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Classical phases and quantum angles in the description of interfering Bose-Einstein condensates
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The interference of two Bose-Einstein condensates, initially in Fock states, can be described in terms of their
relative phase, treated as a random unknown variable. This phase can be understood either as emerging from the
measurements or pre-existing to them; in the latter case, the originating states could be phase states with unknown
phases, so an average over all their possible values is taken. Both points of view lead to a description of probabilities
of results of experiments in terms of a phase angle, which plays the role of a classical variable. Nevertheless, in
some situations, this description is not sufficient: another variable, which we call the “quantum angle,” emerges
from the theory. This article studies various manifestations of the quantum angle. We first introduce the quantum
angle by expressing two Fock states crossing a beam splitter in terms of phase states and relate the quantum
angle to off-diagonal matrix elements in the phase representation. Then we consider an experiment with two
beam splitters, where two experimenters make dichotomic measurements with two interferometers and detectors
that are far apart; the results lead to violations of the Bell-Clauser-Horne-Shimony-Holt inequality (valid for
local-realistic theories, including classical descriptions of the phase). Finally, we discuss an experiment where
particles from each of two sources are either deviated via a beam splitter to a side collector or proceed to the
point of interference. For a given interference result, we find “population oscillations” in the distributions of the
deviated particles, which are entirely controlled by the quantum angle. Various versions of population oscillation
experiments are discussed, with two or three independent condensates.
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I. INTRODUCTION

If two or more Bose-Einstein condensates (BEC) merge,
they produce a density interference pattern, as shown by
spectacular experiments with alkali-metal atoms [1]. The usual
explanation is that, when spontaneous symmetry breaking
(SSB) takes place at the Bose-Einstein transition, each
condensate acquires a random but well-defined phase. The
interference pattern then exhibits the relative phase. The
simplest form of this view involves the use of a classical
complex variable for each condensate given by

〈ψα,β (r)〉 = √
nα,β (r)eiφα,β (r), (1)

where nα,β (r) are the condensate densities and φα,β (r) their
phases. Another quantum treatment of the problem can be
carried out by the use of “phase states,” which describe a
state of two condensates having a known relative phase and a
fixed total number of particles [2]; we will discuss the use of
phase states in the next section. For systems containing many
particles the phase then appears as a macroscopic quantity
that has classical properties but takes completely independent
random values from one realization of the experiment to the
next.

However, Bose-Einstein condensates are naturally de-
scribed by Fock states, states of definite particle number, for
which the phase is completely undetermined. Various authors
[3–10] have shown that repeated quantum measurements of
the relative phase of two Fock states cause a well-defined
value to emerge spontaneously but with a random value.
The probability of finding M particles, from a total of N ,
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at positions r1, . . . ,rM (M � N ) is shown to be given by

P (r1, . . . ,rM ) ∼
∫ π

−π

dλ

2π

M∏
i=1

[1 + cos(k · ri + λ)], (2)

where k is the wave number difference between the two
condensates. The product in the integrand can be interpreted
as describing the independent individual measurements of
position with the interference of two waves of relative phase
λ, resulting in probability [(1 + cos(k · ri + λ)]/2; the λ

integration expresses that this phase is initially completely
unknown. Nevertheless, after a series of measurements has
been performed (still for M � N ), the product of these
probabilities in Eq. (2) is found to peak sharply at some
particular value λ0, which becomes better and better defined
while the experiments accumulate but takes a completely
uncorrelated random value from experiment to experiment.
Figure 1 illustrates the peaking effect in the integrand in Eq. (2)
after 200 measurements (the method by which we choose the
position values is given in Ref. [11]).

Equation (2) is quite capable of describing the interference
pattern seen in the MIT experiment [11]. Note, however, that
the average over all possible phases makes the phase very
similar to the integrated variable λ in Bell’s theorem [12] or
to an “element of reality” as defined by Einstein, Podolsky,
and Rosen [13] and we know that this notion combined
with locality leads to contradictions with quantum mechanics.
Equation (2) can thus be seen as a “classical” equation, which is
unlikely to be able to describe some truly quantum experiments
(for instance, it cannot violate Bell’s theorem).

In some conditions, quantum interference effects arise
so that the description in terms of a classical phase is no
longer sufficient; a second angle (or its equivalent) becomes
necessary: the “quantum angle,” which controls the amount
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FIG. 1. The integrand
∏M

i=1[1 + cos(k · ri + λ)] of Eq. (2) as a
function λ after 200 measurements at positions ri. These first 200
measurements essentially convert a double Fock state into a state
resembling a phase state, peaked sharply at some particular value λ0,
which is completely random from experiment to experiment.

of “quantumness” in the results of an interference experiment.
This article discusses the role of the quantum angle in general.
While it is possible to carry out such a discussion for the
position measurements in free space, as in Eq. (2), it turns
out that interferometers with dichotomic outputs provide
especially interesting results, for instance, in terms of quantum
nonlocality; this is why interferometers will be the central
subject of this article.

In Sec. II we show how this quantum angle already appears
in a very simple situation, with one single beam splitter on
which two Fock states interfere; we relate the quantum angle
to phase off-diagonal terms. In Sec. III we study the effects
of the quantum angle in an experiment with an interferometer
providing dicthotomic results in two different regions of space
and leading to violations of the Bell inequalities. But other
experiments involving directly the quantum angle are also
possible. One was suggested to us by the recent article of
Dunningham et al. [14], who considered the interference
pattern of three merging condensates and the resulting “phase
Schrödinger cat state” formed by the remaining (nonmeasured)
particles. In Sec. IV we consider a simplified version of this
experiment with two condensates only, which interfere on a
beam splitter; among the total of N particles, only M interfere
and are detected at locations 1 and 2; the remaining are
deflected near their sources and separately counted in detectors
3 and 4 (mα particles from condensate α, and mβ particles from
condensate β). For fixed numbers of such particles in detectors
1 and 2, the numbers found in detectors 3 and 4, as a function
of mα , are found to have an oscillating distribution, a “fringe”
pattern when plotted over an ensemble of such experiments.
We will see that this effect, which we call “population
oscillations” (PO), involves the interference of two peaks in
the quantum angle distribution; thus such an experiment would
also directly reveal the existence of the quantum angle. One
can show [15] how these oscillations represent an example
of quantum interference of macroscopically distinct states
(QIMDS), a property of quantum mechanics that can verify
its validity in large scale systems [16].

II. A SIMPLE INTERFEROMETER

In the derivation of Refs. [10,17,18], both the classical
phase λ and the quantum angle � had similar origins:

FIG. 2. Two Fock states, with populations Nα and Nβ , pass
through a beam splitter and are then made to interfere at detectors 1
and 2.

conservation rules, which take the form of integrals over these
angles. Here we show that phase states can also be used to
obtain the same results, following a reasoning that is similar
to that found, for instance, in Ref. [2]. Mathematically, of
course, the two derivations are equivalent; but, physically, it is
interesting to obtain the same results from two different points
of view.

We consider the experiment schematized in Fig. 2, where
two Fock states with populations Nα and Nβ are emitted by two
sources, cross a beam splitter, and interfere in the regions of
detection 1 and 2. Despite the apparent simplicity of this device
we have shown in a recent article that remarkably complex
detector distributions can result [19]. The double Fock state
describing the sources is

|Nα,Nβ〉 = 1√
Nα!Nβ!

a†Nα

α a
†Nβ

β |0〉, (3)

where |0〉 is the vacuum state and a†
α creates particle in state α

corresponding to one source and a
†
β creates a β-state particle

corresponding to the other source. The total number of particles
is N = Nα + Nβ .

The destruction operators a1 and a2 associated with the
output modes can be written in terms of the mode operators
at the sources aα, aβ by tracing back from the detectors to the
sources, with a phase shift of π/2 at each reflection:

a1 = 1√
2

[a + iaβ]; a2 = 1√
2

[iaα + aβ]. (4)

The probability amplitude describing the system after
crossing the beam splitter with m1,m2 particles in the detector
regions is

Cm1,m2 = 〈0| a
m1
1 a

m2
2√

m1!m2!
|Nα,Nβ〉 (5)

with m1 + m2 = N . To compute the state a
m1
1 a

m2
2 |Nα,Nβ〉, we

expand the double Fock state in normalized (relative) phase
states, defined for two condensates (with constant total particle
number N ) as

|φ,N〉 = 1√
2NN !

