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Atomic-number fluctuations in a mixture of condensates
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We study particle number fluctuations in the quantum ground states of a mixture of two spin-1 atomic
condensates when the interspecies spin-exchange coupling interaction c12β is adjusted. The two spin-1
condensates forming the mixture are, respectively, ferromagnetic and polar in the absence of an external magnetic
(B) field. We categorize all possible ground states using the angular momentum algebra and compute their
characteristic atom number fluctuations, focusing especially on the the AA phase (when c12β > 0), where the
ground state becomes fragmented and atomic-number fluctuations exhibit drastically different features from a
single standalone spin-1 polar condensate. Our results are further supported by numerical simulations of the full
quantum many-body system.
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I. INTRODUCTION

Since the first production of an atomic 23Na condensate in
an optical trap [1], spin degrees of freedom for condensed
atoms become accessible, which has since given rise to a
rich variety of phenomena such as domain formations [2],
spin-mixing dynamics [3], topological defects [4], etc. The
properties of a three-component (F = 1) spinor condensate
are first studied by Ho [5] and Ohmi [6]. Many predictions are
experimentally verified [2]; the most fundamental property
concerns the existence of two different phases: the so-called
polar and ferromagnetic states, respectively, corresponding to
the F = 1 state of 23Na and 87Rb atomic condensates.

In contrast to a scalar condensate, both the spatial and
internal spin part of the wave functions are required to
discuss a spinor condensate. For both F = 1 states of 23Na
and 87Rb atoms, density-density interactions are significantly
larger than the spin-exchange interactions. The single spatial-
mode approximation (SMA) [5–9] is often adopted, whereby
one adopts mean-field approximation (MFT) to determine
the condensate spatial wave function neglecting their spin
dependence. The spin degrees of freedom is then considered
assuming the spatial wave function is identical. The spin-
related properties can be investigated using either a “mean-
field” theory or “semiclassical treatment” [5,6], where the
spinor is described by a vector formed by three c numbers,
ζα(ζ ∗

α ) (α = 1,0, − 1), or using many-body theory [7,8]
treating the spinor from the bosonic mode as operators âα,

satisfying [âα,â
†
β ] = δαβ . The quantum ground states for a

spin-1 condensate have been studied extensively.
It was initially predicted that the ground state of 23Na

Bose-Einstein condensate (BEC) (c2 > 0) is either polar (n0 =
N ) or antiferromagnetic (n1 = n−1 = N/2) in the mean-field
theory [5,6]. A quantum treatment based on the SMA by Law
et al. and Pu et al. [7,8] revealed, however, the ground state
for 23Na atoms is actually a spin singlet with properties (n1 =
n0 = n−1 = N/3), drastically different from the polar state
predicted within the mean-field theory. Further studies pointed
out that this spin-singlet state is a fragmented condensate with
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anomalously large number fluctuations and thus has fragile
stability [10,11]. The remarkable nature of this fragmenta-
tion is characterized by three macroscopic eigenvalues (see
previously mentioned) for the single-particle reduced density
matrix, which is capable of exhibiting anomalously large atom
number fluctuations �n1,0,−1 ∼ N .

The interests in spinor condensates extend to higher
spins [12,13] and quantum ground states are already well
known and categorized for spin-2 condensates [14]. Atomic
Feshbach resonance was implemented in a double condensate,
enabling tunable interactions, whose effects on superfluid
dynamics and controlled phase separations are observed [15].
The spin-exchange interaction between individual atoms can
be precisely tuned through optical Feshbach resonances [16]
by adjusting the two s-wave scattering lengths a0 and a2. This
inspired several recent theoretical studies on mixtures of spinor
condensates [17–20] and tunable or controlled dynamics [21].

In this paper we report anomalous fluctuations for the
numbers of atoms in a binary mixture of spin-1 condensates.
We hope to stimulate experiments, using the most relevant
experimental case, the mixture of 23Na (polar) and 87Rb
(ferromagnetic) condensates in their F = 1 manifold, as an
example. The quantum spin properties in the special ground
state of the AA phase, where the interspecies antiferromagnetic
spin exchange is large enough to polarize both species but
forming a maximally entangled state between two species, are
studied and we give the exact number-fluctuation distributions.
Then we resort to numerical diagonalizations to show that
particle numbers and number fluctuations undergo dramatic
changes as interspecies coupling c12β varies.

