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Structural changes in quasi-one-dimensional many-electron systems: From linear
to zigzag and beyond

R. Cortes-Huerto, M. Paternostro, and P. Ballone
School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom

(Received 16 May 2010; published 19 July 2010)

Many-electron systems confined to a quasi-one-dimensional geometry by a cylindrical distribution of positive
charge have been investigated by density functional computations in the unrestricted local spin density
approximation. Our investigations have been focused on the low-density regime, in which electrons are localized.
The results reveal a wide variety of different charge and spin configurations, including linear and zig-zag chains,
single- and double-strand helices, and twisted chains of dimers. The spin-spin coupling turns from weakly
antiferromagnetic at relatively high density, to weakly ferromagnetic at the lowest densities considered in our
computations. The stability of linear chains of localized charge has been investigated by analyzing the radial
dependence of the self-consistent potential and by computing the dispersion relation of low-energy harmonic
excitations.
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I. INTRODUCTION

Systems made of ionized atoms confined into Penning
[1] or Paul [2] traps provide interesting prototypes of low-
dimensional many-particle systems. Confinement is enforced
by the application of static (Penning) and/or time-dependent
electromagnetic fields (Paul) and temperature can be reduced
to the mK range by laser cooling [3]. Systems composed of
atoms ranging in number from a few tens to several thousand
are routinely made and their properties analyzed by a broad
range of spectroscopic techniques [4].

Fine control of the ion density ρI and temperature T allows
one to experimentally probe a wide range of interparticle
couplings, whose strength is measured by the ratio � between
the potential and kinetic energy of the ions. At sufficiently
high coupling (� ∼ 180; see Ref. [5]), ions condense into a
regular lattice, fulfilling early predictions generally attributed
to Wigner [6]. Such a transition has been observed in trapped
clouds made of single [7] or binary [8] ion species, providing
an intriguing view of ordered Coulomb systems at low
temperature and high couplings [9,10]. Upon changing ρI , T ,
or the shape and strength of the applied fields, these systems
undergo a sequence of characteristic structural changes such
as order-disorder [11] and isomerization transitions [12].

Recently, experiments [13,14] and computational studies
[15] have focused on one specific phase change taking
place in nearly one-dimensional (1D) trapped-ion systems,
transforming linear chains into zig-zag configurations [16].
Simple consideration of the forces active in and on the system
suggests that such a transition arises from the competition
between the interaction with the external field (increasing
upon the transition) and the electron-electron repulsion, which
decreases because of the larger nearest-neighbor distance in
zig-zag chains. The order of the transition is not precisely
known and, strictly speaking, not even well defined for the
finite samples probed in experiments. However, computations
for extended systems with periodic boundary conditions
suggest that the transition is continuous and second order, with
a discontinuity in the second derivative of the ground-state
energy with respect to the 1D ion density [15].

The linear to zig-zag transition has a number of different
implications on the system properties. In the case of ions
carrying a magnetic (spin) moment, for instance, changing
the amplitude of the zig-zag modulation changes the number
and relative distance of the ions’ neighbors, and, by varying
the relative weight of first and second nearest-neighbor inter-
actions, it provides a way to tune the spin-spin coupling [17].
At the same time, the zig-zag transition doubles the unit cell
of the system, thus changing even qualitatively the vibrational
spectrum of the chain. Interestingly, the dimerization that often
accompanies the zig-zag transition could open the way to the
Bose-Einstein condensation of ions whose spin is half-integer.
Finally, the link between the structural transitions seen in
experiments and the behavior of quantum correlations among
the trapped ions has been established by a theoretical study
based on techniques typical of continuous-variable systems
[18].

Besides providing an appealing playground to investi-
gate the interplay between dimensionality and many-particle
effects, quasi-1D atomic plasmas are actively investigated
in view of applications in metrology [19] and in quantum
information technology [20]. Moreover, low temperature ions
confined in a quasi-1D ion trap have been proposed as
models for the analogic simulation of many-particle systems
[21–23]. In most of these applications, quantum mechanics
plays an important role. This observation has motivated us
to study quasi-1D systems made of electrons, whose light
mass amplifies the quantum mechanical effects. To the best
of our knowledge, low-dimensional many-electron plasmas
confined at low temperature into electromagnetic traps have
not been made and characterized in experiments. However, it
should be mentioned that there is a considerable interest in
scaling up the already experimentally demonstrated ability to
trap and coherently control a single electron in a Penning trap
to a genuine quantum many-body configuration. Roadmaps
toward the achievement of such a situation have been detailed
in Ref. [26]. It is worth reminding that closely related systems,
consisting of mobile electrons in conducting nano-wires
can be prepared by a variety of methods, including the
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controlled doping of semiconducting nanostructures [24,25]
and conducting polymers [27–29]. Moreover, new fabrication
methods are being developed based on the doping or the
electrostatic biasing of carbon nanotubes [30].