(a†
α + eiφa

†
β)N |0〉

= 1√
2NN !

N∑
n=0

N !√
n!(N − n)!

eiφ(N−n)|n,N − n〉, (6)
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where N = Nα + Nβ . The expansion in terms of the phase
states is

|NαNβ〉 =
√

2NNα!Nβ!

N !

∫ π

−π

dφ

2π
e−iNβφ|φ,N〉. (7)

The action on phase states of the operators ai given in (4) is
particularly simple; if we write them as

ai = viαaiα + viβaβ, (8)

[with viα and viβ identified by Eqs. (4)] we merely obtain1 [11]:

ai |φ,N〉 =
√

N

2
(viα + viβeiφ)|φ,N − 1〉. (9)

Applying this result several times to (7) then gives

a
m1
1 a

m2
2 |NαNβ〉 =

√
Nα!Nβ!

2N

∫ π

−π

dφ

2π
R(φ)|0〉, (10)

where m1 + m2 = N and

R(φ) = 2N/2e−iNβφ(v1α + v1βeiφ)m1 (v2α + v2βeiφ)m2

= e−iNβφ(1 + ieiφ)m1 (i + eiφ)m2 . (11)

When we insert this result into Eq. (5) and take the square
modulus, we obtain the probability in the form:

Pm1m2 = Nα!Nβ!

m1!m2!

∫ π

−π

dφ′

2π

∫ π

−π

dφ

2π
R∗(φ′)R(φ) (12)

and find on multiplying all these factors out:

Pm1m2 = Nα!Nβ!

m1!m2!

∫ π

−π

dφ′

2π

∫ π

−π

dφ

2π
cos[(Nα − Nβ)(φ − φ′)/2]

×
[

cos

(
φ − φ′

2

)
+ cos

(
φ + φ′ − π

2

)]m1

×
[

cos

(
φ − φ′

2

)
− cos

(
φ + φ′ − π

2

)]m2

(13)

It is then natural to make a variable change by introducing the
average of the two phases

λ = (φ + φ′ − π )/2 (14)

now identified as “the phase angle,” as well as the difference

� = (φ − φ′)/2, (15)

which we call the “quantum angle.” Equation (13) then
becomes

Pm1m2 = Nα!Nβ!

N !

1

m1!m2!

∫ π

−π

d�

2π

∫ π

−π

dλ

2π
cos[(Nα − Nβ)�]

× [cos(�) + cos(λ)]m1 [cos(�) − cos(λ)]m2 . (16)

1The phase state is obtained by repeated actions of the creation
operator a

†
φ = (a†

α + eiφa
†
β ) over vacuum, but no action of the

“orthogonal” creation operator a
†
φ+π/2; the action of the annihilation

operator associated to the former operator is therefore simple, whereas
that of the latter gives zero. Expanding the ai’s over the aα,β , and then
over aφ and aφ+π/2, and keeping only the component on the first
annihilation operator then directly leads to (9).

This probability is a double sum over the variables λ and � of
a function of these variables as well as of the results m1 and
m2. According to (15), if one sets � = 0 or � = ±π in this
function, one obtains the contributions of the terms that are
diagonal in the phase representation. The relevant values of
the phase in the initial state then appear directly. For instance,
if the function has a single narrow peak around some particular
value, the phase is well defined; if it has several peaks at various
values of the phase, for a pure state the system is in a coherent
superposition of different values of the phase (a “Schrödinger
cat” if these values are very different and if the system contains
many particles). The role of the quantum angle � is precisely
to signal the coherent character of the different values of the
phase (off-diagonal terms in the phase representation). Each
time nonzero values of this quantum angle play a role, the
classical description of Eq. (2) is not sufficient; the nonclassical
behavior occurs because the factors [cos(�) ± cos(λ)]/2 in the
integrand of (16) can become negative, so they can no longer
be interpreted as probabilities. In the (λ,�) plane, we will call
the “classical region” the region that lies around the λ axis at
� = 0 and the “quantum region” the rest of the plane.2

In Fig. 3(a), we see the absolute square of the coefficient R

of Eq. (11), showing two peaks for a particular choice of m1

and m2 and with Nα = Nβ and M = N . This is not surprising
since, classically, an ambiguity in the sign of the phase angle
difference also occurs in this interferometer: two different
values of this difference lead to the same intensities in the two
output arms. Figure 3(b) shows a plot of the corresponding
integrand of Eq. (16). The diagonal phase contributions arise
from the peaks on the lines � = 0,±π . Here the system is in
a pure state, so these peaks are necessarily coherent; peaks in
the quantum regions (away from � = 0,±π.) are also visible,
which have a negative sign and therefore signal destructive
interference (for these particular results of measurement; for
other values, it is constructive).

In Fig. 4 we show a particular example of the probability
distribution for finding the set of {m1,m2} particles in the
detectors. The structure has a surprisingly complex depen-
dence on the numbers of particles in the Fock state inputs.
The simple interferometer is discussed more completely in a
separate publication [19].

In this section we have recovered by the use of phase
states the basic results obtained from conservation rules in
Refs. [10,17]. The present method illustrates the relation
between the two angles and the diagonal or off-diagonal phase
terms and therefore the role of the classical and nonclassical
region in the λ, � plane. We now examine how the quantum
angle changes the description of some other processes for
Bose-Einstein condensates involving several interferometers.

III. DOUBLE INTERFEROMETER

We now discuss the role of the quantum angle in an
interferometer experiment designed to observe violations of

2The regions at � = ±π are also classical (i.e., equivalent to � =
0), as can be seen by showing that the integration segments −π �
� � −π/2 and π/2 � � � π (or equivalently π/2 � � � 3π/2)
give an identical contribution as the region −π/2 � � � π/2. To do
so make the substitution �′ = � − π and λ′ = λ − π .
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FIG. 3. (Color online) The left side (a) shows the coefficients |R(φ)|2 in an experiment where one finds m1 = 9 and m2 = 23. The
interferometer is not able to distinguish two values of the phase difference φ0 between two sources; there remains an ambiguity between π

2 + φ0

or π

2 − φ0. Here φ0 = ±1.12. The right side (b) shows the integrand of Eq. (16) for the same values of variables, and Nα = Nβ . Regions on the
lines � = 0, ±π, correspond to diagonal terms in relative phase, while those elsewhere represent off-diagonal contributions.

the Bell-Clauser-Horne-Shimony-Holt (BCHSH) inequality
[20], already discussed in Ref. [17]. The device is shown
in Fig. 5 and involves a twin Fock state entering a double
interferometer, which can be used to measure the relative
phase of the two condensates in two remote regions of space.
The relevance of twin Fock states for phase measurements in
simple interferometers was already discussed in Ref. [21] in
1993. The measurement of the phase of an arbitrary quantum
state at different locations of space was discussed in Ref. [22]
in 1994. A general discussion of the properties of the quantum
operator associated with the phase difference between two
modes can be found in Ref. [23]. A more recent Ref. [24]
gives a discussion of the interference of two Fock states and
of the details of the statistics of the position measurements, in
the context of interferences in free space.

