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We present a general analysis of two-dimensional optical lattice models that give rise to topologically
nontrivial insulating states. We identify the main ingredients of the lattice models that are responsible for
the nontrivial topological character and argue that such states can be realized within a large family of realistic
optical lattice Hamiltonians with cold atoms. We focus our quantitative analysis on the properties of topological
states with broken time-reversal symmetry specific to cold-atom settings. In particular, we analyze finite-size
effects, multiorbital phenomena that give rise to a variety of distinct topological states and transitions between
them, the dependence on the trap geometry, and, most importantly, the behavior of the edge states for different
types of soft and hard boundaries. Furthermore, we demonstrate the possibility of experimentally detecting the
topological states through light Bragg scattering of the edge and bulk states.
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I. INTRODUCTION

It has been shown recently that band structures of noninter-
acting lattice models and quadratic mean-field Hamiltonians
can be classified according to the topological character of the
wave functions associated with the bands. The most complete
classification of this type of Hamiltonians in the physically
relevant two and three dimensions was recently presented
by Kitaev [1] and by Ryu et al. [2], who identified all
distinct topological classes, which differ sharply depending
on the presence or absence of particle-hole symmetry and
time-reversal symmetry. The general interacting case was
addressed by Volovik [3] using the Green function, rather
than the Hamiltonian, as the object for the topological classi-
fication [4,5]. With this understanding achieved, a question
appears on how to realize various such topological states
in physical systems. Until now a few promising solid-state
materials have been identified that are expected to host certain
topological phases. However, in solid-state settings, we are
bound to work with the existing compounds provided by nature
and we have no choice but to rely on serendipity in our search
for physical realizations of topological states rather than on a
controlled “engineering” of appropriate lattice Hamiltonians
that are guaranteed to host these exotic phases.

On the other hand, optical lattices populated with cold
atoms offer a very promising alternative avenue to build
topological insulating states. Cold-atom systems provide more
control in constructing specific optical lattice Hamiltonians by
allowing both tunable hoppings and interparticle interactions
that can be adjusted as needed, hence opening the possibility
of accessing interacting topological states such as topological
Mott insulators. However, cold-atom settings bring in their
own specific challenges associated with the trapping potential,
the effective vector potential responsible for the nontrivial
topological properties, the soft boundaries, and also with
the fact that cold-atom experiments involve neutral particles
and therefore make any transport measurement irrelevant
or very difficult, thus bringing up the question of how to
probe experimentally the topological character of these phases.
Motivated by the opportunity of creating topological insulating

states with cold atoms and by the aforementioned challenges,
we discuss in this article a general prescription for building
certain types of topological optical lattice models and analyze
in detail the properties of the emergent states in the presence
of trapping potentials with different geometries.

Until the discovery in the early 1980s of the quantum Hall
effect [6,7], the standard way of classifying quantum states
of condensed matter systems was to consider the symmetries
they break. The existence of extremely robust properties, such
as the quantized Hall conductance, was found to be linked
to the nontrivial topological structure of the quantum Hall
states. These states do not break any symmetry, hence cannot
be described by the Landau symmetry breaking theory [8],
but possess a more subtle organizational structure sometimes
called topological order [9]. In two-dimensional systems,
such as the quantum Hall fluids, the nontrivial topological
structure is intrinsically connected with the existence of
robust gapless edge modes. In the three-dimensional case it
leads to robust gapless surface or interface modes, such as
the interface midgap states in heterojunctions composed of
semiconductors with opposite band-edge symmetry [10,11].
In recent years a significant number of different models
and solid-state systems with topologically ordered ground
states were found and studied both theoretically [12–24]
and experimentally [25–29]. While most of the efforts are
concentrated on solid-state systems, it was recently proposed
to realize topological quantum states with cold atoms trapped
in optical lattices [30–32]. The original focus was on the
realization of a particular model that supports topological
quantum states, the Haldane model [33]. However, to take
full advantage of the great flexibility in constructing an optical
lattice and of the high possibility of parameter control offered
by cold-atom systems, a generalization scheme that can easily
generate new models would come in handy. In this article we
describe a very intuitive scheme to construct new families of
models with nontrivial topological properties starting from the
model introduced by Haldane [33] in the late 1980s.

Before proceeding to the main technical part, we first
explain our choice of the model, which as we will show below
gives rise to topological states within the same class as the
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lattice quantum Hall state described by the Haldane model.
This quantum Hall-like state explicitly breaks time-reversal
symmetry and therefore does not represent a time-reversal-
invariant topological insulator of the type that most recently
has been of main interest in the solid-state context. This focus
on time-reversal-invariant systems is understandable there, be-
cause the driving force that generates the nontrivial topological
structure arises from the spin-orbit coupling, which in a sense
is responsible for the “internal magnetic fields” associated with
the spin-split bands. The absence of any required external field
is of course a huge experimental simplification in solid-state
experiments, which deal with given material compounds with
predetermined properties. It is also a limitation restricting the
topological-insulator states that are practically accessible. In
the cold-atom context, however, the time-reversal-invariant
topological insulators and their equivalents (in the presence
of a pseudospin variable) are not necessarily experimentally
preferable. A cold-atom Hamiltonian has to be build from
scratch and typically there are no predetermined chiral hopping
terms and spin- or pseudo-spin-orbit interactions or no relevant
spin degree of freedom at all. It has been shown recently
both theoretically and experimentally that one indeed can
construct an analog of a spin-orbit-coupled system with cold
atoms [34]. However, the corresponding schemes are by no
means easier to realize than an analog of a magnetic field,
dubbed a synthetic magnetic field, which may suffice to
produce the topological insulating states with broken time-
reversal symmetry. In fact, because the artificial magnetic
fields do not involve any spin (or pseudospin) degree of
freedom, the broken time-reversal symmetry lattice quantum
Hall states are expected to be easier to realize than the time-
reversal-invariant topological insulators. These latter systems
require additional optical setups to produce equivalents of the
spin-orbit interaction and their realization will probably rep-
resent the second stage of building topological quantum states
with cold atoms. For this reason, we focus specifically our
discussion on the two-dimensional lattice quantum Hall states,
which as explained above, are of more direct experimental
relevance.

A. Main results and open questions

1. Model and implementation

We show that there are infinitely many lattice models,
descendants of the canonical Haldane model [33], which host
the same type of lattice quantum Hall states. The topological
character of such a state is associated with chiral hoppings,
which usually are thought of in the context of a simple
honeycomb lattice. We argue instead that one can start with
a local model that includes chiral hoppings as the main
initial ingredient and then add other ordinary hopping terms
to produce nonlocal dispersion on various lattices. We show
that the nature of the latter is not germane to the topological
nature of the state and that in particular, one can construct a
square optical superlattice, which will give rise to topological
insulating behavior and which may be easier to realize by
optical means with cold atoms.

The main ingredient for realizing topological insulators
(TIs) in cold-atom systems is a periodic vector potential, which
generates a Peierls phase for certain hopping matrix elements.

Such vector potentials can be induced by the interaction
of atoms with spatially modulated light fields [35–44]. We
provide the functional spatial dependence of the artificial
vector field consistent with the realization of topological
quantum states. The description of the model and the proposed
scheme for realizing it in optical lattices are presented in
Sec. II.

Open questions: In this article we propose the realization
of topological insulators with noninteracting spinless atoms.
The analysis can be generalized to the case atoms with
pseudospin degrees of freedom subjected to synthetic SU(2)
gauge fields, which allow building time-reversal-invariant
topological insulators [45] similar to the quantum spin Hall
state in HgTe quantum wells [25]. More exotic topological
phases could, in principle, be realized using various types
of non-Abelian synthetic gauge fields [43,46]. Some of
these phases may have no realization in solid-state systems.
However, the main direction that requires further study
is considering the particle-particle interactions. Given the
robustness of the topological states, weak interactions are
not expected to modify significantly the present results. In
fact, most of the topological states found in condensed matter
systems (with the exception of fractional quantum Hall states)
belong to various classes of noninteracting TIs. On the other
hand, the study of strongly interacting topological insulators is
only at the beginning and many fundamental questions remain
to be answered. Nonetheless, considering the high capability
of tuning the interaction, it is clear that ultracold atoms trapped
in optical lattices represent the ideal platform for the potential
realization of strongly interacting TIs [47,48].