The properties of electrons in these systems are often
described using the one-component plasma picture [31], thus
representing electrons as independent particles moving in a
fixed external potential. We resort to the simplest version of
this approach, based on the jellium model [32], in which
the external potential confining the electrons is due to their
Coulomb interaction with a cylindrical background of positive
charge, whose density is constant (ρb) within a predefined
volume and zero outside. In order to approach the conditions
of interest for charged particles in a trap, we consider the limit
of very thin wires with a large aspect ratio between the length
Lz and the radius Rb of the background charge distribution
(27.7 � Lz/Rb � 39.2). In our computation, many-body ef-
fects are accounted for by resorting to the simple local-spin
density (LSD) approximation [33] to density functional (DF)
theory [34]. Single electron orbitals are expanded on a large
basis of plane waves, and the ground-state energy and density
are determined by direct minimization, without any symmetry
restrictions. We focus our attention on the low-density, high
correlation regime, where the Wigner crystal is the stable
phase, and we consider various combinations of spin-up and
spin-down populations.

Our calculations demonstrate the existence of linear and
zig-zag chains, stabilized by different combinations of the 1D
electron density, spin configuration, and shape of the confining
potential. Furthermore, our results display other unforseen
structures, never considered or found so far for classical ion
systems. Dimers, already suggested long ago for quantum spin
chains [35], appear at low density. At intermediate densities,
we find new geometries, such as helices, and even double
helices. Hints of these exotic geometries were already given
by calculations for larger wires at much lower density [36].

In addition to this basic information on the ground-state
density and spin configuration, our results provide data on the
density of states, the electric conductivity, and the vibrational
modes of nearly 1D electron systems. In particular, we give
strong evidence of a second-order nature of the linear-to-zig-
zag transition, a result that appears to be in line with the
findings in Ref. [15].

The paper is organized as follows. The model and the
computational method are defined and briefly discussed in
Sec. II. The computational results for the ground-state density
and spin distribution are described in Sec. III A, while
the computation of phonon-like excitations is reported in
Sec. III B. A summary and a brief outline of promising new
directions are given in Sec. IV.

II. THE MODEL AND THE METHOD

Computations have been carried out for systems of N =
Nup + Ndn electrons, neutralized by a cylindrical background
of positive charge, whose axis is parallel to the z direction.
In what follows, the background density ρb is expressed in
terms of the Wigner-Seitz radius rs through the relation ρb =
3/4πr3

s . Here Nup and Ndn are the number of spin-up and

spin-down electrons, respectively. The length Lz and radius Rb

of the cylindrical background satisfy the neutrality condition
πR2

bLzρb = N . Moreover, the number of electrons per unit
length of the wire is ρlin = πR2

bρb. Atomic units are used
throughout the paper, and cylindrical coordinates (r,φ,z) are
implicitly assumed in our equations and description of the
results.

The basic cylindrical segment described above is period-
ically replicated in the direction parallel to the z axis with
periodicity Lz, thus representing an extended wire along such
direction. Due to our choice of plane waves as basis functions
(see in the following), we periodically replicated our sample
also in the xy plane. For the sake of simplicity, we adopt the
same periodicity Lz in all three directions.

The ground-state energy and density are computed within
the Kohn-Sham (KS) formulation of density functional theory
(DFT), in which electrons occupy single-particle KS states
{ψi ; i = 1, . . . ,N}. The density ρ(r) and spin polarization
m(r) are given by

ρ(r) =
Nup+Ndn∑

i=1

|ψi(r)|2, (1)

m(r) =
Nup∑
i=1

|ψi(r)|2 −
Nup+Ndn∑
i=1+Nup

|ψi(r)|2. (2)

The ground-state energy and density are determined by
minimizing the KS energy functional,

EKS[ρ] = −1

2

N∑
i=1

〈ψi |∇2|ψi〉 +
∫

ρ(r)Vext(r)dr

+1

2

∫∫
ρ(r)ρ(r′)
|r − r′| drdr′ + UXC[ρ], (3)

where Vext(r) is the Coulomb potential of the positive charge
distribution. Here, UXC[ρ] is given by the local spin density
approximation:

UXC[ρ] =
∫

ρ(r)εXC(ρ(r); ζ (r))dr, (4)

where εXC(ρ(r); ζ (r)) is the exchange-correlation energy per
electron [33] of the homogeneous electron gas at the local
density ρ(r) and local spin polarization ζ (r) = m(r)/ρ(r).