A. Quantum calculation

The destruction operators a1 · · · a4 associated with the
output modes can be written in terms of the mode operators
at the sources aα,aβ,aα′ , and aβ ′ by tracing back from the
detectors to the sources, with a phase shift of π/2 at each
reflection, ζ or θ at the shifters, and a 1/

√
2 at each beam

splitter. This gives the projections of the two different source
modes onto each detector mode

a1 = 1
2 [ieiζ aα + iaβ]; a2 = 1

2 [−eiζ aα + aβ ],
(17)

a3 = 1
2 [iaα + ieiθaβ ]; a4 = 1

2 [aα − eiθaβ],
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m1
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P
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b

FIG. 4. The probability distribution of Eq. (16) for input numbers
Nα = 26, Nβ = 24.

where we have eliminated aα′ and aβ ′ , which contribute
only vacuum. The source state, having Nα and Nβ particles
in the two condensates, is again given by Eq. (3). The
amplitude describing the system crossing all beam splitters
with m1 · · · m4 particles in the detectors is

Cm1,..,m4 = 〈m1,m2,m3,m4|
〉

= 〈0| a
m1
1 · · · am4

4√
m1! · · ·m4!

a†Nα
α a

†Nβ

β√
Nα!Nβ!

|0〉. (18)

The calculation is similar to that of Sec. II and can be found
in Refs. [17,18]. We substitute (17) into this expression, make
binomial expansions of the sums, evaluate the expectation
value of the operators, replace Kronecker δ’s by integrals in

FIG. 5. Two Fock states, with populations Nα and Nβ , enter beam
splitters and are then made to interfere in two different regions of
space DA and DB , with detectors 1 and 2 in the former and 3 and 4 in
the latter. In each of the channels j = 1,2,3,4 particles are counted.
We assume that no particle is missed: the sum M of the four mj ’s is
equal to N = Nα + Nβ .
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the form δNγ ,p = ∫ π

−π

dλγ

2π
ei(p−Nγ )λγ with γ = α,β, and make

an appropriate variable change. We then obtain

P(m1,m2,m3,m4) = 2−NNα!Nβ!

m1! · · · m4!

∫ π

−π

dλ

2π

×
∫ π

−π

d�

2π
cos[(Nα − Nβ)�]

×
4∏

i=1

[cos � + ηi cos(λ − ϕi)]
mi (19)

where η1 = η3 = 1; η2 = η4 = −1; ϕ1 = ϕ2 = −ζ ; ϕ3 =
ϕ4 = θ . In Ref. [18] we also consider the case where only
M particles are measured among a total number of N , by
assuming losses of particles either near the sources or near
the detectors. The sum of the probabilities associated with the
orthogonal states corresponding to the result of measurement
is then

P(m1,m2,m3,m4) = 2N−2MM!(N/2!)2

N !m1! · · ·m4!

∫ π

−π

dλ

2π

×
∫ π

−π

d�

2π
[cos �]N−M

×
4∏

i=1

[cos � + ηi cos(λ − ϕi)]
mi (20)

(for simplicity, from now on we assume that Nα = Nβ ; the
probabilities have now been normalized to a total probability
of 1 for all events associated with the detection of M particles).

We have associated values of η that are +1 for channels
of detection 1 and 3 and −1 for channels detectors 2 and
4. Assume now that Alice, in the first detection region 1,
calculates the product of all η values that she obtains, that is, the
local parity (−1)m2 , which is calledA = ±1; similarly, Bob, in
the second detection region 2, calculates B = (−1)m4 = ±1.
We then have two functions to which the BCHSH theorem can
be applied. The quantum average of their product is:

〈AB〉 =
∑

m1···m4

(−1)m2+m4P(m1,m2,m3,m4). (21)

The result for the case where all particles are measured
(M = N ) is found to be [17]:

〈AB〉 =
[

cos

(
ζ + θ

2

)]N

. (22)

B. Classical phase situations

We consider the case where M � N particles are detected;
in (20), the factor [cos �]N−M is peaked sharply at � = 0.
Setting cos � to unity in the product and doing the integral
over � gives

P(m1,m2,m3,m4) = M!

4Mm1! · · · m4!

∫ π

−π

dλ

2π

×
4∏

i=1

[1 + ηi cos(λ − ϕi)]
mi , (23)

where we have taken the N → ∞ limit of the normalization
factor. The quantum angle � has now disappeared from the
result, so in the integrand all the terms in the product are
positive and can be interpreted as probabilities. The BCHSH
inequality [20] then provides

〈AB〉 + 〈AB′〉 + 〈A′B〉 − 〈A′B′〉 � 2 (24)

where letters with and without primes imply measurements at
differing angles. No violation of this inequality is possible as
long as (23) applies.

This inequality can also be checked explicitly by computing
the value of the average 〈AB〉 from (23); we find

〈AB〉 = M!(
M
2 !

)2
2M

[
cos

(
ζ + θ

2

)]M

. (25)

C. Fully quantum situations

We now assume that all particles are measured. For conve-
nience, Alice’s measurement angle is taken as φa = ζ/2 and
Bob’s as φb = −θ/2. We define E(φa − φb) = cosN (φa − φb)
and set φa − φb = φb − φa′ = φb′ − φa = ξ and φb′ − φa′ =
3ξ . We now maximize Q = 3E(ξ ) − E(3ξ ) in order to find
the greatest violation of the inequality for each N . For N = 2
we find Qmax = 2.41 at ξ = 0.39; for N = 4, Qmax = 2.36 at
ξ = 0.26; and for N → ∞, Qmax → 2.32 with ξ ∼= 0.52/√

N . The system continues to violate local realism for
arbitrarily large condensates.

Despite the identical dependence in the cosine factor in (25)
and (22), the effect of the prefactor, always equal to or less
than 1/2 in the classical case, is to prevent the violations of the
inequalities to occur. Actually, quantum violations disappear
even when only one particle is missed in the measurement
process (M = N − 1) as discussed in Ref. [17].

D. Discussion

It is interesting to see in more detail how the quantum
angle is involved in the BCHSH violation. For instance, Fig. 6
shows the variations as a function of λ and � of the function
that appears in the integral of Eq. (20), for Nα = Nβ = M =
40, and θ = ζ = 0. The left part of the figure assumes that
m1 = 6, m2 = 14, m3 = 14, and m4 = 6, the right part that
m1 = 6, m2 = 14, m3 = 15, and m4 = 5; one immediately
notices that, depending on the parity of the sum m2 + m4,
the peaks in the “quantum region” � 
= 0 have the opposite
sign. This explains why the quantum effects will be enhanced
if Alice and Bob decide to choose the parities (product of
all their results η’s) as their local observables A and B. It is
then natural that strong violations of the BCHSH inequalities
should be obtained for this particular choice, while of course
Alice and Bob could combine their local results in many other
ways to obtain functions A and B.

Suppose now we delete the leading normalization factors in
each of Eqs. (20) and (23) and then evaluate the unnormalized
values of 〈AB〉 for M = 2. The result in each case is
4[cos( ζ+θ

2 )]2. Thus the entire difference between quantum and
classical averages is in the normalization given, respectively,
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FIG. 6. (Color online) Plot as a function of λ and � of the integrand in Eq. (20) for Nα = Nβ = M = 40 and θ = ζ = 0. (Left) m2 + m4 =
20; (right) m2 + m4 = 19. Depending on the parity of this sum, the peaks in the “quantum region” � 
= 0 have the opposite sign; this indicates
that the measurements of parities should be a good choice of local observables to obtain strong violations of the BCHSH inequalities.

by the integrals over � and λ of

Lqu(ξ,�,λ) =
′∑

m1···m4

[cos � + ηi cos(λ + ζ )]m1

× [cos � + ηi cos(λ + ζ )]m2

× [cos � + ηi cos(λ − θ )]m3

× [cos � + ηi cos(λ − θ )]m4 , (26)

where the sum is on all mi totaling 2; and

Lcl(ξ,λ) =
′∑

m1···m4

[1 + ηi cos(λ + ζ )]m1 [1 + ηi cos(λ + ζ )]m2

× [1 + ηi cos(λ − θ )]m3 [1 + ηi cos(λ − θ )]m4 .

(27)

For M = 2 we explicitly get

Lqu(ξ,�,λ) = 8 cos2 � (28)

Lcl(ξ,λ) = 8. (29)

The quantum normalization integrand clearly yields a smaller
normalization integral enhancing the 〈AB〉 average and allow-
ing the violation of the BCHSH inequality. It is this variation
with quantum angle that allows the violation.