2. Edge states properties

We describe in detail the edge states of topological insula-
tors that can be realized using an optical lattice implementation
of the square superlattice model (Sec. III). Using ideal
boundaries, i.e., boundaries created by an infinitely steep
potential wall, we demonstrate that the nature of the gapless
edge state mode is independent of the geometry of the two-
dimensional system. In particular, we discuss the properties of
the edge states for systems with stripe (subsection III A1) and
disk (subsection III A2) geometries. This equivalence reflects
the topological nature of the edge states and allows for a
more convenient computational treatment of large systems.
For example, the edge states within a small region near the
boundary of a large disk are similar to the edge states within a
comparable region near the boundary of a stripe.

The broken time-reversal symmetry TIs belong to different
classes labeled by an integer number (Z-type TIs). There is
a direct connection between this integer and the number of
gapless edge modes. We show explicitly that different types of
topological insulators can be obtained by filling multiple bands
(subsection III B). The number of characteristic edge modes
is arbitrary, in contrast to the case of time-reversal invariant
topological insulators (Z2-type TIs), which support only odd
numbers of pairs of edge modes.

Open questions: The most natural and interesting man-
ifestations of the nontrivial topological properties of an
insulator take place at the boundary. Exotic manifestations,
such as Majorana fermions, require interfaces between a TI
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and a superconductor. Creating well-defined boundaries in
cold-atom systems represents a significant challenge. The
requirement of an infinitely sharp edge can be relaxed and
the TI survives even in shallow traps (see below). However,
a soft boundary determines the softening of the edge mode(s)
and the proliferation of edge states, a process which modifies
some of the physical properties of the system.

3. Phase transitions

We study transitions between topologically distinct band
insulators (Sec. IV). Being able to drive the system through
these transitions is an important tool that allows identifying
various topological states and distinguishing them from
trivial insulating states. The transitions can be driven by an
additional staggered potential (subsection IV A) or, in the
multiband situation, by simply tuning the system parameters
(subsection IV B). The latter case turns out to be especially
interesting as we find that band crossings controlled by optical
lattice tunable parameters may “transfer” or “exchange” Chern
numbers between different bands, while conserving the total
Chern number of the bands.

Open questions: A significant challenge for realizing TIs
with cold atoms in optical lattices is controlling the filling.
The number of atoms has to correspond to a certain number of
filled bands and the chemical potential has to lie within a band
gap. This issue is connected with the problem of realizing and
controlling the boundary (see above).

4. Stability of the TI states

We address the very important experimental question
regarding the stability of the edge states, which represent
the hallmark of the lattice TI phase (Sec. V). In particular
we focus on the finite-size effects (subsection V A) and the
effects of soft boundaries generated by a confining potential
(subsection V B). We show that the finite size effects are a
consequence of the overlap between different edge states. The
amplitude of the edge states decreases exponentially away
from the boundary with a certain characteristic length scale.
If this length scale is much smaller than the system size, the
gaps in the edge states spectrum scale as the inverse of the
boundary length.

We also find that a shallow confining potential determines
a strong softening of the edge mode(s) and the proliferation
of edge states, which acquire a quasicontinuous spectrum.
Nonetheless, the TI survives even in a shallow harmonic
trap, but in this case the insulating core is surrounded by a
nonhomogeneous chiral metal. The fact that TIs with hard
and soft boundaries have different physical characteristics,
yet are topologically identical, illustrates vividly the nature
of topological order. For an arbitrary boundary potential
characterized by a length scale L associated with the width of
the boundary, we find that the edge mode velocity is rescaled
by a factor a/L, where a is the lattice constant.

Open questions: If one considers the phenomenology of
the boundary, TIs in optical lattices can be divided into two
categories: TIs with edge states (in systems with well-defined
boundaries) and TIs with inhomogeneous (chiral) metallic
clouds (in systems with shallow confinement). Realizing
experimentally well-defined boundaries is a serious challenge

(see above). On the other hand, a more detailed analysis of the
properties of the inhomogeneous chiral metal is an important
direction for future study.

5. Detection of topological edge states

We propose three different methods of probing topological
quantum states (Sec. VI). First, we propose imaging the edge
states with bosons. The procedure involves loading bosons into
the edge states and then imaging the atoms using a direct in situ
imaging technique [49,50]. This technique does not involve
the realization of an equilibrium topological insulating state
but rather a real space analysis of the properties of the single
particle states. As the nontrivial topological properties of the
system represent a feature of the single-particle Hamiltonian,
identifying the edge states is an effective way of seeing a
topological phase.

A very convenient way of identifying an insulator is to
perform density profile measurements on fermionic atomic
systems. The presence of an insulator generates a characteristic
plateau in the density profile, hence the procedure can be used
for studying metal-insulator transitions. However, as we show
explicitly by performing a model calculation, this method
cannot distinguish between a TI and a trivial insulator.

The chiral edge states of a TI can be detected using optical
Bragg spectroscopy. We calculate the dynamical structure
factor for a TI model on a square superlattice and show that
the edge mode generates a characteristic low-frequency peak.
The chiral nature of the edge mode can be probed by inverting
the scattering wave vector (or, equivalently, the vector potential
responsible for the nontrivial Peierls phases): the characteristic
peak is present for one orientation and absent for the opposite.
We also discuss the effect of softening the confinement of the
system.

Open questions: In the case of imaging the edge states using
bosons, future theoretical studies are required for a quantitative
estimate of the transfer probabilities and for determining the
optimal parameters of the lasers. Density profile measurements
could be supplemented by probes involving perturbations with
opposite angular orientations. Calculations of the response of
a TI with broken time-reversal symmetry to such perturbations
are not yet available. Finally, while for strong and moderate
confinement the Bragg spectroscopy provides a direct way
to observe the chiral edge states, probing the inhomogeneous
chiral metal requires further analysis.

II. TOPOLOGICAL INSULATORS ON A SQUARE
SUPERLATTICE: THE MODEL

The goal of this section is twofold: (i) to show that there
is an unlimited number of different families of topological-
insulator models and describe a simple method of constructing
such models (this flexibility in building quantum states with
nontrivial topological properties is particularly relevant in view
of their possible realization in cold-atom systems) and (ii) to
introduce a particular two-dimensional model of a topological
insulator with broken time-reversal symmetry on a square
superlattice. The properties of this model will be studied in
detail in the subsequent sections.
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A. A recipe for constructing topological-insulator models

The Haldane model [33] is a tight-binding representation
of motion on a hexagonal lattice having as key feature a
direction-dependent complex next-nearest-neighbor hopping.
A periodic vector potential A(r) that generates a magnetic field
with zero total flux trough the unit cell is responsible for the
imaginary components of the hopping matrix elements. The
vanishing of the magnetic flux through each unit cell ensures
that the nearest-neighbor hoppings remain unaffected by the
vector potential. The quantization of the Hall conductance
in integer quantum Hall systems can be intuitively linked
to the formation of Landau levels in a uniform magnetic
field. However, using the simple tight-binding model Haldane
showed that quantum Hall-like states may result from breaking
time-reversal symmetry in the presence of a periodic vector
potential without having a net magnetic flux, i.e., without
Landau levels. In both cases it is the nontrivial topology of
the ground state that ensures the quantization of the Hall
conductance, which can be interpreted as the topological
Chern number of the U(1) bundle over the Brillouin zone
of the bulk states [51]. While the value of the Chern number
for a given occupied band is far from obvious without an
explicit calculation, a more direct and intuitive signature of the
nontrivial topological properties of a system is the existence
of chiral gapless edge (in two dimensions) or surface (in
three dimensions) states robust against disorder effects and
interactions. The basic features of these states are intrinsically
linked to the topological properties of the system, but their
detailed structure is dictated by the boundary. As the bulk of
the system is an insulator, it is the edge or surface states that
participate in transport. The quantization on the transverse Hall
conductance can understood within this edge states picture [52]
using Laughlin’s gauge invariance argument [53].