Kohn-Sham orbitals are expanded on a basis of plane
waves whose periodicity matches the cubic periodicity of the
simulation cell:

ψi(r) =
∑

G

c
(i)
G eiG·r, (5)

where each G is a reciprocal lattice vector of the cubic
simulation cell. The basis includes all plane waves whose
G vector satisfies G2 � Ecut with Ecut a suitable kinetic
energy cutoff. A plane-wave basis set of cutoff 2Ekin is used
to represent the electron density and the external potential
Vext(r). The Fourier expansion of the latter is easily obtained
by using Poisson’s equation, and considering that the Fourier
transform of the positive charge density (uniform along z)
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identically vanishes unless Gz = 0. Moreover, upon setting

Gr =
√

G2
x + G2

y , we obtain:

ρ̃(Gr,Gz = 0) =
{

2πρb

V
Lz

R2
b

2 , if Gr = 0,
2πρb

V
Lz

(GrRb)
G2

r
J1(GrRb), otherwise,

(6)

where V = L2Lz, and J1 is the cylindrical Bessel function of
order one.

As implicit in our notation in Eqs. (1)–(3), the Brillouin
zone defined by the periodicity of the simulated system is
sampled at the � point only. The size of the systems we
simulate is such that this approximation does not introduce
any sizable error. We also verified that the density overlap and
the spurious interactions across the xy plane are negligible.

The optimization of the EKS[ρ] functional is carried out
by direct minimization (i.e., by considering EKS[ρ] as an
algebraic function of the Fourier coefficients c

(i)
G ), and using

standard minimization routines [37]. In doing so, we use the
following expression for the derivative of the Kohn-Sham
energy functional with respect to the expansion coefficients
{c(i)

G }:
∂EKS

∂c
(j )∗
G

=
∫

δEKS

δψ∗
j (r)

dψ∗
j (r)

dc
(j )∗
G

dr =
∫

δEKS

δψ∗
j (r)

e−iGrdr

=
∫

ĤKS[ρ]ψj (r)e−iGrdr. (7)

The last equality in Eq. (7) implicitly defines the Kohn-Sham
Hamiltonian ĤKS, which can also be written as

ĤKS = − 1
2∇2 + VKS(r), (8)

where VKS(r) is the self-consistent KS potential.

III. SIMULATION RESULTS

A. The ground-state density distribution

Computations have been carried out for systems of 16 to 32
electrons, neutralized by a cylindrical background of aspect
ratio 27.7 � Lz/Rb � 39.2. Different total spin polarizations
have been considered, from Nup = Ndn = N/2 to Nup = N ,
Ndn = 0. Our computations, however, are spin unrestricted,
and even in the Nup = Ndn case, spin polarization can arise
locally driven by exchange interactions.

We consider systems of fairly low density, corresponding
to 25 � rs � 40. Previous studies on the homogeneous three-
dimensional (3D) electron gas, carried out using the same
approach as ours, have shown that DFT-LSD predicts the onset
of spin polarization and charge localization to take place at
rs ∼ 25 [38,39], while electrons appear to be well localized at
rs � 30.

Our approach provides directly the ground-state energy and
density distribution for any given spin population as a function
of size and shape of the background density. The results for
the total energy, however, display fairly predictable trends as a
function of the background density and linear density ρlin. For
this reason, in full analogy with what is done in the classical
case of atomic ions, we focus our discussion on the dependence
of the density and spin distribution on the model parameters.

FIG. 1. (Color online) Density iso-surface ρ = 2ρb for samples of
N = 32 electrons. (a) rs = 30; (b) rs = 32; (c) rs = 35; (d) rs = 40.
Here ρb = 4π/3r3

s , and ρ, ρb, rs are in atomic units. The vertical
arrow marks the position of a defective, unpaired charge blob (see
text).

The linear to zig-zag transition in experimental quasi-1D
ion systems is usually triggered by changing the geometric
shape of the external potential which confines the ions. As
expected, stiff potentials that tightly confine ions in the radial
direction, favor linear configurations, while soft potentials
give rise to zig-zag chains. In our model, the curvature of
the external potential along the radial direction is directly
related, via Poisson’s equation, to the background density,
and decreases with decreasing ρb. Therefore, we first present
the results of computations for samples of increasing rs

(decreasing ρb), keeping fixed the number of electrons, the
total spin, and the aspect ratio Lz/Rb. We consider, at first, fully
spin-polarized systems, which arguably represent the simplest
case.

The electron distribution is characterized by plotting den-
sity iso-surfaces, which in the homogeneous (3D) electron
gas case show a regular pattern of charge blobs for rs � 30
(see Ref. [39]). The results for Nup = N = 32, Ndn = 0 at
rs = 30, 32, 35, and 40 are shown in Figs. 1(a)–1(d). For
all these systems, the periodicity of the simulation cell along
the wire axis is Lz = 32rs , and the ratio Lz/Rb is 27.7. As
already stated, the same periodicity is used along the other
two directions, resulting in a large supercell (V = 32768r3

s ).
Together with our choice of the cutoff energy Ecut (see [40]),
the large simulation cell volume implies a fairly high number
of plane waves (npw ∼ 130 000) in the expansion of the KS
orbitals.