II. THE MODEL HAMILTONIAN FOR THE MIXTURE

Intracondensate atomic interaction takes the form Vj (r) =
(αj + βj Fj · Fj )δ(r) with j = 1,2 for the ferromagnetic
(β1 < 0) and polar (β2 > 0) atoms. The interspecies interaction
between the ferromagnetic and polar atoms is described
as V12(r) = 1

2 (α + βF1 · F2 + γP0)δ(r) [17], which is more
complicated because collision can occur in the total spin
Ftot = 1 channel between different atoms, in contrast to
intracondensate interactions between identical atoms [17,22].
The parameters α,β, and γ are related to the s-wave scattering

1050-2947/2010/82(1)/013625(5) 013625-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.82.013625


JIE ZHANG, Z. F. XU, L. YOU, AND YUNBO ZHANG PHYSICAL REVIEW A 82, 013625 (2010)

lengths in the the total spin channels [17], analogous to
spin-1 condensates [5,6]. P0 projects an interspecies pair into
the spin-singlet state and µ = M1M2/(M1 + M2) denotes the
reduced mass for the pair of atoms, one each from the two
different species with masses M1 and M2, respectively.

Our model Hamiltonian is given by

Ĥ = Ĥ1 + Ĥ2 + Ĥ12, (1)

Ĥ1 =
∫

dr
{
�̂

†
i

(
h̄2

2M1
∇2 + U1

)
�̂i + α1

2
�̂

†
i �̂

†
j �̂j �̂i

+ β1

2
�̂

†
i �̂

†
j F1il · F1jk�̂k�̂l

}
,

Ĥ12 = 1

2

∫
dr

{
α�̂

†
i �̂

†
j �̂j �̂i

+β�̂
†
i �̂

†
j F1il · F2jk�̂k�̂l + γ

3
Ô†Ô

}
. (2)

H2 is identical to H1 except for the substitution of subscript 1
by 2 and �̂i by �̂i . The latter two are atomic field operators
for the spin state |1,i〉. Ô = �̂1�̂−1 − �̂0�̂0 + �̂−1�̂1.

We adopt the SMA [7–9] for each of the two spinor
condensates with modes �(r) and �(r), that is, setting

�̂i = âi�, �̂i = b̂i�,

with âi (b̂i) the annihilation operator for the ferromagnetic
(polar) atoms satisfying [âi ,âj ] = 0 and [âi ,â

†
j ] = δij (and

the same form of commutations for b̂i). The spin-dependent
Hamiltonian for our mixture mode then reads

Ĥ = c1β1

2
F̂2

1 + c2β2

2
F̂2

2

+ c12β

2
F̂1 · F̂2 + c12γ

6
	̂

†
12	̂12, (3)

where F̂1 = â
†
i F1ij âj (F̂2 = b̂

†
i F2ij b̂j ) are defined in terms of

the 3 × 3 spin-1 matrices F1ij (F2ij ), and

	̂
†
12 = â

†
0b̂

†
0 − â

†
1b̂

†
−1 − â

†
−1b̂

†
1

creates a singlet pair with one atom each from the two species,
similar to the following two:

Â† = (â†
0)2 − 2â

†
1â

†
−1, B̂† = (b̂†0)2 − 2b̂

†
1b̂

†
−1,

for intraspecies spin-singlet pairs [10]. The interaction
coefficients are c1 = ∫

dr|�(r)|4, c2 = ∫
dr|�(r)|4, and

c12 = ∫
dr|�(r)|2|�(r)|2, which can be tuned through the

control of the trapping frequency. Here we focus on the
spin-dependent part when we assume that the two species
are sufficiently overlapped. The scattering properties between
any pairs of atoms in specific Zeeman hyperfine component
states are determined from their corresponding interaction
potentials observing the symmetries of the two states. We
notice that under the so-called degenerate internal-state
approximation (DIA) the γ term vanishes [23]. Within the
DIA, the Zeeman hyperfine state of an alkali-metal atom
is expanded in terms of the electronic (valence electron)
and its corresponding nuclear spin states. Between any two
atoms, the corresponding interaction potential is constructed
from the appropriate weighted spin-singlet or triplet potentials
when expanded out correspondingly. When the spin-singlet

and triplet potentials are further approximated by low-energy
scattering pseudopotentials, the total scattering properties are
determined completely by two scattering lengths of the singlet
and triplet potentials. The parameter γ is therefore no longer
needed and the Hamiltonian (8) finally reduces to