IV. POPULATION OSCILLATIONS

Dunningham et al. [14] have considered a situation in which
three condensates, a, b, and c, each contain initially N/3
particles. A number of them, M < N , form an interference
pattern on a screen, while the remaining particles ma,mb,

and mc are counted elsewhere (perhaps having been deflected
by beam splitters while traveling from the sources) or in a
second step of the experiment. The numbers of such particles,
as a function of ma and mb, are found to have an oscillating
distribution when plotted over an ensemble of experiments
corresponding to the same interference pattern for the first
M particles. This phenomenon was explained as arising from
the interference of the two coherent components of a phase
“Schrödinger cat state” of the system.

A. Population oscillations by two-source interferometer

Here we present a simpler version of this experiment based
on the interferometer shown in Fig. 7, which nevertheless
retains the essential features of the three condensate device.
The general idea is that condensates provide, in a sense, many
realizations of the same single particle quantum state, since
they contain many particles in the same individual state. One
can then perform experiments where some particles are used
to measure one quantum observable, some others another
“incompatible” observable, which would be impossible with
one single realization of the quantum state. In this case, the
incompatible (noncommuting) observables will be the phase
and the number of particles.

1. Experimental setup

In our version of the experiment, M particles from the two
sources interfere in the detector D made up of a beam splitter
and subdetectors 1 and 2; the other particles are detected
before they reach the interferometer, with the help of additional

FIG. 7. Two source condensates states, with populations Nα and
Nβ , emit particles that cross beam splitters. Some particles reach the
central beam splitter followed by detectors 1 and 2, registering m1

and m2 counts. The other particles are then described by a quantum
superposition of macroscopically distinct states propagating inside
the region shown with a dotted line; they eventually reach counters 3
and 4, which register mα and mβ counts, respectively. A phase shift
ϑ = π/2 occurs in one path.
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beam splitters followed by detectors 3 and 4. For the sake of
simplicity, we assume that all beam splitters have 1/2 reflec-
tivity and transmissivity; we write m1 and m2 as the number
of particles seen at subdetectors 1 and 2, respectively (with
M = m1 + m2); mα and mβ are the number of particles seen in
detectors 3 and 4. In this scheme, some of the particles are used
to measure the relative phase of the two sources Nα and Nβ , and
the others to obtain information about their initial populations.

Assume for a moment that the central beam splitter is
removed, so no interference effect between the sources takes
place at detectors 1 and 2. Then the experiment separates
into two independent parts: the detectors 1 and 3 measure the
population of one source, and the sum m1 + mα gives an exact
measurement of the initial population Nα . Of course m1 and
mα may fluctuate separately, with a constant sum, but their
most likely value is Nα/2. Similarly, detectors 2 and 4 give
information on the population of the other source, and the most
likely number of their counts is Nβ/2.

Now, when the central beam splitter is inserted, the counts
of detectors 1 and 2 can no longer be ascribed to any of
the sources, which are indistinguishable for the detectors;
what they actually measure is their relative phase. In classical
optics, for instance, if the sources are lasers with the same
intensity and a phase difference φαβ , the numbers of counts
m1 and m2 are, respectively, proportional to sin2(λ/2) and
cos2(λ/2), with3 λ = φαβ − π/2; the counting rates therefore
provide information about the absolute value λ but not its
sign. In quantum mechanics, this sign uncertainty becomes
an essential ingredient for the creation of a superposition
of two states with different phases (a “Schrödinger cat”):
the measurement process at the interferometer projects the
initial state of the system onto two categories of phase states
with opposite phase difference, between which no selection
is made. Therefore, after the interference measurement, the
system reaches a coherent superposition of states with opposite
values of the phase.

How can this superposition be observed? The conjugate
variable of the relative phase is the population difference
between the sources; therefore, as the authors of Ref. [14]
have remarked, if one measures the absolute value of this
difference, one expects to see interference effects between
the two components of the coherent state with opposite
signs for the phase. Fortunately, even with the central beam
splitter inserted, detectors 3 and 4 can still be used to obtain
information about the populations of the sources. So, for one
given value of the ratio m1/m2, one expects oscillations of the
probabilities associated with given values of m3 and m4, that
is, “population oscillations.” This is the general physical idea,
based on the fact that Fock states provide many realizations
of one single-particle quantum state, as mentioned in the
introduction of this section. We will see that, in our analysis,
the interference that produces the oscillations occurs between
peaks in the quantum-angle distribution.

Leggett [16] has considered how one might observe coher-
ent superpositions of large numbers of particles by observing
their interference (“quantum interference of macroscopically

3A phase shift π/2 is introduced by each reflection on a beam
splitters

distinct states” or QIMDS). One can tell the difference between
such a pure state and a statistical mixture only by observing
the off-diagonal matrix elements between the different wave
function elements. Our population oscillations are the result
of such an interference as we will discuss below.

The experimental setup of Fig. 7 is completely defined,
as required in the Copenhagen view of quantum mechanics;
in particular, the setup does not have to be changed from an
interference setup to a population measurement setup in the
middle of the experiment. We now calculate the probabilities
associated with the various possible results of measurements.

2. Qualitative analysis

We assume that all particles are detected; the total number
then is N = Nα + Nβ = m1 + m2 + mα + mβ . We will vary
the number of particles in detectors 3 and 4 at constant
N,M,m1,m2 to examine the behavior of the probability on
the set {mα,mβ}. The destruction operators for particles at the
detectors in terms of the source destruction operators are

a1 = 1

2
(aα + iaβ ); a2 = 1

2
(iaα + aβ)

(30)

a3 = 1√
2
aα; a4 = 1√

2
aβ.

The probability amplitude for detecting the set {m1,m2,mαmβ}
is given by

Cm1m2,mα,mβ
= 1√

m1! m2mα! mβ!
〈0|am1

1 a
m2
2 a

mα

3 a
mβ

4 |NαNβ〉.

(31)

Expand the double Fock state in phase states [Eq. (7)] and
operate with a

m1
1 a

m2
2 so the state created by the interferometer

detectors 1 and 2 is

|�〉 ≡ a
m1
1 a

m2
2 |NαNβ〉 =

√
Nα!Nβ!

2N

×
∫ π

−π

dφ

2π
e−iNβφR(φ)|φ,N − M〉, (32)

where m1 + m2 = M and

R(φ) = (eiθ + ieiφ)m1 (ieiθ + eiφ)m2 . (33)

If we take θ = π/2 then R(φ) takes the simple form

R(φ) = (2ieiφ/2)M
(

cos
φ

2

)m1
(

sin
φ

2

)m2

. (34)

Figure 8 shows T (φ) = R(φ)(2ieiφ/2)−M , which has two peaks
at ±φ0 = ± arctan

√
m2/m1. This is not surprising since,

classically, the ratios of the intensities in the output arms
of the interferometer determines the absolute value of the
phase difference between the two input arms but not its sign.
Separating negative and positive contributions of φ provides

|�〉 = |ψ+〉 + (−1)m2 |ψ−〉, (35)

where

|ψ±〉 ∼ e∓i(Nβ−M/2)φ0 |±φ0,N − M〉. (36)

We assume that M is large, so the peaks are sharp and these two
branches are orthogonal for any φ0 not too near zero; and they
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are macroscopic as long as N − M is large. The interference
between these two states (QIMDS) is provided by the side
detectors in Fig. 7. Because we have

a
mα

3 a
mβ

4 |±φ0,N − M〉 ∼ e±imβφ0 |0〉 (37)

then the probability of gettting the set {m1,m2,mα,mβ} is

P (m1,m2,mα,mβ) ∼ 1 + (−1)m2 cos [(mα − mβ)φ0], (38)

where we have taken Nα = Nβ. The cosine terms in this

come from the two cross terms 〈ψ±|a†mα

3 a
†mβ

4 a
mα

3 a
mβ

4 |ψ∓〉.
If one does the interferometer experiment for fixed source
numbers, say, Nα = Nβ , and considers only those experiments
having the same m1,m2 then the interference between the two
elements will show up in a cosine variation of probability
with mα . We call this effect “population oscillations.” These
oscillations are beyond SSB since they disappear if one starts

from either of Eqs. (1) or (6). With a phase state of phase χ ,
for instance, the action of the destruction operators a1,2 on
this state introduces χ instead of an integration variable φ into
Eq. (32) without the φ integral. No interference effect between
two phase peaks occurs and the probability is proportional to
|R(χ )|2. One gets a mα,mβ dependence of the probability
that is proportional to a simple binomial distribution (N −
M)!/mα! mβ!, without any oscillation. Actually the angle χ

plays no role at all in this dependence, which is natural since
detectors 3 and 4 do not see an interference effect between two
beams; they just measure the intensities of two independent
sources after a beam splitter at their output.