The rs = 30 ground-state density displays a clear helix
geometry, with 17 full periods within the simulation cell. The
helix period is close but not equal to the length λ = 1/(2kF )
expected on the basis of known singularities of the response
function [41], suggesting that at such low densities localization
cannot be quantitatively described in terms of linear response.
In the equation above, kF is the Fermi wave vector in the
z direction, evaluated by computing KS bands in the 1D
Brillouin zone, and assuming a cylindrically symmetric and
translationally invariant charge density along the wire [31].
By comparing the number of particles and the number of
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helical turns in the simulation cell, we see that slightly less than
two electrons are accommodated in each turn. The noninteger
number of electrons per turn suggests that the system might
not be a closed-shell configuration. Therefore, the addition or
the subtraction of electrons, while adjusting the background
parameters to keep the system neutral, could enhance the
ground-state stability. We remark again that at rs = 30, DFT-
LSD for the homogeneous electron gas gives a well-localized
ground-state charge distribution at all spin polarizations. The
helix configuration, therefore, results exclusively from the
quasi-1D confining potential.

The discretization of the charge density into localized
blobs becomes apparent again already at rs = 32. Localization,
however, is still incomplete, and the charge distribution gives
rise to a crankshaft-like structure parallel to the wire axis.
The crankshaft harms are marked by pairs of elongated and
partially overlapping blobs of electronic charge. According to
the results of the minimization process, the number of blobs
in the simulation cell is 47 (i.e., significantly higher than the
number of electrons in the system).

The partition of charge into blobs becomes progressively
more marked with decreasing density, and is complete at
rs = 35 [see Fig. 1(c)]. At rs = 40 [Fig. 1(d)] the charge
distribution can be described as a line of charge dimers whose
direction displays a rather complex pattern in space. A closer
analysis, however, reveals that this pattern can be described
as due to a full rotation of the dimer bond about a direction
perpendicular to the wire axis. The dimer rotation is reflected
in the z dependence of the in-plane averaged density, defined
as

〈ρ(z)〉xy =
∫ L

0

∫ L

0
ρ(r)dxdy, (9)

and shown in Fig. 2 for rs = 40. Each of the density peaks in
the rapidly oscillating part of this plot (0 � z � 10rs) marks
the position of dimers perpendicular (or nearly perpendicular)
to the wire axis. The nearly constant portion at z ∼ 5rs

corresponds to a few dimers nearly parallel to the z axis. A
similar behavior is displayed by the in-plane average of the
electron kinetic energy, shown in the upper panel of Fig. 2 for
a comparison.

The number of blobs remains constant at 47 with decreasing
density from rs = 32 to rs = 40, thus preventing the identifi-
cation of blobs with single electrons. Clearly, the odd number
of blobs implies that not all of them form dimers. One defective
blob, in fact, is easily located and is identified by the vertical
arrow in Fig. 1(d). Apart from such an isolated defect, the
structure of the fully polarized system at rs = 40 is fairly
regular, with an intradimer separation almost exactly equal to
rs and a dimer-dimer separation of 1.4rs .

Our discussion has been focused, so far, on the dependence
of the electronic structure on the curvature of the external
potential. The shape of orbitals, however, is more directly
related to the spatial extension of the self-consistent KS
potential, which is very sensitive to the 1D density ρlin. To
explore this dependence, we carried out computations for
systems of the same length Lz, but different background radius
Rb, corresponding to systems having a number of electrons
between 16 and 32. The data for the density distribution at
rs = 30 and full spin polarization (Nup = N ) are displayed in
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FIG. 2. (Color online) (Top) Planar average of the electron density
ρ(z) (see the definition in Sec. III). (Bottom) Planar average of the
kinetic energy density ek(z) divided by the corresponding density
ρ(z). ek(z) is defined in analogy with the planar density ρ(z).

Fig. 3, which shows that with increasing ρlin the distribution of
charge blobs goes from linear toward more complex shapes,
the transition taking place in between N = Nup = 24 (linear)
and N = Nup = 26 (bent). More in detail, the N = 16 and
N = 18 samples show a cylindrical charge distribution; N =
20–24 samples correspond to linear chains of blobs, elongated
at first, and then progressively rounded with increasing N .
At N = 26, the structure is a zig-zag chain, transforming
into an helix above N = 28. The sequence of ground-state
structures as a function of N is similar for rs = 40, with the
exception that, at high N , the helix apparent in the rs = 30 data
is replaced by a string of dimers at rs = 40. The transition from

FIG. 3. (Color online) Density iso-surface ρ = 2ρb for fully spin-
polarized (Ndn = 0) samples of equal length Lz and different Rb at
rs = 30. (a) Nup = N = 16; (b) Nup = N = 20; (c) Nup = N = 24;
(d) Nup = N = 28.