The hexagonal (honeycomb) lattice for the Haldane model
is shown in Fig. 1(a). It consists of two interpenetrating
triangular sublattices A and B. The nearest-neighbor hoppings
between A-type and B-type sites (black lines) are real,
while the next-nearest-neighbor hoppings (red and blue/gray
lines) contain imaginary components due to the presence
of a periodic vector potential A(r). The total magnetic flux
generated by A(r) through each hexagonal unit cell vanishes,
but the magnetic fluxes through the white and yellow (light
gray) triangles are nonzero and have equal magnitudes and
opposite signs. It is crucial that, in the presence of the
vector potential, A-type and B-type sites are not equivalent.
Consequently, after changing the sign of A(r) (i.e., exchanging
the white and yellow triangles) the original configuration
cannot be restored by any translation or rotation operation.
By contrast, if, for example, we remove the sublattice B
altogether we obtain a triangular lattice in a staggered magnetic
field. The nearest-neighbor hoppings are complex. However,
in this case the original configuration can be recovered after a
time-reversal operation by a π/3 rotation.

Next, we modify the model while preserving the crucial
ingredients that ensure the breaking of time-reversal symmetry,
as discussed above. For example, we can view the two-
dimensional (2D) lattice shown in Fig. 1(a) as a projection
of the three-dimensional (3D) model shown in Fig. 1(b). If we
use the same tight-binding parameters, the two geometries will

FIG. 1. (Color online) (a) Two-dimensional (2D) hexagonal
lattice for the Haldane tight-binding model, consisting of real nearest-
neighbor hoppings (black lines) and complex direction-dependent
next-nearest-neighbor hoppings (red and blue or gray lines). The
imaginary components of the hopping matrix elements are generated
by an effective vector potential that produces a “magnetic” field
with zero total magnetic flux through the unit cell [i.e., the magnetic
fluxes through the white and yellow (light gray) triangles have equal
magnitudes and opposite signs]. (b) A three-dimensional (3D) real-
ization of the model obtained by translating one sublattice (the blue
spheres) along the direction perpendicular to the plane (z direction).
Staking such layers in the z direction with the A sublattice sites on
top of B sites generates a 3D generalization of the Haldane model on
a diamond lattice. Alternatively, we can treat the model as a quasi-2D
lattice of triangular pyramids. Neglecting the hopping between the
apex sites (blue lines) does not change the topological properties
of the model. Pyramids with a different base will generate similar
models with nontrivial topological properties.

generate identical results. However, the 3D version suggests
a direct way of generalizing the Haldane model to three
dimensions. For example, staking layers as the one shown in
Fig. 1(b) on top of each other with the A sublattice sites directly
above the B sites generates a family of models that represents
the 3D generalization of the Haldane model on a diamond
lattice. Different members of this family may be obtained by
making further choices for the vector potential. If only the
original in-plane components of A(r) are considered, there
are no anomalous interplane hoppings. However, complex
inter-plane hopping matrix elements can be generated by
including a field component in the z direction. Alternatively,
we can simplify the structure shown in Fig. 1(b) and reduce it
to the bare essentials. For example, we can ignore the hopping
between the B-type sites (the blue lines) and treat the model
as a quasi-2D lattice of triangular pyramids with complex
direction-dependent hoppings between the base sites. Note that
the system represents a triangular lattice with a two-point basis.
Within a single band tight-binding model we cannot eliminate
the apex sites without restoring the equivalence between
the white and yellow (light gray) triangles. However, this
elimination is possible within a multiband model. Intuitively,
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one can easily understand this property if we notice that
hopping between s orbitals is isotropic, while p orbitals
generate direction-dependent hopping matrix elements that
carry the information about the nonequivalence of white and
yellow (light gray) triangles.

B. Topological-insulator model on a square superlattice

The fact that the pyramids in the quasi-2D model described
above are triangular does not have any particular significance
and does not determine the topological properties of the
model. One can imagine for example a similar system of
square pyramids, as shown in Fig. 2(a). Again, we can stack
such structures in the z direction and generate a family of
topological insulators on a cubic lattice. Alternatively, we
can project the structure onto the base plane and generate
a 2D square superlattice model [54–56]. As before, a periodic
vector potential A(r) generates a staggered magnetic field
with opposite flux through the yellow (light gray) and white
squares. The unit cell consisting of one yellow (light gray)
square and one white square contains three sites. Unlike
the triangular lattice case discussed previously, we can now
remove the former apex sites and replace them with an effective
next-nearest-neighbor hopping within a single-band model
without restoring time-reversal symmetry. The unit cell of
the simplified model contains two sites and we can view
the lattice as consisting of two rectangular sublattices A and
B. The resulting 2D square superlattice effective model is

t1

2t

t2φ

(b)

(a)

e i
′

FIG. 2. (Color online) (a) Quasi-2D model of a topological
insulator with broken time-reversal symmetry on a lattice of square
pyramids. Expanding the structure in the z direction will generate 3D
models of topological insulators. Alternatively, one can move the apex
site into the base plane and generate a 2D square superlattice model.
(b) Topological-insulator model on a 2D square superlattice. Instead
of extra apex sites, as in (a), we consider different next-nearest-
neighbor hoppings t ′

2 �= t2. A vector potential A(r) produces an
effective “magnetic” field with opposite flux through the yellow (light
gray) and white squares and generates a complex direction-dependent
nearest-neighbor hopping t1. Hoppings with a given sign of the phase
are marked by arrows.

shown in Fig. 2(b). The next-nearest-neighbor hoppings t2
and t ′2 are real and have different values. The nearest-neighbor
hopping t1 is complex and has a direction-dependent phase.
If we choose a coordinate system with the axes along the
next-nearest-neighbor directions and set the nearest-neighbor
distance a = 1/

√
2, the tight-binding model can be expressed

analytically by the Hamiltonian

H =
∑

k

(c†Akc
†
Bk)

(
t̃2(kx,ky) [t̃1(k)]∗

t̃1(k) t̃2(ky,kx)

) (
cAk

cBk

)
, (1)

with

t̃1(k) = |t1|[e−iφ(1 + ei(kx+ky )) + eiφ(eikx + eiky )],
(2)

t̃2(kx,ky) = 2t2 cos kx + 2t ′2 cos ky.

In Eq. (1) the operators c
†
Ak and c

†
Bk create a particle with wave

vector k on the sublattices A and B, respectively.
So far we did not mention the possible role of the spin (or

pseudospin) degree of freedom in generating nontrivial topo-
logical quantum states. All the topological-insulator models
generated according the scheme described above can be easily
generalized to include spin, similar to the construction used by
Kane and Mele, who proposed a tight-binding Hamiltonian for
graphene [17] that generalizes Haldane’s model to include spin
with time-reversal-invariant spin-orbit interactions. Basically,
for spin 1/2 particles the models should include a spin-
dependent vector potential Aσ (r) that has opposite orientations
for the two spin components, A↑(r) = −A↓(r). While each
spin component breaks time-reversal symmetry, the system as
a whole is time-reversal invariant. These systems form new
classes of topological insulators [57] that cannot be classified
using Chern numbers. For example, in two-dimensions one
obtains a quantum spin Hall state [17,18,20,58], which carries
no net charge current along the system edges. If a U(1) part of
the SU(2) spin-rotation symmetry is preserved, particles with
opposite spin will propagate along a given edge in opposite
directions giving rise to a quantized spin Hall conductance
[17,18,20]. However, the system remains topologically or-
dered even in the presence of small perturbations that break the
full spin-rotation symmetry, when the spin Hall conductance is
no longer quantized. To classify these time-reversal-invariant
topological states, Kane and Mele introduced a Z2 topological
invariant [18], which can be interpreted in terms of doublets of
edge modes. In three dimensions the Z2 topological invariant
is associated with the number of Kramers degenerate points
(Dirac points) in the spectrum of the surface states. In both
two and three dimensions, the existence of an odd number of
Kramers degenerate points ensures the stability of the edge
or surface states against disorder and interactions [22,59–62].
We note that spin plays a crucial role in solid-state topological
insulators as the band gap itself is opened by strong spin-
orbit interactions [25–29]. On the other hand, in cold-atom
systems an effective spin-orbit interaction can be generated
using certain spin-dependent vector potentials [34]. These
artificial light-induced vector potentials can be realized in
a system of multilevel atoms interacting with a spatially
modulated laser field [35–43]. However, as a first step in
the realization of topological insulator with cold atoms a
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spin-independent vector potential [44] is probably easier to
implement. Therefore, in this article we ignore spin and focus
on the relatively simpler case of topological insulators with
broken time-reversal symmetry.