3. Exact quantum calculation

The probability amplitude for detecting the set
{m1,m2,mαmβ} can be manipulated differently:

Cm1m2,mα,mβ
= 1√

m1!m2mα!mβ!Nα!Nβ!
〈0|am1

1 a
m2
2 a

mα

3 a
mβ

4 a†Nα

α a
†Nβ

β |0〉

=
√

Nα!Nβ!√
m1!m2!mα!mβ!

1

(
√

2)mα+mβ 2m1+m2

∑
p,q

m1!

p!(m1 − p)!

m2!

q!(m2 − q)!
im1−piqδp+q+mα,Nα

δm1+m2−p−q+mβ.Nβ

=
√

m1!m2!Nα!Nβ!

mα!mβ!

iNα+m1−mα

(
√

2)mα+mβ 2m1+m2

m1∑
p=0

(−1)p

p!(m1 − p)!(Nα − mα − p)!(p + mα + m2 − Nα)!
. (39)

The probability of getting the set {m1,m2,mα,mβ} for the sources numbers Nα,Nβ is then

P (m1,m2,mα,mβ) = m1!m2!Nα!Nβ!

mα!mβ!2m1+m2 2N

⎡
⎣ m1∑

p=0

(−1)p

p!(m1 − p)!(Nα − mα − p)!(p + mα + m2 − Nα)!

⎤
⎦t2, (40)

a result that allows simple numerical computations.

An alternative form suitable for illustrating the phase relations
is obtained if we choose to replace one of the δ functions in
Eq. (39) by an integral, that is,

δp+q+mα,Nα
=

∫ π

−π

dφ

2π
ei(p+q+mα−Nα )φ.

1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0
T

FIG. 8. Variations of T (φ) obtained for m1 = 17 and m2 =
83. The peaks are at φ0 = ±0.73π (the phase choice θ = π/2
gives symmetrical peaks about zero). The relative sign of the two
peaks is (−1)m2 . For large numbers of particles, the measurement
produces a coherent superposition of macroscopically distinct states
(“Schrödinger cat”).

The other δ function simply requires N = m1 + m2 + mα +
mβ. For the amplitude we then get

Cm1m2,mα,mβ
=

√
Nα!Nβ!√

m1!m2!mα!mβ!

1

(
√

2)mα+mβ 2m1+m2

×
∫ π

−π

dφ

2π
e−i(Nα−mα )φ(eiφ + i)m1 (ieiφ + 1)m2 .

(41)

Squaring C introduces another angle φ′. A change of variables
to the relative phase angle

λ = (φ + φ′ − π )/2 (42)

and the quantum angle

� = (φ − φ′)/2 (43)

gives the form

P (m1,m2,mα,mβ)

= Nα!Nβ!

m1!m2!mα!mβ!2N

∫ π

−π

dλ

2π

∫ π

−π

d�

2π
e−i(Nα−mα−Nβ+mβ )�

× [cos � + cos λ]m1 [cos � − cos λ]m2
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FIG. 9. Plot of P (m1,mα) given by Eq. (40) versus mα for Nα =
Nβ = M = 100, m1 = 17, and m2 = 83. If m2 is even, the central
dip is replaced by a peak.

= Nα!Nβ!

m1!m2!mα!mβ!2N

∫ π

−π

dλ

2π

∫ π

−π

d�

2π
cos [(Nα−mα

−Nβ + mβ)�][cos � + cos λ]m1 [cos � − cos λ]m2,

(44)

Again we see the appearance of the quantum angle �. We
can limit the integration over � to nonredundant regions by
noting that a segment from π/2 to 3π/2 is identical to that
from just −π/2 to π/2, as seen by making the substitutions
�′ = � − π and λ′ = λ − π (cf. footnote 2 in Sec. II.)

A typical example of a population oscillation plot computed
from Eq. (40) is shown in Fig. 9. We use Nα = Nβ , but from
Eqs. (40) and (44) we see that the result would not change if
we took Nα 
= Nβ .

4. Classical and quantum regions for the distribution

In Eq. (44) the mα and mβ dependencies appear as a
cosine Fourier transform with respect to the quantum angle �

variable; this cosine Fourier transform is therefore the origin
of the population oscillations. If � is set to zero, all mα and
mβ dependencies, and therefore the population oscillations,
completely disappear.

We will therefore now concentrate on the distribution
F (�,λ) that appears in Eq. (44):

F (�,λ) = [cos � + cos λ]m1 [cos � − cos λ]M−m1 (45)

and study its variations as a function of the two variables,
λ and �. As in Sec. II, the band near � = 0 will be called
the “classical region,” the rest of the λ,� plane the “quantum
region.”

By taking the derivatives of the function F (�,λ), we find4

that the peaks occur at

�m = 0 and λm = ±2 arctan

(√
m2

m1

)
, (46)

�m = ±2 arctan

(√
m1

m2

)
and λm = 0, (47)

�m = ±2 arctan

(√
m2

m1

)
and λm = π. (48)

The peaks given by (46) fall in the classical region, and their
position depends on the observed ratio between m1 and m2;
this is expected classically since the ratio of the two intensities
at the interferometer depends on the relative phase of the two
inputs. The other peaks fall in the quantum region and will be
studied graphically in the next subsection.

5. Graphical discussion: Population oscillations

We make plots of the quantity F (�,λ) by assuming
that Nα = Nβ = M = 40. The multiple peaks are visible in
Fig. 10 for m1 = 17 and m2 = 23, as well as m1 = 18 and
m2 = 22. The peaks in the figures occur, for m1 = 17, at
(�,λ) = (0,±1.72), (±1.72,0),(±1.42,±π ), and, for m1 =
18, at (�,λ) = (0,±1.67),(±1.67,0),(±1.47,±π ). The two
first peaks in the “classical region” correspond to Eq. (46),
while all the other fall in the “quantum region.” Because peaks
corresponding to Eqs. (47) and (48) add up at the border of
the diagram, for these values of the variables the four quantum
peaks at the corners have positions near π/2; they are therefore
almost independent of the ratio m1/m2 (if we had chosen
smaller m1 values, these peaks would nevertheless have moved
inside π/2), in contrast with the classical peaks. Moreover,
they have a sign that depends on the parity of m1 and m2, so it
is clear that the two kinds of peaks behave rather differently.

4� = π does not occur because we have eliminated the redundant
regions beyond π/2 � � � 3π/2 from the integral of Eq. (44).

FIG. 10. (Color online) Plots of F (�,λ) as a function of � and λ for Nα = Nβ = M = 40 with (a) m1 = 17 and m2 = 23; (b) m1 = 18 and
m2 = 22. Note that −π � λ � π while −π/2 � � � π/2. In the “classical region” (� ∼ 0) the two phase peaks have a position that depends
on the ratio m1/m2, as expected classically. The peaks at the corners of the quantum region change sign with the parity of m1 and m2; they are
the source of the populations oscillations shown in Fig. 12.
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W. J. MULLIN AND F. LALOË PHYSICAL REVIEW A 82, 013618 (2010)

1.5 1.0 0.5 0.5 1.0 1.5

0.5

0.5

1.0
D

1.5 1.0 0.5 0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

D

FIG. 11. Plots of D(�), Eq. (49), the integral over λ of the function shown in Fig. 10 for Nα = Nβ = M = 40: (a) m1 = 17, m2 = 23 and
(b) m1 = 18, m2 = 22.

From Eq. (44) we can obtain a quantum angle � distribution
given by integrating F :

D(�) =
∫ π

−π

dλ

2π
[cos � + cos λ]m1 [cos � − cos λ]M−m1 .

(49)

Here the distribution D(�) has two peaks, as shown in Fig. 11;
these peaks are, via the Fourier cosine transform, the source
of the “population oscillations” as a function of mα .