013623-4



STRUCTURAL CHANGES IN QUASI-ONE-DIMENSIONAL . . . PHYSICAL REVIEW A 82, 013623 (2010)

0 1 2 3
-0.1

-0.08

-0.06

-0.04

-0.02

0.0

0.02

r / Rb

V
K

S
 (

r)
   

   
(a

to
m

ic
 u

ni
ts

)

(a)

(b)

(c)

(d)

(e)

12 16 20 24 28 32
-0.5

-0.25

0.0

0.25

0.5

N

10
00

  a
2,

   
a 4 

   
(a

rb
it

ra
ry

 u
ni

ts
)

FIG. 4. (Color online) Dependence of the Kohn-Sham potential
on the radial distance r for fully spin-polarized samples of equal
length Lz and different Rb at rs = 30. (and thus of different values
of the 1D density ρlin). In order of increasing VKS(0), the curves
correspond to: (a) N = 16, (b) N = 20, (c) N = 24, (d) N = 28, and
(e) N = 32. (Inset) N dependence of the quadratic (a2) and quartic (a4)
coefficients in the polynomial fit of VKS(r) along the radial direction.
The a2 coefficient has been rescaled (multiplied by 1000) to plot a2

and a4 on the same scale.

linear to nonlinear configurations, in particular, takes place at
the same size (N = 24) at rs = 30 and rs = 40.

As already suggested, the origin of these changes can be
traced back to the Kohn-Sham potential, whose dependence
on the radial distance is shown in Fig. 4. The progressive
widening and softening of VKS(r) with increasing rs is apparent
in this figure and can be quantified by fitting VKS(r) at short
r with the sum of a quadratic and a quartic term. The fitting
coefficients, given in the inset of Fig. 4, show that the quadratic
term becomes rapidly less important than the quartic one with
increasing N , until it vanishes for N ∼ 24. At the same time,
the coefficient of the quartic term increases with increasing
N , thus preserving the overall stability of the system, at the
expense of the linearity of the chain.

Comparison of the charge distribution with the information
given by VKS(r) suggests that the cylindrical charge distri-
bution for N = 16–18, as well as the elongated shape of
blobs seen at N = 20 is apparently due to the squeezing
effects of a narrow harmonic potential. For N > 24, when
the configuration is bent, confinement is exclusively due to the
quartic term, while the negative quadratic term gives rise to an
off-center minimum. At the size of the transition (N = 24),
the short-range portion of VKS(r) is very flat, and is well
represented by a r6 term.

Further insight into the stability of the ground-state
structure found by our minimizations is obtained by chang-
ing the net spin of the sample. Energy differences among
configurations of the same size and rs but different Nup,
Ndn tend to be small at the densities considered in our

FIG. 5. (Color online) Spin polarization iso-surface m(r) = 2 ρb

at background density corresponding to rs = 30 for samples of N =
32 electrons and different spin populations. (a) Nup = 32, Ndn = 0;
(b) Nup = 31, Ndn = 1; (c) Nup = 16, Ndn = 16. Blue (dark) surface,
spin-up electrons; yellow (light) surface, spin-down electrons.

study. Nevertheless, the results of our DFT-LSD computations
shown that the nearest-neighbor spin-spin coupling turns
from antiferromagnetic at rs = 25 to ferromagnetic for rs �
32. The evolution of the magnetic structure upon changing
the ratio of Nup and Ndn at fixed background density is
illustrated in Fig. 5, displaying magnetization iso-surfaces
for samples of N = 32 electrons at rs = 30. Starting from
the helical structure of the fully polarized case [Fig. 5(a)],
reversing one spin in the rs = 30 case gives rise to a localized
charge and spin blob that breaks the continuity of the helix
[see Fig. 5(b)]. Even more striking and, at the same time,
more significant, is the result obtained by reversing half of
the 32 electron spins. In the rs = 30 case, this breaks the single
helix into a double helix, whose two strands have opposite spin
[see Fig. 5(c)].

Reversing one spin on the rs = 40, fully polarized sample
localizes the reversed spin on the single blob not fitting
into the dimer pattern described above (see Fig. 6). This
observation confirms our identification of this unpaired blob
as a defect, whose stability is intrinsically lower than that
of the dimerized blobs. Reversing now half of the spins
in the rs = 40, N = 32 sample results into a configuration
somewhat similar to that of the rs = 30, Nup = Ndn case. At
this low density, however, a sizable amount of disorder makes
the identification of the underlying double-helix pattern more
difficult. The enhancement of disorder is probably due to the
further decrease of the exchange coupling with decreasing
density. A comprehensive view of the dependence of density
and magnetic structures on ρb (or equivalently rs) in globally
spin-compensated samples is given in Fig. 7.