ĤA = c1β1

2
F̂2

1 + c2β2

2
F̂2

2 + c12β

2
F̂1 · F̂2. (4)

III. THE GROUND STATES

We rewrite the Hamiltonian (4) as

Ĥ = aF̂2
1 + bF̂2

2 + cF̂2, (5)

where a = c1β1/2 − c12β/4, b = c2β2/2 − c12β/4, and c =
c12β/4, F̂ = F̂1 + F̂2 is the total spin operator. The eigenstates
of (5) are the common eigenstates for the commuting operators
F̂2

1,F̂
2
2,F̂

2, and F̂z, given by

|F1,F2,F,m〉 =
∑
m1m2

C
F,m
F1,m1;F2,m2

|F1,m1〉 |F2,m2〉,

with the uncoupled basis states,

|F1,m1〉 = Z
− 1

2
1 (F̂1−)F1−m1 (â†

1)F1 (Â†)(N1−F1)/2 |0〉,
and analogously for |F2,m2〉 which span a Hilbert space of
dimension (Nj + 1)(Nj + 2)/2 [14]. C is the Clebsch-Gordon
coefficient, Zj is a normalization constant, and F̂j− is the
lowering operator for mj . The corresponding eigenenergy is

E = aF1(F1 + 1) + bF2(F2 + 1) + cF (F + 1). (6)

Given Nj , the allowed values of Fj are Fj = 0,2,4, . . . ,Nj

if Nj is even and Fj = 1,3,5, . . . ,Nj if Nj is odd, satisfying
|F1 − F2| � F � F1 + F2.

We next consider the special case of N1 = N2 = N and
for N even. Minimizing the energy (6), we can get the
ground-state phases determined by different parameters a, b,
and c, or equivalently c1β1, c2β2, and c12β. Taking N = 100,
for example, Fig. 1 presents the results for the order parameters
〈F̂2

1〉, 〈F̂2
2〉, and 〈F̂1 · F̂2〉 = (〈F̂2〉 − 〈F̂2

1〉 − 〈F̂2
2〉)/2 [17] as

c12β changes but fixed c1β1 = −1, c2β2 = 2 (in units of
|c1β1|), which are found to agree very well with the mean-field
ones obtained from simulated annealing [17].

FIG. 1. (Color online) The dependence of ground-state phases on
β at fixed values of c1β1 = −1, c2β2 = 2. All interaction parameters
are in units of |c1β1|.
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TABLE I. Quantum phases for the ground state.

Phases Parameterrange Groundstates|F1,F2,F,F 〉
FF −∞ < c12β < −(2N−1)

N
c2β2 C

2N,2N
N,N ;N,N |N,N〉|N,N〉

MM−
−(2N−1)

N
c2β2 < c12β < 0 C

N+F2,N+F2
N,N ;F2,F2

|N,N〉|F2,F2〉
MM+ 0 < c12β < 2N−1

N+1 c2β2
∑

m1,m2
C

N−F2,N−F2
N,m1;F2,m2

|N,m1〉|F2,m2〉
AA 2N−1

N+1 c2β2 < c12β < +∞ ∑
m1

C
0,0
N,m1;N,−m1

|N,m1〉|N, − m1〉

Overall, there are four different phases in the general case,
separated by three critical points: −(2N − 1)c2β2/N , 0, and
(2N − 1)c2β2/(N + 1) (corresponding to −4, 0, and 4 in
Fig. 1). The extreme states |F1,F2,F,F 〉 are classified into FF,
MM−, MM+, and AA phases as in Table I. Other degenerate
states are found by repeated applications of F̂1− + F̂2−,

|F1,F2,F,m〉 = (F̂1− + F̂2−)F−m |F1,F2,F,F 〉, (7)

with m = 0, ± 1, . . . ± F .
The ground state for a spin-1 polar condensate is frag-

mented [10], described by a spin-singlet state of the form
(B̂†)N/2|0〉. B̂† (B̂) is invariant under rotations and commutes
with F̂2 and F̂2z. For ferromagnetic condensate, the condensate
ground state favors all atoms aligned along the same direction
[i.e., takes the form (â†

1)N |0〉], and is more stable. When
mixing the two together, we expect the polar atoms are
strongly affected, while the back action on to the more stable
ferromagnetic atoms is negligible.