Suppose for the moment that the peaks in D(�) were δ

functions at � = 0 and π/2; then the cosine transform would
be

P (mα,mβ) =
∫ π/2

−π/2
d� cos[(mα − mβ)�]

× [δ(�) ± δ(� + π/2) ± δ(� − π/2)]

= 1 ± cos[(mα − mβ)π/2], (50)

which oscillates with mα as we have claimed in the form of
Eq. (38). Whether the pattern has a maximum or a zero at
mα = mβ depends on whether mα is odd or even.

The actual plots of P (17,23,mα,40 − mα) and
P (18,22,mα,40 − mα) are shown in Fig. 12; the probability
distribution in each case has a finite width, in contrast to
the distribution shown in Eq. (50), because of the finite
width of the peaks in shown in D(λ). The shift in phase of
the two plots (one vanishing in the middle and the other
having a maximum) shows that the two components of the
interference have changed sign from one case to the other.
This is precisely the case of the peaks in the quantum region
in Fig. 10. Moreover, the period of oscillation is constant
(maximal for one value of the population and minimal for the
next), independent of the ratio m1/m2 and therefore of the

position of the peaks in the classical regions. These curves
show the results corresponding to the measurements of all
four quantities m1,m2, . . . , in other words, to correlations
between various measurements at the detectors. If the results
are summed over m1 at constant sum m1 + m2, clearly
the oscillations wash out. In practice, this means that a
postselection procedure is necessary in the experiments.

When m1 � 16 the outer peaks in D(�) are no longer
positioned close to π/2 but move in to lower � values and a
minimum appears at π/2. Nevertheless, oscillations continue
to occur for values as small as m1 = 1. Only at m1 = 0 does the
population oscillation curve show just a single central peak.
As an example we show the case of m1 = 4 in Fig. 13.

We finally discuss the λ distribution. For this purpose, we
sum over variables mα,mβ to get a probability of getting the
distribution {m1,m2} independent of the source distribution. To
do the sum we must take into account the relation mα + mβ =
N − M , where M = m1 + m2, with M and N fixed. We obtain
(see Appendix A)

P (m1,m2) = Nα!Nβ!

m1!m2!2N−1

∫ π

−π

dλ

2π

∫ π/2

−π/2

d�

2π
e−i(Nα−Nβ )�

×
∑
mα

(ei�)mα (e−i�)N−M−mα

mα!(N − M − mα)!

× [cos � + cos λ]m1 [cos � − cos λ]m2

= Nα!Nβ!

m1!m2!2M−1

∫ π

−π

dλ

2π

×
∫ π/2

−π/2

d�

2π
cos[(Nα − Nβ)�](cos �)N−M

× [cos � + cos λ]m1 [cos � − cos λ]m2 . (51)
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FIG. 12. Plots of P (m1,mα)

of Eq. (40) or Eq. (44) versus
mα , for Nα = Nβ = 40 and (a)
m1 = 17,m2 = 23 and (b) m1 =
18, m2 = 22. Only the integer val-
ues of mα are relevant; the linear
interpolation between them is just
a guide for the eye. Here Nα =
Nβ = M = 40.
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FIG. 13. Plot of (a) D(�) and (b) P (m1,mα) for Nα = Nβ = M = 40 and m1 = 4, m2 = 36.

The distribution F (λ,�) is now multiplied by (cos �)N−M ,
which, for large N − M , peaks up sharply at � = 0 and damps
out all peaks away from � = 0, as shown in Fig. 14; the
formula then reduces to the classical case.

The classical phase quasidistribution is then

pclass(λ) =
∫ π/2

−π/2

d�

2π
(cos �)N−M [cos � + cos λ]m1

× [cos � − cos λ]M−m1 . (52)

A plot of this function for the same variable values is shown
in Fig. 15. Only the two classical peaks survive here.

An interesting feature of the PO is that, while within the
reduced probability of Eq. (51) one can replace � by zero and
get the classical limit, it is not correct in Eq. (44), which
contains no factor (cos �)N−M . The result is that one can
still get strong populations oscillations and marked even-odd
changes, even in the limit M � N. The quantum angle �

therefore remains necessary even in this case.
Population oscillations can continue to exist under certain

circumstances even if some particles are missed in the
measurements; they are more robust in this respect than
violations of locality. This point is discussed in Appendix A.

B. Population oscillations with interference fringes in free space

We now attempt to reproduce the analysis of Dunningham
et al. (DBRP) in Ref. [14] in which three Fock sources form

FIG. 14. (Color online) Plot of (cos �)N−MF (�,λ) for Nα =
Nβ = 40 and m1 = 18, m2 = 22. Note that the peaks of Fig. 10 that
are away from � = 0 are missing here.

an interference pattern in free space on a screen, while some of
the particles are deflected near the sources by beam splitters,
where they are counted. Figure 16 shows the experimental
arrangement considered. We will designate M as the number
of particles involved in the interference measurements made
on the screen where interference takes place. Then the number
of particles measured near the sources having initial particle
numbers Nα = Nβ = Nγ = N (as in the work of DBRP) will
be mα , mβ, and mγ ; these are the particles that did not take
part in the interference pattern. All together then we will have
measured

3N = M + mα + mβ + mγ (53)

particles. We can then write the probability as

P (mα,mβ,mγ ,r1, . . . ,rM ) ∼ 〈�mαmβmγ M |�mαmβmγ M〉, (54)

where

|�mαmβmγ M〉 = amα
α a

mβ

β a
mγ

γ√
mα!mβ!mγ !

M∏
i=1

(aαeikα ·ri + eikβ ·ri aβ

+ aαeikγ ·ri )|N,N,N〉. (55)

To correspond with Ref. [14] we take kα = k, kβ = −k, and
with kγ = 0.

3 2 1 1 2 3
λ

0.2

0.4

0.6

0.8

1.0
pclass

FIG. 15. Plot of pclass(λ) of Eq. (52), i.e., the integral over � of
the function shown in Fig. 14 for Nα = Nβ = M = 40. The solid line
corresponds to m1 = 18, m2 = 22 with peaks at ±1.67; the dotted line
is for m1 = 10, m2 = 30 with peaks at ±2.09. As expected classically,
the peaks move symmetrically with change in m1.
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FIG. 16. Particle beams from three sources emitting Nα , Nβ , and
Nγ particles, respectively, interfere in free space and can produce
an interference pattern on a screen within the central region. Some
particles (mα , mβ , and mγ ) are deflected near the sources to be
counted in detectors. In our simulation we have Nα = Nβ = Nγ = N ;
N particles reach the interference region and mα + mβ + mγ = 2N

particles are deflected near the sources.

We can introduce a vacuum state between the |�〉’s and
compute the matrix element by multiplying out the interference
operators:

〈0|�〉 = 1√
mα!mβ!mγ !

√
N !3

∑
p

Kpapβpγ
(r)〈0|amα+pα

α a
mβ+pβ

β

× a
mγ +pγ

γ a†N
α a

†N
β a†N

γ |0〉, (56)

where Kp is a coefficient that depends on the ri . The matrix
element produces delta functions that can be replaced by
integrals in our standard way. The results is

〈0|�〉 =
√

N !3√
mα!mβ!mγ !

∫
dλα

2π

∫
dλβ

2π
e−i(Nα−mα )λα e−i(Nβ−mβ )λα

×
M∏
i=1

(eik·ri eiλα + e−ik·ri eiλβ + 1). (57)

If we take the absolute square of this we introduce two
new variables λ′

α and λ′
β . We then make the following variable

changes:

λα = −λ + �

2
, λ′

α = −λ − �

2
,

(58)

λα = λ′ + �′

2
, λβ = λ + �′

2
.

The probability then becomes

P (mα,mβ,mγ ,r1, . . . ,rM )

= N !3

mα!mβ!mγ !