The density of states computed from the Kohn-Sham eigen-
values in all cases consists of a few clearly identifiable bands,
some of them overlapping. Especially at low density, some
of the bands are disjoint. The results for fully spin-polarized

FIG. 6. (Color online) Spin polarization iso-surface m(r) = 2ρb

at background density corresponding to rs = 40. System of 32
electrons, Nup = 31, Ndn = 1. Blue (dark) surface, spin-up electrons;
yellow (light) surface, spin-down electron.
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FIG. 7. (Color online) Magnetization iso-surfaces for samples
of N = 32 electrons. (a) rs = 25 (|m| = 0.3ρb); (b) rs = 35 (|m| =
2ρb); (c) rs = 40 (|m| = 2ρb). Blue (dark) surface, spin-up electrons;
yellow (light) surface. spin-down electrons. The rs = 30 case is
shown in Fig. 5(c).

systems shown in Fig. 8 confirms our anticipation that these
samples are open-shell systems, whose Fermi energy falls in
the middle of a band. The quantitative picture emerging from
computations, however, depends on size and spin, and in the
case of the spin-compensated samples considered in our study
(Nup = Ndn = 16) the Fermi energy falls into a well-defined
and fairly wide gap for rs � 30.

Conductivity has been computed using the Kubo-
Greenwood formula, upon computing a fairly large num-
ber of empty states using the method briefly discussed in
Ref. [36]. The results (not shown) reflect the features seen in
the density of states (DOS). The low-frequency conductivity
is highest for ferromagnetic samples, apparently because of
their open-shell character. Moreover, in most cases we find
non-negligible conductivity down to fairly low frequency, due
to the presence of a few structural defects in the ground-state
electron distribution.
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FIG. 8. (Color online) Density of states for the Kohn-Sham
eigenvalues of fully spin-polarized samples at different background
densities, N = Nup = 32. The Fermi energy is εF , and ωP is the
plasmon frequency of the homogeneous electron gas at the same rs ,
given by ωP = √

3/r3/2
s .

B. Low-energy phonon-like excitations

The subdivision of charge into weakly overlapping blobs
motivates us to investigate the possibility of observing phonon-
like excitations, corresponding to small displacements of the
center of mass of individual blobs. This analysis, however,
appears to be meaningful only for the cases where the number
of blobs corresponds exactly to the number of electrons in the
system, in such a way that we can identify blobs with single
electrons. Our discussion below concerns one of such cases,
corresponding to Nup = N = 24, rs = 40. This system is in
fact of particular interest, since it marks the transition from
linear to zig-zag configurations, and phonons are expected to
reflect the impending change in the charge distribution.

To estimate phonon frequencies, we approximate Kohn-
Sham orbitals with single Gaussians, centered on the charge
blobs or, more precisely, at the position of the density
maximum of each blob. That is, we consider:

ψi(r) = A exp{−η1[(x − Xi)
2 + (y − Yi)

2] − η2(z − Zi)
2},
(10)

where Ri ≡ (Xi,Yi,Zi) gives the position of blob i, initially
set to coincide with the maximum of the corresponding
electron density. The set of orbitals is orthogonalized using
the Löwdin algorithm [37], which preserves the equivalence
of all orbitals, and then is normalized. The parameters η1 and
η2 in the Gaussian exponent are varied in order to minimize
the KS energy (at rs = 40 the optimal values of η1 and
η2 are η1r

2
s = 2.3552, η2r

2
s = 3.52). The approximation is

remarkably accurate at rs = 40, as confirmed by the low
increase (less than 3 × 10−5 Ha per electron) of the optimal
energy with respect to the plane-wave estimate, based on
the unconstrained optimization of ∼130 000 coefficients per
orbital.

The Hessian ∂2EKS/∂Rα
I ∂R

β

J for the N = 24 supercell
is computed by numerical differentiation of the energy
upon moving the center of Gaussians I and J by a small
displacement δ along the coordinates α and β, respectively.
The resulting matrix is combined with a kinetic part, to give
the dynamical matrix of the chain, whose diagonalization
provides an estimate for the phonon frequencies. Analysis
of the eigenvectors, or, more precisely, of the z dependence
of their polarization vector, allows us to associate each
eigenfrequency to a momentum qz, and thus to draw the
dispersion relation over the first Brillouin zone. The results
are shown in Fig. 9. Phonon frequencies belong to three
branches, two of them being degenerate. The nondegenerate
branch corresponds to vibrations along the z direction. It
is an acoustic branch, whose frequency vanishes at qz = 0,
then increases monotonically in moving toward the zone
boundaries. The two other branches correspond to vibrations
in the xy plane. The frequency of their qz = 0 modes does
not vanish, because of the restoring force due to the external
potential. Frequency, however, decreases with increasing |qz|,
nearly vanishing at the zone boundary. This behavior clearly
points to the easy deformation of the linear chain obtained by
displacing charge blobs perpendicularly to the wire axis, with
nearest neighboring atoms moving into opposite directions.
The nearly soft mode thus corresponds to the formation of
transversal dimers.
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FIG. 9. (Color online) Phonon dispersion relation for a fully spin-
polarized sample of N = 24 electrons at rs = 40. The 1D Brillouin
zone (along z) refers to the minimal unit cell of lattice constant
a = Lz/N , containing one single electron. The z or xy labels refer to
the bands’ polarization.