The FF phase may be simply described as
Z1/2(â†

1)N (b̂†1)N |0〉, with all polar atoms slaved into the same
direction as the ferromagnetic ones. For −(2N − 1)c2β2/N <

c12β < 0, the MM− phase arises when polar atoms are partly
polarized in the same direction with the ferromagnetic ones, as
if there were a finite B field. Increase of the coupling interaction
(|c12β|) breaks singlet pairs in polar atoms one by one with
�F2 = 2, and gives rise to stepwise increases of the total
spin. Similar to the FF phase, the MM− phase has a simpler
form, Z1/2(â†

1)N (b̂†1)F2 (B̂†)(N−F2)/2|0〉, with its energy E =
c1β1N (N + 1)/2 + c2β2F2(F2 + 1)/2 + c12βNF2/2. This
phase corresponds to the exact ground state for F2 − 1 <

−c12βN/2c2β2 − 1/2 < F2 + 1 [14], and we find the order
parameters,

〈
F̂ 2

1

〉 = N (N + 1),

〈
F̂ 2

2

〉 =
(

N

2c2β2

)2

(c12β)2 − 1

4
, (8)

〈F̂1 · F̂2〉 = − N2

2c2β2
c12β − N

2
,

agree with the mean-field results [17] to terms ∼1/N .
For 0 < c12β < (2N − 1)c2β2/(N + 1), however, the

MM+ phase favors polar atoms polarized opposite to the
ferromagnetic atoms resulting in a decreased total spin.
This situation is more complicated because all states
satisfying m1 + m2 = N − F2 are involved. The ground-

state energy is E = c1β1N (N + 1)/2 + c2β2F2(F2 + 1)/2 −
c12β(N + 1)F2/2, and we find that

〈
F̂ 2

1

〉 = N (N + 1),

〈
F̂ 2

2

〉 =
(

N + 1

2c2β2

)2

(c12β)2 − 1

4
, (9)

〈F̂1 · F̂2〉 = − (N + 1)2

2c2β2
c12β − N + 1

2
.

The stepwise fine structure of the order parameters
is not included in Eqs. (8) and (9). When c12β >

(2N − 1)c2β2/(N + 1), again all states satisfying m1 + m2 =
0 are included and the AA phase is described by a singlet
state [18],

|N,N,0,0〉 =
N∑

m1=−N

C
0,0
N,m1;N,−m1

|N,m1〉|N, − m1〉. (10)

We find interestingly that the total spin vanishes, while the
species spins satisfy 〈F̂ 2

1 〉 = 〈F̂ 2
2 〉 = N (N + 1) (see Fig. 1).

IV. ATOMIC-NUMBER FLUCTUATIONS

As a special case, the AA phase is a singlet state, which
enables us to derive analytically the average particle numbers
and their associated fluctuations. With the help of the methods
developed in a related cavity QED problem [24], we expand
the eigenvectors |N,m1〉 in terms of the Fock states which are
defined as n̂

(j )
α |n(j )

1 ,n
(j )
0 ,n

(j )
−1〉 = n

(j )
α |n(j )

1 ,n
(j )
0 ,n

(j )
−1〉,α = 0, ±

1. Explicitly, for even and odd m1, we find, respectively,

|N,m1〉 =
(N−|m1|)/2∑

k=0

B
(e)
m1k

∣∣∣∣N + m1

2
− k,2k,

N − m1

2
− k

〉
,

|N,m1〉 =
(N−|m1|−1)/2∑

k=0

×B
(o)
m1k

∣∣∣∣N + m1 − 1

2
−k,2k+1,

N − m1 − 1

2
−k

〉
,

(11)

where,

B
(e)
m1k

= (
√

2)2k
( (N+m1)!(N−m1)!