C. Cold-atom realization of the square superlattice model

The relatively simple geometrical structure of the square
superlattice model described by Eq. (1) and Fig. 2(b) is par-
ticularly appealing if we address the problem of constructing
topological insulators with cold atoms. The crucial ingredients
for constructing topological quantum states with cold atoms
are [32]: (i) the optical lattice (in the present case the optical
superlattice), obtained as a superposition of coplanar standing
waves with properly chosen wave-vectors; (ii) the additional
confining potential that determines the properties of the
boundary; and (iii) the effective vector potential. The general
form of the effective single-particle Hamiltonian describing
the atoms trapped in the optical lattice moving in the presence
of the light-induced vector potential is

H = 1

2m
[p − A(r)]2 + Vlatt(r) + Vc(r), (3)

where m is the atom mass, p = −ih̄∇ the momentum, A(r) the
effective vector potential, Vlatt(r) the optical lattice potential,
and Vc(r) the extra confining potential. The role of Vc(r), in
addition to preventing the atoms from escaping the optical
lattice, is to create appropriate boundaries for the system
and thus make possible the formation and observation of
the characteristic topological edge states [32]. We start by
assuming an infinitely sharp confining potential, and then in
Sec. V we discuss explicitly the case of smooth confining.
A crucial ingredient is the light-induced vector potential A(r)
that generates the effective “magnetic” field with zero total flux
through the unit cell. The construction of synthetic Abelian
and non-Abelian gauge potentials coupled to neutral atoms is
an emerging theme in the field of cold-atom systems, which
has been investigated theoretically in some detail but is just
beginning to receive experimental attention [35–44,63]. In
order to realize the square superlattice model (1) we propose
a vector potential of the form A(r) = α (r), where α is a
parameter that measures the strength of the potential and

(r) =
(

sin

[√
2πy

a

]
, sin

[√
2πx

a

])
, (4)

with a being the nearest-neighbor distance of the lattice. The
two-dimensional optical superlattice, generated as a superpo-
sition of coplanar standing waves with properly chosen wave
vectors [64–68], is characterized by the effective potential

Vlatt = V1

(
1 − 1

2
cos2

[
π (x + y)√

2a

]
− 1

2
cos2

[
π (x − y)√

2a

])
+V2

(
cos2

[
πx√

2a

]
+ sin2

[
πy√

2a

]
− 1

)
, (5)

where the amplitude V1 controls the overall depth of the optical
lattice while V2 generates the superlattice structure. The case
V2 = 0 corresponds to a simple square lattice with lattice
constant a, while V2 �= 0 produces the doubling of the unit
cell. Note that the first term in Eq. (3) contains a quadratic con-

1

0

0 1 2
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1

0

0
x / a
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B

2

y 
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−1−2
−2

−1

−B

x / a

y 
/ a

FIG. 3. (Color online) (Left) Optical superlattice potential corre-
sponding to V1 = 3.4Er , V2 = 1.7Er , and α = 2h̄/a (see main text).
A unit cell consisting of two squares with side length a is marked with
light blue (light gray) lines. Notice the π/2 rotation of the axes relative
to lattice in Fig. 2(b). (Right) Effective “magnetic” field generated by
the vector potential A(r). The total flux through the unit cell is zero.

tribution in the vector potential, A2/2m, which renormalizes
the effective optical lattice potential. One potential challenge
in realizing a topological quantum state with cold atoms is
the precise matching of the light wavelengths for the laser
generating the optical lattice and those generating the artificial
vector potential. We note here that a mismatch �λ between
the two periods leads to a pseudorandom potential with a
strength that cannot be made arbitrarily small. Basically, the
strength of the pseudorandom potential is controlled by the
amplitude of the effective vector potential, which also controls
the magnitude of the insulating band gap. Consequently, in
systems with a linear size larger than λ2/�λ the pseudorandom
potential leads to the closing of the insulating gap and the
destruction of topological quantum states. The structure of the
optical superlattice potential, including the contributions from
the A2/2m term, are shown in Fig. 3 (left panel).

Throughout the article we will use the recoil energy Er =
(h̄π/a)2/2m as the energy unit. Also, the parameter α which
measures the strength of the vector potential is expressed in
units of h̄/a. The positions of the nodes of the square lattice
generated by the potential in Fig. 3 are given by the minima of
the effective potential, V

(eff)
latt (ri) ≡ Vlatt(ri) + A2(ri)/2m = 0.

In addition to renormalizing the optical lattice potential,
A(r) generates an effective “magnetic” field with zero total
flux through the unit cell. The position dependence of the
“magnetic” field is shown in the right panel of Fig. 3. If (δx,δy)
represents a small deviation away from one of the minima of
the effective optical lattice potential, we have

V
(eff)

latt (xi + δx,yi + δy)

≈ π2

a2

(
V1 ∓ V2

2
+ α2

m

)
δx2 + π2

a2

(
V1 ± V2

2
+ α2

m

)
δy2

= m

2

(
ω2

1(2)δx
2 + ω2

2(1)δy
2) , (6)

i.e., near a minimum the effective optical potential can be
approximated by a two-dimensional anisotropic harmonic
oscillator potential with characteristic frequencies

ω1(2) = π

√
V1 ∓ V2

m
+ 2α2

m2
. (7)
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Consequently, the harmonic oscillator eigenfunctions repre-
sent a natural basis for a tight-binding treatment of the quantum
problem described by the Hamiltonian (3).

At this point we note that the experimental observability
of topological quantum states in cold-atom systems depends
on the energy separation between edge states and bulk
states, i.e., on the size of the bulk gap. If the gap for
bulk states is not large compared to the lowest temperatures
that are accessible experimentally, the standard signature of
a topological insulator cannot be observed in any type of
transport measurement, because of the significant contribution
from thermally excited bulk states. The scheme proposing the
direct mapping of the edge states [32] is equally inapplicable,
because the lack of energy resolution does not allow loading
a significant fraction of particles into specific edge states.
Other schemes are also likely to fail. Hence systems with large
values of the bulk gap are desirable. As the gap scales with
the hopping parameters and, in turn, these hopping matrix
elements depend on the depth of the lattice potential, we
conclude that rather shallow optical lattices may be required
for observing topological quantum states. To capture, at
least qualitatively, this regime when solving the quantum
problem (3) within the tight-binding approximation one has to
consider not only the orbital associated with the ground state
of the harmonic oscillator (6) but also higher-energy states. In
our calculations we include the ground state ψ0,0 and the first
two excited states ψ1,0 and ψ0,1 with energies (ω1 + ω2)/2,
(3ω1 + ω2)/2, and (ω1 + 3ω2)/2, respectively. As the square
superlattice model is defined on a lattice with a two-point basis,
the three orbitals that we consider will generate six bands. Note
that the orbitals ψn,m for the sublattice B are rotated with π/2
relative to those of the sublattice A. Explicitly,

ψ (r0)
n,m(r) =

{
ϕ(ω1)

n (x − x0)ϕ(ω2)
m (y − y0), r0 ∈ A

ϕ(ω1)
n (y − y0)ϕ(ω2)

m (x − x0), r0 ∈ B,
(8)

where r0 = (x0,y0) is the position of a certain lattice site
(i.e., minimum of V

(eff )
latt ), and ϕ

(ωj )
n (ξ ) are eigenstates of the

one-dimensional quantum harmonic oscillator with angular
frequency ωj . We calculate the hopping parameters for the

effective tight-binding model, t
(n,m)(n′,m′)
ij = 〈ψ (ri )

n,m|H |ψ (rj )
n′,m′ 〉,

and include nearest-neighbor and next-nearest-neighbor con-
tributions, which add up to a total of 22 different hopping
parameters. We have determined analytic expressions for all
these hopping matrix elements as functions of the fundamental
parameters of the model, V1, V2, and α. The key contributions
coming from the vector potential, 〈ψ (ri )

n,m|p · A|ψ (rj )
n′,m′ 〉, are com-

plex with an imaginary component that is maximal for nearest-
neighbor hopping. As the values of the hopping parameters
decrease rapidly with the intersite distance, having anomalous
nearest-neighbor components represents a potential advantage
of this model over the honeycomb geometry of the original
Haldane model, where the anomalous hopping responsible
for the nontrivial topological properties occurs between next-
nearest-neighbors. Finally, we note that the orbitals used as a
basis for the tight-binding approximation are not orthogonal,
so the corresponding overlap matrix 〈ψ (ri )

n,m|ψ (rj )
n′,m′ 〉 has to be

calculated and used in the diagonalization procedure. To

summarize, we solve the single-particle quantum problem

H�q(r) = εq�q(r), (9)

where H is the Hamiltonian given by Eq. (3) and q is a set of
quantum numbers that label the single-particle states. Within
the tight-binding approximation, we look for solutions of the
form