∫ π

−π

dλ

2π

∫ π

−π

dλ′

2π

∫ π

−π

d�

2π

×
∫ π

−π

d�′

2π
e−i(N−mα )�e−i(N−mβ )�′

M∏
i=1

[1 + ei� + ei�′

+ 2 cos(2k · ri − λ − λ′)ei(�+�′)/2

+ 2 cos(k · ri − λ)ei�/2 + 2 cos(k · ri − λ′)ei�′/2]. (59)

FIG. 17. (Color online) The probability of measurement of
populations, made with beam splitters near the three sources for
M = 100 position measurement in the interference pattern in free
space for three-condensates, where initially each source had N = 100
particles The two horizontal axes are the source populations mα and
mβ of the condensates with opposite wave vectors; the source count
mγ , corresponding to the condensate with zero wave vector, is equal
to 50 − mα − mβ .

If we sum out the mi we find the probability for the r set under
arbitrary source number detections:

P (r1, . . . ,rM )

= N !3

(3N − M)!

∫ π

−π

dλ

2π

∫ π

−π

dλ′

2π

∫ π

−π

d�

2π

×
∫ π

−π

d�′

2π
e−iN(�+�)(1 + ei� + ei�′

)3N−M

×
M∏
i=1

[1 + ei� + ei�′ + 2 cos(2k · ri − λ − λ′)ei(� + �′)/2.

+ 2 cos(k · ri − λ)ei�/2 + 2 cos(k · ri − λ′)ei�′/2]. (60)

FIG. 18. Modified population device to show the effect of parti-
cles missed in the measurement. The missed particles are supposed
to enter detectors 5 and 6. We assume we know that m5 + m6 = ML

particles are missed, but we do not know their distribution in the
new side detectors. Thus we sum over all m5,m6 to get the resulting
probability when some particles are not detected.
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FIG. 19. The PO when the total
number of detected particles in 200
with m1 = 17, m2 = 83, and T =
0.98 (left) and 0.99 (right). Note the
very small depression in the center of
the right plot showing a remnant of
the PO after all possible losses are
considered. The average numbers of
particles lost here are 6.5 and 3.8,
respectively.

The integral method above is not very useful for simula-
tions. We have developed a recurrence method in which the
wave function for R measurements is written in terms of that
for R − 1 measurements. We do not give details here to save
space. All the probabilities p(mα,mβ) for finding particles in
the source detectors for a given set of positions r1, . . . ,rM [with
mγ given by Eq. (53)] are computed in a single recurrence
run. We show a plot in Fig. 17 of the resulting population
oscillation ridges. DBRP found that the ridges were parallel to
one axis shown in their Fig. 5. Indeed our ridges are parallel
to mγ = constant, which would have been more obvious had
we plotted using, say, the mα,mγ axes. The parallel axis in our
case is the one having the intermediate vector (kγ = 0) so that
we are in agreement with the results of DBRP.

V. CONCLUSION

In many cases, such as, for instance, the description of
the MIT experiment [1] with initial Fock states, introducing
a classical relative phase angle λ is sufficient. Cases exist,
nevertheless, where the classical phase is not able to explain
all quantum predictions and where introduction of the quantum
angle � (or its equivalent) becomes necessary. We have
discussed two examples, in Secs. III and IV, where interesting
physical effects cannot be understood only in terms of the
classical phase. In both cases, quantum effects are related to
peaks of the function F (λ,�) in the “quantum region” (i.e.,
away from � = 0) and disappear completely if � is set to
zero.

In the first double interferometer experiment, we find
violations of the BCHSH inequalities and therefore violations
of locality. Setting the quantum angle to zero reduces the
equations to purely classical equations, which could be
interpreted as being integrated over a hidden variable as in
Bells theorem. Only the quantum angle leads to the violations.

In the population oscillation experiment, we find that
simultaneous measurements of “noncommuting variables”
phase and particle number within the same apparatus yield
oscillations in measurements of the number variable that are

a direct result of the off-diagonal phase (i.e., quantum) peaks
and provide an example of QIMDS. However, as discussed in
Appendix B, one can replace the measurement of the phase
by that of the parity, which does not fix the relative phase
of the two condensates at all; but this does not completely
cancel the population oscillations since the central dark fringe
remains present with a 100% contrast, while the characteristics
of the superposition are completely changed (the “phase cat”
becomes completely “blurred”). The fact that some popula-
tion oscillations remain visible, at least for the first fringe,
illustrates that the PO can exist more generally than with just
the coherent superpositions of different macroscopic phases.

The two experiments we have discussed are of somewhat
different nature. The former exhibits strong quantum nonlo-
cality effects, while for the latter we have not found violations
of the Bell inequalities. Nevertheless, while for the former
the violations of the inequalities require that all particles
are measured (they disappear as soon as a single particle is
missed), the population oscillations are a manifestation of the
quantum angle that is more robust as we show in Appendix A;
they can still exist, although in a more limited way, when a
few particles are missed.
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APPENDIX A: INCOMPLETE MEASUREMENTS IN THE
PO EXPERIMENT

1. No phase measurements

We study the experiment of Fig. 7 again but now assume
that no measurement is performed in the interference region
D and that only the population measurements are performed;
then whether a beam splitter is used in this region no longer
matters). We then have to sum the probabilities (44) over m1
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FIG. 20. The PO when the total
number of detected particles in 200
with m1 = 3, m2 = 97, and T = 0.98
(left) and 0.99 (right). A much larger
remnant depression remains in the
0.99 case here. The average numbers
of particles lost here are again 6.5 and
3.8, respectively.
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FIG. 21. The PO when the total number of detected particles in
200 with m1 = 17, m2 = 195, and T = 0.997. Here we get more
than just the central dip. The average numbers of particles lost here is
just 1.4.

and m2, with a constant sum m1 + m2 = M . The summation
introduces the M-th power of a binomial [ei� + e−i�], but
only one term of this power survives the � integration; we
then obtain∑
m1+m2=M

P (m1,m2,mα,mβ) = Nα!Nβ!

mα!mβ!2N−M

M!

p!(N − p)!

(A1)

with p defined by

2p = Nα − mα − Nβ + mβ (A2)

(one can easily check that the right hand side of this equation
is an even number). The λ integral has now disappeared, as
expected, since no measurement of the relative phase is made.
Moreoever, the probability factorizes as expected since, in
the absence of interference measurements, two completely
independent experiments are performed in different regions
of space: in each region, the transmission or reflection of
the particles on the beam splitter are independent random
processes.

2. No population measurements

Conversely, assume that all population measurements are
ignored and that only the interference measurements are

considered. The corresponding probability is then

∑
mα+mβ=N−M

P (m1,m2,mα,mβ)

= Nα!Nβ!

(N − M)!m1!m2!2M

∫ π

−π

dλ

2π

∫ π

−π

d�

2π
[cos �]N−M

× [cos � + cos λ]m1 [cos � − cos λ]m2 . (A3)

Now the phase λ no longer disappears but combines its
effects with the quantum angle �; the [cos �]N−M introduces
a peaking function around the origin, which may behave
similarly to a delta function if N − M is sufficiently large.
We now discuss the interplay between the classical phase and
the quantum angle �.

3. Missed particles

Next, suppose some of the particles are lost and not
measured in either interferomenter nor side detectors of Fig. 7.
We have seen in the case of the double interferometer Bell-
violation experiment that a single missed particle can remove
any locality violations. We simulate these lost particles in the
PO experiment by putting additional side detectors as shown
in Fig. 18. Assume that the beam splitters at detectors 5 and 6
each have a transmission coefficient T .

We assume that particle losses m5 and m6 are known to total
ML, but the individual numbers are not actually recorded. Thus
to get the probability we are interested in we must sum over
all m5 and m6 adding to the total ML. Proceeding as in Sec. IV
we find

P (m1,m2,mα,mβ)

= Nα!Nβ!T N−ML (R)ML

m1!m2!mα!mβ!2N−2MLML!