2N!

)1/2 √
N ![

(2k)!
(

N−m1
2 − k

)
!
(

N+m1
2 − k

)
!
]1/2 ,

(12)

B
(o)
m1k

= (
√

2)2k+1
( (N+m1)!(N−m1)!

2N!

)1/2 √
N ![

(2k + 1)!
(

N−m1−1
2 − k

)
!
(

N+m1−1
2 − k

)
!
]1/2 .
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We calculate the particle numbers and number fluctuations in
the AA phase and find that the average numbers of atoms in
the six components are exactly all equal,〈

n
(j )
1

〉 = 〈
n

(j )
0

〉 = 〈
n

(j )
−1

〉 = N/3, (13)

that is, the condensate is fragmented [10]. The fluctuations are
given explicitly,

〈
�n

(j )
0

〉 =
√

N2 + 9N

3
√

5
,

(14)〈
�n

(j )
±1

〉 = 2
√

N2 + 3N/2

3
√

5
,

which approximatively satisfy 〈�n
(j )
1 〉 = 2〈�n

(j )
0 〉 = 〈�n

(j )
−1〉

for large N , as opposed to 2〈�n1〉 = 〈�n0〉 = 2〈�n−1〉 for
the single-species singlet state (c2 > 0) [10].

For a comprehensive understanding of the fluctuations in
the entire parameter region, we consider the direct prod-
uct of the Fock states of the two species |n(1)

1 ,n
(1)
0 ,n

(1)
−1〉 ⊗

|n(2)
1 ,n

(2)
0 ,n

(2)
−1〉, which may be equivalently defined as

n̂(1,2)
α

∣∣n(1)
0 ,m1,n

(2)
0 ,m2; m

〉
= n(1,2)

α

∣∣n(1)
0 ,m1,n

(2)
0 ,m2; m

〉
. (15)

Here m1 and m2 are the corresponding magnetization specified
as mj = n

(j )
1 − n

(j )
−1 and m = m1 + m2 is the total magnetiza-

tion. For simplification, we restrict ourselves into the subspace
that the total magnetization is conserved m = 0, in which case
all states are nondegenerate. Using the full quantum approach
of exact diagonalization, we simulate the distribution in this
subspace with N1 = N2 = 100, and illustrate the dependence
of the particle numbers and fluctuations for the six components
on c12β in Fig. 2.

FIG. 2. (Color online) The dependence of atom numbers and
fluctuations on c12β at fixed values of c1β1 = −1 and c2β2 = 2. Blue
solid (red dashed) lines denote 〈n(j )

α 〉 (〈�n(j )
α 〉). Note 〈n(j )

+1〉 = 〈n(j )
−1〉

and 〈�n
(j )
+1〉 = 〈�n

(j )
−1〉. Left (right) column denotes the ferromagnetic

(polar) condensate.

For very large values of |c12β|, the distribution of atoms and
fluctuations behave uniformly, indicating typical ferromag-
netic (FF) or antiferromagnetic (AA) spin-exchange features.
The number distributions for all components are essentially the
same over the entire region, except for the case of c12β = 0.
A tiny c12β 	= 0 brings the system into the ferromagnetic-
like distribution, that is, 2〈n(j )

1 〉 = 〈n(j )
0 〉 = 2〈n(j )

−1〉 = N/2,
consistent with the prediction that the ferromagnetic conden-
sate is more stable. The antiferromagnetic distributions for
the six components are the same 〈n(j )

1 〉 = 〈n(j )
0 〉 = 〈n(j )

−1〉, in
agreement with the analytical results (14). The fluctuations are,
on the other hand, quite different for positive or negative c12β.
In the FF phase (c12β < −4) the fluctuations for both species
are small (∼√

N ). In the AA phase (c12β > 4) the fluctuations
are large and approximatively satisfy 〈�n

(j )
1 〉 = 2〈�n

(j )
0 〉 =

〈�n
(j )
−1〉 (with 〈�n

(j )
±1〉 ≈ 30.03 and 〈�n

(j )
0 〉 ≈ 15.56). In the

regions of MM− and MM+ (−4 < c12β < 4), polar atoms
exhibit larger fluctuations than the ferromagnetic ones, which
change quadratically with c12β. When c12β > 0, as the
interspecies coupling increases, the fluctuation of polar atoms
dramatically changes from 2〈�n

(2)
1 〉 = 〈�n

(2)
0 〉 = 2〈�n

(2)
−1〉 to

〈�n
(2)
1 〉 = 2〈�n

(2)
0 〉 = 〈�n

(2)
−1〉 (approximatively).