�q(r) =
∑

j

∑
(n,m)

�(n,m)
q (rj )ψ

(rj )
n,m(r), (10)

where the sum over j runs over all the sites of the lattice,
i.e., the locations of the minima of the effective poten-
tial V

(eff )
latt (r) = Vlatt(r) + A2(r)/2m and the orbitals ψ

(rj )
n,m

are harmonic oscillators wave functions given by Eq. (8).
In the calculations we include the components (n,m) ∈
{(0,0),(1,0),(0,1)}. Within the subspace spanned by the orbital
basis, equation (9) reduces to∑

j

∑
(n′,m′)

t
(n,m)(n′,m′)
ij �(n′,m′)

q (rj )

= εq

∑
j

∑
(n′,m′)

s
(n,m)(n′,m′)
ij �(n′,m′)

q (rj ), (11)

with the hopping matrix t
(n,m)(n′,m′)
ij and the overlap matrix

s
(n,m)(n′,m′)
ij defined above. For a system with translational

symmetry, the problem can be diagonalized with respect to
the position indices by a Fourier transform and the relevant
quantum numbers are q = (λ,k), where λ is a band index and
k is a wave vector in the reduced Brillouin zone associated
with the superlattice structure. In the case of a finite system,
Eq. (11) is solved numerically for the full size matrices.

We emphasize that using the harmonic oscillator basis
imposes no restriction on the accuracy of the numerical
analysis. By including more wave functions in the basis one
can attain any desired accuracy. The results presented below
have quantitative relevance for the lowest band and give a
qualitative picture of the higher-energy bands. To estimate the
accuracy of the approximation, we determine the component of
the effective lowest band hopping due to virtual transitions to
higher bands, δtij (n,m) = t

(0,0)(n,m)
ij t

(n,m),(0,0)
ij /[ε(n,m) − ε(0,0)].

For the range of parameters used in this study, the δtij (1,0)
and δtij (0,1) represent up to 15% of the bare value t

(0,0),(0,0)
ij .

Consequently, one expects a strong renormalization of the
spectrum due to the hybridization with these bands. Higher-
energy bands generate corrections smaller that 5% and we
neglect them. Another potential source of errors comes from
neglecting longer-range hoppings. Second-neighbor hoppings
are typically less that 10% of the nearest-neighbor hoppings
(up to 25% in a few cases) and have a crucial role in
opening the insulating gap. Consequently, they have to be
included. However, longer-range hoppings have values that
are always less that 3% of the nearest-neighbor hoppings and
are neglected. The estimates presented here are valid for deep
enough optical lattices with V1 > 3Er and V2 < 0.65V1. Note
that higher values of V2 will generate strongly anisotropic
lattice minima with large hopping matrix elements along
certain directions.
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(b)(a) (c)

FIG. 4. (Color online) Spectrum of the square superlattice model
with periodic boundary conditions (no boundaries). Only the lowest
two bands are shown, although four other bands were considered in
the calculation. The wave vector takes values in the first Brillouin
zone, 0 � kx � 2π/

√
2a, 0 � ky � 2π/

√
2a, and we make the

choice of length units a = 1/
√

2. (a) If V2 = 0 (no superlattice
structure), the two bands are degenerate at k = (π,π ). (b) If α = 0 (no
vector potential), the gap closes at two Dirac points (0,π ) and (π,0).
(c) For V1 = 3.4Er , V2 = 1.7Er and α = 2h̄/a a full gap opens. The
bands are shown along the kx direction (with ky out of the plane).

D. Bulk properties of the square superlattice model

Before studying the properties of the edge states for the
square superlattice model, let us convince ourselves that the
system has nontrivial topological properties and therefore can
support robust chiral edge states if a boundary is present.
Figure 4 shows the spectrum obtained by solving Eq. (11)
for an infinite lattice (or by imposing periodic boundary
conditions). The vertical axis represents the energy and the
horizontal axes the wave vector k taking values within the
first Brillouin zone. The hopping and overlap matrix elements
correspond to different sets of original parameters (V1,V2,α)
for the optical lattice: (a) (3.4,0,2), (b) (3.4,1.7,0), and
(c) (3.4,1.7,2), where Vi are measured in units of recoil energy,
Er , and α in units of h̄/a. Notice that a full gap opens only
if both the vector potential and the component of the optical
lattice potential responsible for the supperlattice structure, i.e.,
α and V2, are nonzero. Moreover, for a given strength α of the
vector potential there is a critical V ∗

2 (α) above which the full
gap opens. For V2 < V ∗

2 (α), a negative indirect gap will exist
between the top of the first band at (π,π ) and the bottom of
the second band at (π,0) or (0,π ). We note that four other
bands, although not shown in Fig. 4, were included in the
diagonalization procedure.

Including the higher-energy bands is crucial for obtaining
quantitatively relevant results. As mentioned above, the energy
scale in the problem is set by the values of the hopping
parameters, which in turn depend strongly on the depth of
the optical lattice potential. For example, the nearest-neighbor
hoppings contain exponential factors of the form exp(−π2

8
h̄ωi

Er
),

where ωi is given by Eq. (7). Consequently, to have a large
gap compared with the temperatures attainable experimentally,
one has to use a lattice potential that is not very deep. In
turn, this will determine strong interorbital hybridization. This
property is exemplified by the results shown in Fig. 5. The
energy dispersion for the two lowest bands along a certain
path in k-space was calculated, first including the mixing with
higher-energy bands (full lines) and then neglecting it (dashed
lines). The two sets of curves, although qualitatively similar,

(0, 0) (π, π) (π, 0) (0, 0)
(k

x
, k

y
)

2.0

2.5

3.0

E
ne

rg
y

ε(
k)

 / 
E

r

FIG. 5. (Color online) Energy dispersion for the first two bands of
the square superlattice model along the (0,0) → (π,π ) → (π,0) →
(0,0) path in the Brillouin zone. The full lines correspond to
the parameters from Fig. 4(c). The dashed lines show the energy
dispersion obtained if we neglect the hybridization with higher-energy
bands.

in the sense that both correspond to energy bands separated by
a gap, show significant quantitative differences.