This result suggests that the linear to nonlinear transition
is second order, or at most weakly first order, in qualitative
agreement with the findings of Ref. [15] for the analogous
transition in classical ion systems.

IV. SUMMARY AND CONCLUSIONS

Low dimensional assemblies of ions trapped into static
and time-dependent electromagnetic fields have been exten-
sively investigated in the past, both computationally and
experimentally, and could find applications in metrology
and in quantum information. At the conditions of present
experiments, the motion of ions is classical, even though
quantum mechanical aspects (strictly required for quantum
information applications) are associated to the orientation and
dynamics of spin moments.

Recently, many experiments and calculations have been
devoted, in particular, to analyze the so-called linear to
zig-zag transition [16] taking place in nearly 1D ion systems
upon varying the linear density of ions and/or changing the
geometric parameters of the confining potential. In our paper,
we have investigated the geometric and magnetic structure,
electronic properties, and low-energy phonon-like excitations
of nearly 1D electron systems confined by the electrostatic
potential of a very thin cylindrical distribution of positive
charge. We have considered a wide range of relative spin
populations Nup and Ndn and focused on the low-density
regime (25 � rs � 40), where electrons tend to localize giving
rise to blobs of negative charge distributed in space. In many
respects, this model represents the quantum counterpart of the
classical ion systems.

The results of our computations, carried within DFT-LSD,
show that the quantum system displays a much wider variety of
configurations and properties than in the classical case. In fully
spin-polarized systems, we observe the stability of helicoidal
density distributions for 25 � rs � 30, turning into a twisted
string of localized charge dimers at lower density. Spin-
compensated samples at 25 � rs � 30 display an intriguing
double-helix structure, whose two strands have opposite spin
polarization. The double helix unrolls into two linear chains
of opposite spin at densities around rs = 35, providing one

of the few examples of virtually planar, zig-zag configuration
found in our computations. Also in the case of globally spin-
compensated samples, charge dimers form at lower density
(rs > 35) with a predominantly ferromagnetic coupling within
each dimer and antiferromagnetic coupling among dimers.
The spin-spin coupling, however, is low at densities such that
rs � 30, and a sizable amount of disorder is observed in the
distribution of spins. At all densities, computations with a
single spin-reversed impurity in an otherwise ferromagnetic
sample reveal localized magnetic and structural defects, which
might dominate the response of low-density electron chains to
external perturbations.

The density of states for the Kohn-Sham eigenvalues
consists of several bands, some of them partially overlapping,
some other disjoint, according to density, aspect ratio, and
spin population. The ferromagnetic samples analyzed in our
study tend to be open-shell systems up to the lowest densities
we investigated (rs = 40), while spin-compensated samples
are closed-shell systems with a fairly wide gap separating
occupied KS states from unoccupied ones. The open-shell
character of the ferromagnetic systems, together with the
defects found in fully or partially spin-compensated cases,
give rise to the non-negligible low-frequency conductivity
predicted by the Kubo-Greenwood formula for most of the
samples investigated in our study.

To the best of our knowledge, linear assemblies of electrons
have never been made experimentally by the techniques
used to trap atomic ions, although interesting experimental
efforts on the single electron scenario are paving the way
to an up-scaling. Our results provide additional motivations
for experimental investigations along this line. Our findings
suggest that electron systems of this kind, if ever realized,
would exhibit a broad range of unusual and surprising
properties, which could also find useful applications.

From a fundamental standpoint, our analysis provides
a useful complement to theoretical results obtained using
classical simulation approaches by emphasizing quantum
mechanical and spin effects that might become important even
in ion systems at sufficiently low T . Moreover, the density iso-
surfaces computed in our study provide a more comprehensive
view of the ground-state properties than the information
given by low-energy geometries of classical many-particle
systems. The elongated structures seen in some of the density
iso-surfaces described previously, for instance, are a pictorial
representation of low-energy valleys in the potential energy
surface, suggesting patterns for low-frequency excitations.

It is worth remarking that many-electron systems of this
kind are already being made in condensed matter, using
controlled doping to introduce mobile electrons into polymers
and into semiconductor nanostructures [42], giving rise to
quasi-1D structures whose size and density are not far from
those considered in our study. In these cases, however,
the measurement of the properties of the system and their
interpretation are certainly more difficult than in the ion-trap
scenario.

Our work paves the way to a variety of new studies. For
instance, an intriguing point to tackle would be the control of
one of the “defects” found in our simulation samples. This
could be realized by studying, via time-dependent density
functional theory, the dynamics of the defect and its motion
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across the chain as induced by an external perturbative
potential. It would be very interesting to study the effectiveness
of this scenario for quantum communication protocols such as
quantum state transfer, which are based on the use of quasi-1D
lattices of interacting particles.
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Vol. 1, pp. 301–449.