Before concluding, we show the difference of the singlet
state |N,N,0,0〉 and the fully paired state Z1/2(	̂†

12)N |0〉
from the viewpoint of quantum fluctuation [18,20]. Using the
method of generating function [18], the difference between the
two states can be shown by taking N1 = N2 = 2 as an example.
The result remains the same from the angular momentum
theory, that is,

|2,2,0,0〉 =
∑

m1,m2

C
F=0,m=0
F1,m1;F2,m2

|2,m1〉 |2,m2〉

= 1

2
√

5

(
	̂

†2
12 − 1

3
Â†B̂†

)
|0〉 . (16)

More generally, according to the multinomial theorem,

(x1 + x2 + x3)n =
n∑

k=0

k∑
l=0

cnlkx
n−k
1 xk−l

2 xl
3, (17)

with cnlk = n!/[l!(k − l)!(n − k)!], we find that the state
(	̂†

12)N |0〉 can be described by the Fock state |n(1)
1 ,n

(1)
0 ,n

(1)
−1〉 ⊗

|n(2)
1 ,n

(2)
0 ,n

(2)
−1〉 as

(	̂†
12)N |0〉 = (â†

0b̂
†
0 − â

†
1b̂

†
−1 − â

†
−1b̂

†
1)N |0〉

=
N∑

k=0

k∑
l=0

cNlk(â†
0b̂

†
0)N−k(−â

†
1b̂

†
−1)k−l(−â

†
−1b̂

†
1)l|0〉

=
N∑

k=0

k∑
l=0

(−1)kN !|k − l,N−k,l〉 ⊗ |l,N−k,k−l〉,

(18)

where we have used the property (â†)N |0〉 = √
N !|N〉. We

calculate the atom numbers and fluctuations for the two
states |N,N,0,0〉 and Z1/2(	̂†

12)N |0〉, and find that one cannot
distinguish them from the atom number distributions,

〈
n

(j )
1

〉 = 〈
n

(j )
0

〉 = 〈
n

(j )
−1

〉 = N/3, (19)
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which are the same. The fluctuations, however, reveal the
secret. For state Z1/2(	̂†

12)N |0〉, the number fluctuations are
equally distributed, that is,

〈
�n

(j )
1

〉 = 〈
�n

(j )
0

〉 = 〈
�n

(j )
−1

〉
=

√
N (N + 1)/6 − N2/9, (20)

different from the results for the state |N,N,0,0〉 we obtained
in Eq. (14).

V. CONCLUSION

To conclude, we study atom number distributions and
fluctuations for the ground state of a mixture of two spin-1
condensates, one being ferromagnetic and the other being
polar, in the absence of a B field. For all possible inter-
species coupling parameter c12β, the exact quantum states
are constructed from angular momentum algebra which are
further expanded into the six-component Fock states of the
mixture. The ground-state quantum phases are classified
into four types according to c12β. The most interesting AA

phase of a singlet for the total spin, where spins of each
species are polarized in opposite directions, is fragmented with
six components equally distributed 〈n(j )

1 〉 = 〈n(j )
0 〉 = 〈n(j )

−1〉 =
N/3 and exhibits anomalous number fluctuations. We find
that the fluctuations satisfy 〈�n

(j )
1 〉 = 2〈�n

(j )
0 〉 = 〈�n

(j )
−1〉 for

large N , different from the result of single-species polar state
(c2 > 0) 2〈�n1〉 = 〈�n0〉 = 2〈�n−1〉. Our results highlight
the significant promises for experimental work on Na and Rb
atomic condensate mixtures since optical Feshbach resonances
make it possible to tune the spin-exchange interaction.
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