To unveil the topological properties of the band structure
described above, we calculate the Berry curvature associated
with the momentum-space gauge field (or Berry connection)
defined for a given band λ as �Aλ(�k) = i〈�λ�k| �∇�k|�λ�k〉 [51,69].
The Berry curvature is the effective “magnetic field” generated
by this momentum-space gauge field, Fλ(�k) = ∂kx

Ay(�k) −
∂ky

Ax(�k). The momentum-space gauge field �Aλ(�k), which is
a property of the single-particle wave functions, should not be
confused with the real space vector potential A(r), which is
an externally applied field. The distribution of Berry curvature
over the Brillouin zone for the two lowest energy bands is
shown in Fig. 6. Note the large values of Fλ in the vicinity
of (kx,ky) = (π,0) and (kx,ky) = (0,π ). These are the points
in momentum space where the gap closes when the strength
of the vector potential approaches zero, α → 0, leading to
the Dirac cone structure shown in Fig. 4(b). In this limit
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FIG. 6. (Color online) Momentum dependence of the Berry
curvature of the lowest-energy bands for the same parameters as in
Fig. 4(c). The integral of the Berry curvature over the first Brillouin
zone (i.e., the total flux) is 2π for the lowest-energy band (a) and
−2π for the second band (b), corresponding to the Chern numbers
1 and −1, respectively. The nonvanishing Chern numbers reveal the
nontrivial topological properties of the system.
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the Berry curvature diverges at the location of the Dirac
points. Similarly, if V2 → 0, the band gap closes at (π,π )
and the Berry curvature diverges at that point in k-space.
The total flux of berry curvature over the first Brillouin zone
is an integer multiple of 2π and defines the Chern number
Cλ = 1

2π

∫
d2kFλ(�k) [51,69]. A nonzero value of the Chern

number is a signature of the nontrivial topological properties
of the system. In the case shown in Fig. 6 the Chern numbers
for the first two bands are quantized to C1 = 1 and C2 = −1,
respectively. Changing the external parameters (V1,V2,α) can
significantly modify the shape of the two bands and the
distribution of Berry curvature in k-space without altering the
Chern numbers. For example, C1 can be modified only by
passing through a critical point (V ∗

1 ,V ∗
2 ,α∗) where the band gap

closes at least in one point in k-space. This type of transition
will be addressed in Sec. IV. Having established that the square
superlattice model supports quantum states with a nontrivial
topology, we consider now systems with boundaries and study
in detail the properties of the states localized in the vicinity of
those boundaries.

III. EDGE STATES: PROPERTIES AND
CHARACTERIZATION

In this section we consider a two-dimensional system
described by the square superlattice model in the presence
of ideal boundaries, i.e., boundaries created by an infinitely
steep potential wall. We discuss the properties of the edge
states for systems with either stripe or disk geometry. First, we
concentrate on the edge states that populate the gap between
the lowest-energy bands, then we discuss higher-energy edge
states.

A. The s-band edge states

One defining characteristic of topological insulators is the
existence of gapless edge states that are robust against disorder
and interactions. While the characterization of topological
insulators without boundaries using Berry curvatures and
Chern numbers is mathematically elegant, the correspond-
ing experimental manifestations are not straightforward. By
contrast, the existence of gapless edge states should be
much easier to address experimentally even in cold-atom
systems [31,32,70], as proved by the experiments on solid-state
topological insulators [25–29]. A boundary can be formally
introduced by turning on the extra confining potential Vc(r)
in Eq. (3). We start with an idealized potential that vanishes
in a certain region S and is infinite outside. The problems
concerning realistic confining potentials will be addressed in
Sec. V. We note, however, that the crucial assumption here
is not the infinite value of Vc outside S, as any finite value
V max

c of the order of the total relevant bandwidth or larger
produces similar consequences. The key assumption is that
the transition between the region with Vc = 0 and the region
with Vc = V max

c is characterized by a length scale of the order
of the lattice constant or smaller.

Without translation symmetry, the numerical complexity of
the problem increases significantly. Therefore, it is convenient
to address the problem of characterizing the edge states in two
stages: (i) First, we consider a stripe geometry, in which S

is finite along one direction (y in our calculations) but infinite
along the orthogonal direction (x), and we characterize the edge
states that form near the boundaries. (ii) Second, we consider
a disk geometry and show that the basic properties of the
edge states remain the same while pointing out the properties
that depend on the system geometry. We start our analysis by
focusing on the edge modes that populate the gap between
the first two energy bands, i.e., the bands having the main
contributions from s-type orbitals ψ

(rj )
0,0 (r). We call these bands

“s bands” but remind the reader that significant contributions
from higher-energy orbitals due to strong hybridization are
included.

1. Stripe geometry

Let us consider an optical lattice generated by the potential
Vlatt given by Eq. (5) and having a real space profile as shown
in Fig. 3(a). In the stripe geometry, we consider the lattice as
infinite in the x direction and finite in the y direction, as shown
schematically in the inset of Fig. 7. As translation invariance
is preserved along the x direction, so kx is still a good quantum
number. For a given value of kx each band is expected to
contain a number of states equal to the number of unit cells
along the transverse direction of the stripe. The calculated
spectrum corresponding to the first two bands is shown in
Fig. 7. In a stripe geometry, the contribution coming from
bulk states can be inferred by projecting the two-dimensional
spectrum (see Fig. 4) on a plane perpendicular to the transverse
direction of the stripe. In Fig. 4(c) the view angle was chosen
to visually facilitate this projection. In addition to the bulk
contributions, the spectrum in Fig. 7 contains edge modes that
populate the bulk gap. These modes cross the gap connecting
the lower and upper bands and intersect at kx = 0 due to
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FIG. 7. (Color online) The band structure of Eq. (3) in the stripe
geometry. The corresponding lattice is schematically shown in the
inset. Notice the edge state modes that populate the gap and merge
with the bulk states. The edge modes cross the gap connecting
the lower and upper bands and intersect at kx = 0 due to Kramers
degeneracy. Small perturbations can modify the dispersion of the
edge modes and the location of the Kramers degeneracy points but
cannot open a gap for the edge states. Notice that the bulk bands
can be obtained by projecting the two-dimensional spectrum shown
in Fig. 4(c) on a plane perpendicular to the y axis. The same set of
parameters as in Fig. 4(c) was used.

013608-9



TUDOR D. STANESCU, VICTOR GALITSKI, AND S. DAS SARMA PHYSICAL REVIEW A 82, 013608 (2010)

Kramers degeneracy. As we will show below, each of the states
having the energy inside the bulk gap is spatially localized near
one of the two edges of the system. Small perturbations, like
disorder and interactions, or changing the boundary conditions
will modify the edge mode dispersion, but the edge states
will remain gapless. Considering the Fermi energy somewhere
inside the bulk gap, it will always intersect each of the the
edge modes containing states localized either near the lower
boundary or near the upper boundary an odd number of times,
i.e., these edge modes will necessarily connect the lower and
upper bands.

A simple way to exemplify the properties described above
is to modify the boundary conditions for the stripe. As we
discussed in the previous section when we described the
square superlattice model (see subsection II B), the structure
of the lattice can viewed as consisting of two interpenetrating
sublattices A and B. For an edge along the x direction all the
boundary sites will be of the same type, A or B. Consequently,
we can construct stripes with edges of the same type and
stripes with edges of different types. The example shown in
Fig. 7 belongs to the first category. We can modify one of the
boundaries by adding (or removing) one line of points and
we obtain a stripe that belongs to the second category. The
corresponding spectrum is shown in Fig. 8. The dispersion of
the edge modes is significantly modified as compared to Fig. 7,
as well as the location of the degeneracy point. However, the
main property of the edge modes, namely that they connect
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FIG. 8. (Color online) Band structure for a stripe with inequiva-
lent edges (see main text). All the sites on one boundary belong to
the A sublattice, while all the sites on the other boundary are B type.
For the top panel the parameters are the same as in Fig. 7, the only
difference being an extra line of lattice sites at one of the boundaries.
Note the completely different dispersion of the edge modes and the
different location of the degeneracy point. The symmetry between
left-moving and right-moving states is broken. A mirror image of the
dispersion lines can be obtained by adding the extra line of lattice
sites to the opposite edge or by reversing the direction of the vector
potential, α → −α (lower panel). A topologically trivial edge mode
develops at the top of the second band (state E belongs to this mode).

the lower and upper bands, is not affected. This property is a
signature of the topological nature of these edge states. Figure 8
also offers a counterexample, i.e., a topologically trivial edge
mode. This mode, which develops at the top of the second
band, does not connect two different bands and is not robust,
as it can be absorbed into the bulk continuum in the presence
of small perturbations.