[38] G. Senatore and G. Pastore, Phys. Rev. Lett. 64, 303 (1990).
Most of the computations discussed in this paper are based on a
method different from the one used in our study. LSD results for
the Wigner transition obtained using the same method, however,
are also reported.

[39] R. Cortes-Huerto and P. Ballone, Phys. Rev. B 81, 205418
(2010).

[40] Computations have been performed using Ecut = 38/r2
s (Ry).

[41] P. C. Snijders and H. H. Weitering, Rev. Mod. Phys. 82, 307
(2010).

[42] S. M. Reimann and M. Manninen, Rev. Mod. Phys. 74, 1283
(2002).

013623-8

http://dx.doi.org/10.1016/S0031-8914(36)80313-9
http://dx.doi.org/10.1119/1.16314
http://dx.doi.org/10.1103/PhysRevLett.40.1639
http://dx.doi.org/10.1103/PhysRevLett.40.1639
http://dx.doi.org/10.1103/PhysRevLett.41.233
http://dx.doi.org/10.1088/0953-4075/42/15/154003
http://dx.doi.org/10.1088/0953-4075/42/15/154003
http://dx.doi.org/10.1103/RevModPhys.71.87
http://dx.doi.org/10.1016/0370-1573(80)90022-8
http://dx.doi.org/10.1103/PhysRev.46.1002
http://dx.doi.org/10.1039/tf9383400678
http://dx.doi.org/10.1039/tf9383400678
http://dx.doi.org/10.1103/PhysRevLett.75.4198
http://dx.doi.org/10.1088/0031-8949/71/1/010
http://dx.doi.org/10.1088/0031-8949/71/1/010
http://dx.doi.org/10.1038/334309a0
http://dx.doi.org/10.1126/science.279.5351.686
http://dx.doi.org/10.1103/PhysRevLett.59.2931
http://dx.doi.org/10.1103/PhysRevLett.59.2931
http://dx.doi.org/10.1103/PhysRevLett.96.103001
http://dx.doi.org/10.1103/PhysRevLett.96.103001
http://dx.doi.org/10.1038/357310a0
http://dx.doi.org/10.1038/357310a0
http://dx.doi.org/10.1103/PhysRevLett.68.2007
http://dx.doi.org/10.1103/PhysRevLett.68.2007
http://dx.doi.org/10.1103/PhysRevB.77.064111
http://dx.doi.org/10.1103/PhysRevB.77.064111
http://dx.doi.org/10.1103/PhysRevB.69.045324
http://dx.doi.org/10.1088/0953-8984/21/2/023203
http://dx.doi.org/10.1088/0953-8984/21/2/023203
http://dx.doi.org/10.1103/PhysRevLett.101.260504
http://dx.doi.org/10.1209/epl/i2006-10024-x
http://dx.doi.org/10.1209/epl/i2006-10024-x
http://dx.doi.org/10.1088/1367-2630/12/2/025017
http://dx.doi.org/10.1088/1367-2630/12/2/025017
http://dx.doi.org/10.1088/0953-4075/42/15/154003
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1080/00018730701223200
http://dx.doi.org/10.1103/PhysRevLett.74.4091
http://dx.doi.org/10.1103/PhysRevLett.92.207901
http://dx.doi.org/10.1103/PhysRevLett.93.263602
http://dx.doi.org/10.1103/PhysRevLett.93.263602
http://dx.doi.org/10.1038/nphys1032
http://dx.doi.org/10.1088/0953-4075/42/15/154009
http://dx.doi.org/10.1088/0953-4075/42/15/154009
http://dx.doi.org/10.1103/PhysRevLett.56.1198
http://dx.doi.org/10.1103/PhysRevLett.57.1769
http://dx.doi.org/10.1088/0953-4075/42/15/154010
http://dx.doi.org/10.1103/PhysRevA.81.022301
http://dx.doi.org/10.1103/PhysRevA.81.022301
http://dx.doi.org/10.1103/PhysRevB.76.045110
http://dx.doi.org/10.1103/PhysRevB.76.045110
http://dx.doi.org/10.1103/PhysRevB.73.125313
http://dx.doi.org/10.1038/386474a0
http://dx.doi.org/10.1126/science.275.5308.1922
http://dx.doi.org/10.1103/PhysRevLett.80.3336
http://dx.doi.org/10.1103/PhysRevLett.80.3336
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1063/1.1664978
http://dx.doi.org/10.1063/1.1664979
http://dx.doi.org/10.1103/PhysRevB.77.245312
http://dx.doi.org/10.1103/PhysRevLett.64.303
http://dx.doi.org/10.1103/PhysRevB.81.205418
http://dx.doi.org/10.1103/PhysRevB.81.205418
http://dx.doi.org/10.1103/RevModPhys.82.307
http://dx.doi.org/10.1103/RevModPhys.82.307
http://dx.doi.org/10.1103/RevModPhys.74.1283
http://dx.doi.org/10.1103/RevModPhys.74.1283