∫ π

−π

dλ

2π

×
∫ π

−π

d�

2π
cos[(Nα − mα − Nβ + mβ)�]

× cos(�)ML[cos � + cos λ]m1 [cos � − cos λ]m2

(A4)
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FIG. 22. (Color online) (Left) Plot of F (�,λ) as a function of � and λ for Nα = Nβ = M = 20, obtained by summing the probabilities
of all odd values of m1 and m2. One notices that the λ peaks in the classical region are now spread over many values of λ, except sharp
variations around λ = 0 and λ = ±π ; the function still takes significant values in the quantum region � 
= 0. (Right) Corresponding population
oscillations; the narrow central fringe is still perfectly visible with a 100% variation when m1 varies by only one unit only (the central fringe is
dark because m1 is odd).
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FIG. 23. Two Fock states, with populations Nα and Nβ , enter
beam splitters, and are then made to interfere in two different regions
of space DA and DB , with detectors 1 and 2 in the former and 3 and 4
in the latter. In each of the channels j = 1,2,3,4 particles are counted.
The extra detector 5 and 6 count particles that are not measured by
the interferometers.

with R = 1 − T . The result of the lost particles is the factor
cos(�)ML, which, if ML is large enough, diminishes the
quantum peaks, as we have seen before as in, say, Eq. (A3).
The result maintains the same form if we also allow particles to
be missed elsewhere in the device, say, after the beam splitter
at detectors 1 and 2.

If we count ND = m1 + m2 + mα + mβ particles in the real
detectors but ML were missed in one place or another in the
device, then we must have had N = ND + ML particles in the
sources originally. The missed particles could have come from
source α or source β. We assume that the sources originally
have Nα = N̄α + �α and Nβ = N̄β + �β , where N̄α + N̄β =
ND and ML = �α + �β . We first fix ML and sum over all
possible �α and then sum over all ML in principle from 0 to
∞. If R is small, then the sum over ML should converge after
a reasonably small number of missed particles. That is, the
probability of missing XL particles where XL is very large is
negligible. One would hope that if R is small enough, then the
PO will converge to a situation in which the fringes are not lost.
We find this to be the case under certain conditions. We can
also find the average number of particles lost by multiplying
the probability by ML and summing over all �α , ML, and mα.

Consider the situation with m1 = 17 and m2 = 83. The PO
for the cases with T = 0.98 and T = 0.99 are shown in Fig. 19.

For T = 0.98 the oscillations are completely removed and for
0.99 only a remnant is left. In the later case we have lost 3.8
particles on average.

The smaller the value of m1, the closer in to � = 0 are the
off-diagonal peaks in F (�,λ) so that they are less blotted out
by the cos �ML factor. If we lower m1 to 3 we find the results
in Fig. 20. We still lose the central dip in the PO diagram for
T = 0.98, but for T = 0.99, we get a much deeper remnant.

To what degree must we restrict losses to guarantee that we
would have more than a single dip? Figure 21 shows the case
of N = 200, m1 = 17 with the transmission coefficient up to
T = 0.997. Only 1.4 particles have been lost here. For smaller
m1 values one gets deeper central dips but not the dips on the
side for the same T values.

APPENDIX B: MEASURING THE PARITY

Figure 10 shows that the � peaks in the quantum region
have a sign that depends on the parity of m1 or m2, which
suggests that a possible method to observe the population
oscillations is to associate them with a measurement of the
parity at the interferometer, instead of the relative phase of the
two condensates.

Figure 22 illustrates what is obtained if, for instance, one
adds the probabilities associated with all odd values of m1.
The left part of the figure shows the variations of F (�,λ), the
right part the associated population oscillation as a function
of m1, with m2 = 40 − m1. One notices the disappearance of
the two peaks that characterized the coherent superposition
of two values of the relative phase; they are now replaced
by a more delocalized structure, similar to a ridge. In other
words, the “Schrödinger cat” is now spread over many values
of the phase. But one also sees in the right part that the
populations oscillations still exist, with a central dark fringe
that has 100% contrast when mα varies only by one unit;
the variation does actually not differ very much from the
right part of Fig. 13, except, of course, for the change of
sign due to the change of parity of m1. This shows that the
central fringe of the population oscillations is not specifically
related to a measurement of the phase or to the existence of
any “Schrödinger cat”; it continues to exist if a very different
physical quantity is measured, such as the parity, which does
not give any particular information on the relative phase of the
two condensates.

APPENDIX C: TWO PHASE MEASUREMENTS

In the population oscillation experiment, we have consid-
ered the use of a single interferometer; we can generalize
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FIG. 24. (Color online) Double

interferometer results for {m1,m2,m3,

m4} = {2,8,1,9} with phase shifts ζ =
θ = 0. (Left) The last line of the inte-
grand of Eq. (C1). There are two equal
classical peaks (on � = 0 axis) and
negative quantum peaks. (Right) The
corresponding population oscillations
with a “dark fringe” at the center.
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2.9 FIG. 25. (Color online) Double in-
terferometer results for {m1,m2,m3,

m4} = {2.8,1,9} with phase shifts ζ =
0, θ = 2.9. (Left) One of the classical
peaks has almost completely disap-
peared and the negative quantum peaks
are now very much smaller. (Right) The
central depression of the population
oscillation plot no longer goes to zero
but becomes an indentation.

this experiment to two interferometers, each of which have
different settings, ζ and θ . We begin with the device in Fig. 5
and add to that the side detectors shown in Fig. 7 to allow
phase-type measurements in two different regions of space as
well as population measurements near the two sources. The
resulting apparatus is shown in Fig. 23.

The calculations proceed as in previous sections and lead
to a result for the probability of finding the series of results
{m1,m2,m3,m4,mα,mβ} equal to

P(m1,m2,m3,m4,mα,mβ)

= Nα!Nβ!

2MN !m1! · · · m4!mα!mβ!

∫ π

−π

dλ

2π

∫ π

−π

d�

2π

× cos[(Nα − Nβ − mα + mβ)�]

×
4∏

i=1

[cos � + ηi cos(λ + ϕi)]
mi , (C1)

where M = m1 + · · · + m4, η1 = η3 = 1; η2 = η4 = −1;
ϕ1 = ϕ2 = −ζ ; ϕ3 = ϕ4 = θ . This result is essentially the
same as Eq. (20) with the addition now of the cosine transform
in �. This factor allows population oscillations as in Sec. IV.
However, now we have the option of adjusting relative phases
between the two interferometer sets.

A summation version of the probability is much more
convenient for computing population oscillations. A result
analogous to Eq. (40) of Sec. IV is

P(m1,m2,m3,m4,mα,mβ)

= m1! · · · m4!

mα!mβ!2N+2M

×
∑

p2p3p4

(−1)p2+p4e−i(ζ+θ)(p3+p4)

p2!p3!p4!(m2 − p2)!(m3 − p3)!(m4 − p4)!

× 1

(Nα − mα − p2 − p3 − p4)!

× 1

(m1 − Nα + mα + p2 + p3 + p4)!
. (C2)

Because two independent settings θ and ζ are now available,
the phase sign ambiguity can be removed. As a consequence,
by adjusting the phase angles on the interferometers, we can
now control the relative sizes of the two classical peaks,
i.e., those along � = 0. Consider the following plots where
we show the last line of the integrand of Eq. (C1) and the
population oscillations given by Eq. (C2) associated with
the same parameters. With the phase shifters set at zero the
two classical peaks have equal sizes and there is a definite
population oscillation structure (Fig. 24). However, with a
different phase shift, one of the classical peaks can be made
much smaller as seen in Fig. 25 and the quantum peaks become
smaller as well. Moreover, the population oscillation central
zero no longer vanishes. For other phase shift angles (for
instance, ζ = 0 and θ = 2.5 rad), the integrand can be reduced
to a single classical peak with no peak in the quantum region at
all; the corresponding population oscillation central dip then
becomes a simple peak.

If the state vector is the sum of two components centered
around two different values of the phase, and if the norm of
one component is larger than that of the other, one obtains
two peaks in the classical region, one large and one small. The
small classical peak corresponds to a population in the phase
representation, so that it is second order with respect to the
second component of the state vector. By contrast, the peaks
in the quantum region are first order, since they correspond
to off-diagonal matrix elements. As a consequence, when one
reduces the small phase component, the small classical peak
disappears more rapidly than the quantum peaks. This explains
why the left of Fig. 25 has a classical peak that is barely visible
but still clearly shows the (negative) quantum peaks.
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