So far we referred to the in-gap states as edge states without
showing explicitly that they are indeed localized near the
boundary of the system. If for a given wave vector kx we
order the single-particle states according to their energy so
�1,kx

is the lowest energy state, then the spatial properties of a
generic state are given by the norm |�ν,kx

(r)|2, where Eq. (10)
is used with the amplitudes �

(n,m)
ν,kx

being solutions of Eq. (11).
However, such a detailed description of the spatial dependence
of the wave function is not necessary for our purpose and
instead we focus on the dependence of the envelope function,
which does not contain the details of the orbital structure, on
the transverse coordinate y. More precisely, for a state (ν,kx)
we define the “density” or “amplitude” function |�ν,kx

|2 =∑
(n,m) |�̃(n,m)

ν,kx
(yj )|2, where �̃

(n,m)
ν,kx

(yj ) is the Fourier transform

of �
(n,m)
ν,kx

(xj ,yj ) with respect to kx . Note that the “density” is
normalized,

∑
j |�ν,kx

|2(yj ) = 1. The spatial dependence of
the “amplitude” function for the states marked by the letters
A, B, and C in Fig. 7 is shown in Fig. 9. The figure shows
clearly that the states within the gap (A and C) are indeed
localized in the vicinity of one of the two edges of the system
and decay exponentially away from the boundary. For states
well inside the gap the characteristic length scale is of the order
of the lattice constant. This length scale increases as the edge
mode merges into the bulk states.

FIG. 9. (Color online) Spatial dependence of the “amplitude”
function |�kx,ν |2 = ∑

(n,m) |�̃ (n,m)
kx ,ν (yj )|2 for the states marked by the

letters A, B, and C in Fig. 7. The stripe has a width d = 252 (in units
of a = 1/

√
2). State A, which is well inside the bulk gap, is localized

near the upper edge and decays exponentially with a characteristic
length scale of a few lattice constants. State B, which is at the gap
edge, is a bulk state with a smoothly varying envelope function.
Notice the multiplication factor of 30 introduced to make the function
visible on the same scale as the edge states. State C belongs to the edge
mode but is very close to the gap edge. It is localized near the bottom
edge and decays exponentially but has a length scale significantly
larger than state A.
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FIG. 10. (Color online) Spatial dependence of the “amplitude”
function |�kx,ν |2 = ∑

(n,m) |�̃ (n,m)
kx ,ν (yj )|2 for state E and for the

sequence of states D1 → D4 from Fig. 8. D1 is positioned in the
middle of the gap, while D4 is at the gap edge and has bulk
character. During this transition the characteristic length scale for
the exponential decay of the edge states increases continuously from
a value of a few lattice sites to a value comparable to the width of the
stripe. The state E has a very pronounced edge character but is not
topologically protected. Note that the horizontal axis was translated
for clarity.

To examine further the transition from edge to bulk states
we show in Fig. 10 the “amplitude” function for the sequence
of states D1 → D4 from Fig. 8. The state D1 is positioned in
the middle of the gap and in real space it decays exponentially
away from the top edge with a length scale of a few lattice
constants. As the edge states mode approaches the gap edge
(states D2 and D3) the characteristic length scale increases and
eventually becomes comparable to the size of the system. D4 is
a bulk state with a very small amplitude near the top boundary.
Also shown in Fig. 10 is the state E from Fig. 8. This is a
state with a very pronounced edge character, but which is not
topologically protected, as discussed above.

In the spectra shown in Figs. 7 and 8 the topologically
protected edge modes are very well defined, yet the edge
mode at the top of the second band (state E) is manifest
only for the inequivalent edge stripe. However, a detailed
analysis reveals the existence of edge states at the top of
the second band even for equivalent edge stripes. This raises
the more general question of distinguishing between bulk
and edge states and representing this difference. Of course,
determining the “amplitude” of each single-particle state will
provide the answer, but this is a rather cumbersome process
and a more global characterization would be desirable instead.
Two possible quantities that offer such a characterization are
the average position in the transverse direction, 〈y〉ν,kx

=
〈�ν,kx

|y|�ν,kx
〉, and the average orbital momentum, 〈L〉ν,kx

=
〈�ν,kx

|L|�ν,kx
〉. Diagrams of these average quantities versus

the energy are shown in Fig. 11 for a stripe with equivalent
edges and Fig. 12 for a stripe with inequivalent edges. The
corresponding spectra were already shown in Figs. 7 and 8,
respectively. Each point in these diagrams corresponds to a
single-particle state, solution of Eq. (3). The edge-type states
are characterized by average positions corresponding to the
location of the two boundaries and relatively large orbital
momenta. These can be easily distinguished from the bulklike
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FIG. 11. (Color online) (Upper panel) Average position versus
energy for the single-particle states that are solutions of Eq. (3) in the
stripe geometry (with equivalent edges). The system is characterized
by the parameters V1 = 3.4Er , V2 = 1.7Er , and α = 2h̄/a and
has a width d = 100(

√
2a). The bulk states are characterized by

〈y〉nkx
≈ d/2, while the edge states have 〈y〉nkx

≈ 0 or 〈y〉nkx
≈ d ,

corresponding to the positions of the two edges. (Lower panel)
Average orbital momentum (in arbitrary units) versus energy for the
same system. Notice the chiral nature of the topological edge states
and the extra edge modes located in the upper band. The spectrum
for this system is shown in Fig. 7 and the density of states (DOS) is
shown in the right panels.

states, which are characterized by average positions close to
the middle of the stripe and which carry small orbital momenta.
The topologically unprotected edge modes that can be partially
seen in Fig. 8 but are totally obscured by bulk states in Fig. 7
can now be easily identified. If we focus on the topological
edge states within the gap (εnkx

≈ 2.4), note that for a stripe
with equivalent edges (Fig. 11) the two modes localized on
the opposite boundaries carry the same orbital momentum,
thus revealing their chiral nature. In other words, for each
energy within the gap there is a pair of counterpropagating
edge states localized on opposite edges. For a stripe with
inequivalent edges (Fig. 12) this symmetry is broken, and
for some energy values within the gap it possible to find
states localized on opposite edges, yet propagating in the same
direction. However, the negative orbital momentum of one
state is always larger (in absolute value) than the positive
orbital momentum of its pair.

The usefulness of these diagrams showing the average
position (orbital momentum) versus energy is even greater
for geometries without any translation symmetry, when
the standard energy versus momentum spectra cannot be
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FIG. 12. (Color online) Average position (upper panel) and
average orbital momentum (lower panel) versus energy for the
single-particle states that are solutions of Eq. (3) in the stripe geometry
(inequivalent edges). The system is characterized by V1 = 3.4Er ,
V2 = 1.7Er , and α = 2h̄/a and has a width d = 101(

√
2a). The

spectrum for this system is shown in Fig. 8.

constructed. Before we switch to a different geometry, let
us note that the fundamental properties of the topologically
protected edge states are not affected by approximations
used in the calculation as long as the bulk gap is preserved.
Shown in Fig. 13 are the density of states and the spectrum
of a stripe with inequivalent edges calculated for the s
bands within a simplified tight-binding approximation that
neglects the hybridization with higher-energy bands. The
density of states for the same system calculated within a
three-orbital approximation is also shown for comparison,
while the corresponding spectrum is presented in Fig. 8
(top). We can say that the edge states are protected against
approximations, as long as these approximations do not affect
the gap structure of the (bulk) spectrum. This is not surprising,
as approximations can be viewed as effective perturbations
applied to the Hamiltonian.

2. Disk geometry

So far we have discussed the properties of the edge states in
systems with translation symmetry in one direction (stripes).
Because momentum along one direction is a good quantum
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FIG. 13. (Color online) Density of states (a) and spectrum
(b) showing the s bands of a stripe with inequivalent edges cal-
culated within a simplified tight-binding approximation that neglects
hybridization with higher bands. For comparison, the density of states
calculated within a three-orbital tight-binding approximation is also
shown. The corresponding spectrum is given in Fig. 8 (top panel).
Note that the topology of the edge modes is not altered, in spite of a
significant redistribution in the density of states.

number, spectra showing the energy dispersion as a function
of momentum are a very effective way of characterizing the
system and, in the case of condensed matter systems, have a
direct connection with experimentally measurable quantities.
By contrast, cold-atom systems may contain a relatively small
number of sites, so the explicit treatment of a finite system may
be required, and have a circle or an ellipse as the most natural
shape for the boundary. This raises two questions: (i) What is
the impact of the boundary geometry on the edge states? and
(ii) How important are the finite size effects for the stability
of the edge states? We start by addressing the first question,
while the second will be discussed in Sec. V.

