probability from the first excited to the second excited band
remained high at about 0.95. This meant that at t = tLZ the
tunneling process was effectively interrupted, and for t > tLZ

the measured survival probability P (t) = N0/Ntot (calculated
from the number of atoms N0 in the lowest band and the
total number of atoms in the condensate Ntot) reflected the
instantaneous value P (t = tLZ).

The lattice was then further accelerated for a time tsep

such that aseptsep ≈ 2mprec/M (where typically m = 2 or 3).
In this way, atoms in the lowest band were accelerated to a
final velocity v ≈ 2mprec/M , while atoms that had undergone
tunneling to the first excited band before t = tLZ underwent
further tunneling to higher bands with a probability >0.95
and were, therefore, no longer accelerated. At time tsep the
lattice and dipole trap beams were suddenly switched off and
the expanded atomic cloud was imaged after 23 ms. In these
time-of-flight images, the two velocity classes 0 and 2mprec/M

were well separated and the atom numbers N0 and Ntot could
be measured directly. Since the populations were effectively
“frozen” inside the energy bands of the lattice, which represent
the adiabatic eigenstates of the total Hamiltonian of the system,
this experiment measured the time dependence of the LZ sur-
vival probability Pa in the adiabatic basis, see Eq. (11) above.

The results of our measurements in the adiabatic basis are
summarized in Fig. 2. The steplike behavior of the survival
probability around t = 0.5TB is clearly visible, as well as
the finite width of the step, which demonstrates that our
experimental protocol does, indeed, allow us to access the
dynamics of the LZ transition and the jump time associated
with that transition. Also shown in the figure are the results
of numerical simulations using the cutoff and the adiabatic
survival methods described above in Sec. III C. As expected,
both methods reproduce the step with a finite width and

013633-6



TIME-RESOLVED MEASUREMENT OF LANDAU-ZENER . . . PHYSICAL REVIEW A 82, 013633 (2010)

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1 1.25

t / T
B

0

0.2

0.4

0.6

0.8

1P
d(t

)

(a)

(b)

FIG. 7. (Color online) Time-resolved measurements of LZ tun-
neling in the diabatic basis. (a) Fixed force F0 = 1.197 with different
lattice depths V0 = 1 (filled circles), 1.8 (open circles), 2.3 (filled
squares), and 4 (open squares). (b) Fixed lattice depth V0 = 1.8 with
different forces: F0 = 2.394 (open circles), 1.197 (filled squares),
and 0.599 (open squares). The dashed lines are the results of
numerical simulations based on Eq. (12), which nicely reproduce
the experimental data.

the steady-state value of the survival probability for long
times. The slight oscillations of the survival probability for
t > 0.5TB , however, are only visible in the results computed
according to Eq. (11) above. In fact, the amplitude of these
oscillations is larger in the numerical simulations than in
our experimental data. This might indicate that our protocol
for freezing the instantaneous populations in the ground and
excited bands is not perfect. Indeed, we found that a delicate
balance between the accelerations and lattice depths for the
separation phase was necessary in order to ensure that the
populations after the separation phase faithfully reproduced
those at t = tLZ, which was tested by choosing two extreme
values for aLZ which gave theoretical survival probabilities of
approximately 0 and 1, respectively, and then verifying that
these values were measured in the experiment. In practice, the
parameters for the separation phase were optimized in this way
for one set of the LZ parameters and then kept constant as V

was varied in Fig. 2.
For measurements in the diabatic basis, the experimental

protocol was even simpler, see Fig. 3. As in the adiabatic
case, after the initial loading phase the lattice was accelerated

with acceleration aLZ for a time tLZ. At that point the atomic
sample was projected onto the free-particle diabatic basis
by instantaneously (within less than 1 µs) switching off the
optical lattice. After a time of flight, the number of atoms in
the v = 0 and v = 2prec/M momentum classes are measured
and from these the survival probability (corresponding to the
atoms remaining in the v = 0 velocity class relative to the
total atom number) is calculated. Figure 7 shows the results
of such measurements, together with numerical simulations
based on Eq. (12). As in the adiabatic case, a step of the
survival probability around t = 0.5 TB is clearly seen, as well
as strong oscillations for t > 0.5 TB . These oscillations are
much stronger and visible for a wider range of parameters in
the diabatic basis than in the adiabatic basis (see the results
for V0 = 2.3 in Fig. 2, which is confirmed by our numerical
simulations).

V. CONCLUSIONS

Ultracold atoms in optical lattices provide an ideal model
system for time-resolved studies of LZ tunneling. The com-
plete control over the parameters of the lattice makes it
possible to measure the tunneling dynamics in the adiabatic
and diabatic bases by using different measurement methods.
Our results confirm the existence of a finite temporal width for
the transition in both bases and of strong oscillations of the
survival probability in the diabatic basis. Both of these features
are backed up by numerical simulations taking into account
details of the experimental protocol.

Our findings pave the way toward more quantitative studies
of the tunneling time for LZ transitions, which are of current
interest in the context of optimal quantum control and the
quantum speed limit [39]. Also, it should be possible to
measure the tunneling dynamics in arbitrary bases by inducing
a rotation of the 2 × 2 LZ matrix through variations in the
lattice depth during the transition. With an appropriate choice
of this variation, one could then, for instance, realize the
superadiabatic basis proposed by Berry [28].
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