Let us consider the single-particle quantum problem de-
scribed by Eq. (3) with an extra confining potential given by

Vc(r) =
{

0 if |r| � R0,

∞ if |r| > R0.
(12)

The system consists of a disk-shaped piece of the square
superlattice with a boundary that contains sites from both
sublattices A and B with a distribution that depends on
the radius R0. For simplicity, we solve the problem within
the single-orbital tight-binding approximation, as the full size
matrices (i.e., N × N matrices, with N the number of lattice
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FIG. 14. (Color online) Diagram showing the average radial
position versus energy for the single-particle states of a system
described by Eq. (3) in a confining potential (12). The parameters
of the system are V1 = 3.4Er , V2 = 1.7Er , and α = 2h̄/a. The
underlying lattice (i.e., the minima of the effective optical lattice
potential) is shown in the inset. The edge states are characterized
by values of 〈r〉n comparable with R0 = 29a, the disk radius, as a
result of their localization in the vicinity of the boundary. The clearly
defined edge mode crosses the bulk gap and connects the lower and
upper bands, thus revealing its topological nature. The density of
states (right) is practically identical with that shown in Fig. 13(a) for
a similar system with stripe geometry.

sites inside the disk) have to be used in Eq. (11). To describe
globally the system we use the type of diagrams introduced
in the previous section. More precisely, we represent the
average radial position for a given single-particle state, 〈r〉n =
〈�n|r|�n〉, versus the state energy, εn. The results for a
disk with radius R = 29a are shown in Fig. 14. The main
conclusion suggested by the data is that the edge mode is
robust against deformations of the boundary. The states with
energies near the middle of the gap are localized within a few
lattice spacings from the boundary, while this characteristic
length increases as one approaches the gap edge. The number
of edge states is proportional to the length of the boundary
(i.e., R0), while the number of bulk states scales with the area
of the system (i.e., R2

0). Finally, we note that the topologically
unprotected edge states that were present in the stripe geometry
(see Figs. 8, 11, and 12) do not survive in the absence of
translational symmetry.

To visualize the spatial dependence of the single-particle
states in the disk geometry, we show in Fig. 15 the “amplitude”
function |�n|2 = |�(0,0)

n (rj )|2 for several states. The edge state
shown in the bottom-left panel has an energy near the middle
of the bulk gap. The amplitude of the edge state decays
exponentially away from the boundary, with a characteristic
length scale of the order of the lattice constant. This length
scale increases for states with energies closer to the gap
edge and eventually becomes comparable to the system size
(i.e., to R0) as the edge mode merges with the bulk bands.
This behavior, as well as the characteristic length scales, are
the same as those observed in the stripe geometry and are
independent of the boundary geometry. What depends on

FIG. 15. (Color online) “Amplitude” functions for single-particle
states in the disk geometry. The top and middle panels show
“densities” corresponding to the first four energy levels starting with
the ground state (top left corner). We note that the actual density
is obtained by multiplying these envelope functions with a sum of
s-type orbitals centered at each lattice site. The lower panels show a
typical edge state (left) and a typical bulk state (right). The edge state
decays exponentially away from the boundary, with a characteristic
length scale of a few lattice constants.

the details of the boundary is the actual distribution of the
“density” along the boundary. For example, the edge state
shown in Fig. 15 has four regions with higher amplitude. These
regions correspond to sections of the boundary that contain
only sites that belong to one of the sublattices and are locally
similar to the boundary in the stripe geometry. Modifying
those regions determines a “density” redistribution along the
boundary, but the transverse properties (e.g., the characteristic
length scale for the exponential decay) are not affected. In
conclusion, the fundamental properties of the edge states do
not depend on the geometry of the system and, therefore, can
be studied using the most convenient geometry. However, if we
are interested in the detailed behavior of the edge states along
the boundary, a precise characterization of this boundary is
required and has to be explicitly included in the calculations.

B. Edge states in a multiband system

So far we have discussed the properties of the edge states
that populate the gap between the lowest-energy bands. From
a practical point of view, in cold-atom systems these may
be the most relevant states for two reasons: (i) the extra
confining potential necessary for defining a boundary [32] for
higher-energy bands has to be stronger and may be harder to
realize and (ii) for a relatively shallow optical lattice, which is
the optimal condition for observing topological edge states, the
higher bands may strongly overlap, thus filling any possible
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FIG. 16. (Color online) Energy dispersion for the first six bands of
the square superlattice model along the (0,0) → (π,π ) → (π,0) →
(0,0) path in the Brillouin zone. The parameters used in the calculation
are V1 = 3.4Er , V2 = 1.7Er , and α = 2h̄/a. The s bands (red lines)
are identical with those shown in Fig. 5.

gap. Nonetheless, in some cases the p-type bands may offer
some advantages, most notable the possibility of having larger
bulk gaps and the direction dependence of the p orbitals (see
Sec. II), which can be critical in certain models. In addition,
from a theoretical standpoint it is interesting to investigate
if there is any major difference between various types edge
states that may be present in a multiband system. We note that
all the results presented in this section for the p-type bands
are qualitative. Quantitative results would require taking into
account contributions from several higher energy orbitals, as
they hybridize strongly with the p orbitals.

Shown in Fig. 16 is the spectrum of single-particle
Hamiltonian (3) with Vc(r) = 0 (no boundaries) obtained in a
three-orbital tight-binding approximation. The parameters for
this calculation are V1 = 3.4Er , V2 = 1.7Er , and α = 2h̄/a,
i.e., the parameters used to derive the majority of the results
in the previous subsection. For these parameters most of the p
bands overlap and no gap opens except between the fourth and
the fifth bands (at energies around 5.2Er ). The first question
that we address is whether there are any other topological
edge states except those located in the gap between the first
two bands, which we studied in the previous subsection. To
answer this question, we can either consider a system with
boundaries and identify the edge modes or remain within a
bulk description and calculate the Chern numbers Cn for each
band. We start with the second approach, as it is much easier
to implement numerically. The Chern numbers for the first
four bands are C1 = 1, C2 = −1, C3 = 1, and C4 = −1. The
last two bands are degenerate at k = (0,π ) and k = (π,0). As
the Berry curvature diverges in the vicinity of the degeneracy
points, the Chern numbers for those bands are not defined.
In principle, topological edge states exist in a gap if the total
curvature (i.e., the sum of the Chern numbers) of all the bands
below that gap is nonzero. The first band has nonzero curvature
and topological edge states exist inside the gap above it, as
we have seen above. The first two bands, as a whole, have
zero total curvature and, consequently, no topological edge
states should be present on the top of the second band. This is
consistent with our previous observation of the topologically
unprotected edge states in the stripe geometry. Similarly, we
expect topological edge states to exist between the third and
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FIG. 17. (Color online) The band structure of the Hamiltonian
given by Eq. (3) in the stripe geometry. The left panel corresponds
to the parameters V1 = 3.4Er , V2 = 1.7Er , and α = 2h̄/a, while the
right panel corresponds to a slightly deeper lattice with V1 = 3.7Er .
Note that there are no edge states between the second and the third
bands, but an edge mode is clearly visible between the third and the
fourth bands. Increasing V1 opens a gap in the spectrum (right panel)
and reveals the topological nature of that edge mode. By contrast,
the edge states that populate the gap between the fourth and the fifth
bands are topologically trivial, as they do not connect the two bands.

the fourth bands (if a full gap is opened) but not between the
fourth and the fifth.

To confirm that the structure inferred from the values of
the Chern numbers is indeed realized, we calculate the band
structure of a system with boundaries in the stripe geometry.
The results are shown in Fig. 17 and offer a picture that is
consistent with the above analysis. Two features are worth
mentioning. First, note that the topological edge mode that
develops inside the gap between the third and fourth bands
(Fig. 17, right panel) partially survives the gap collapse
(Fig. 17, left panel). These edge states are protected by the
translation symmetry and are robust against perturbations that
conserve this symmetry. However, they will be destroyed by
the presence of disorder. Second, we notice some very well
defined edge modes inside the gap between the fourth and
fifth bands. These modes are good example of topologically
trivial edge states: they do not cross the gap connecting two
different bands but rather start from and return to the same
band. Consequently, at any given energy there will be an even
number of such edge states near a given boundary and any
small perturbation will make them to become localized. By
contrast, in the case of topological edge states there is an
odd number of states near a given boundary at any given
energy within the gap, so even in the presence of perturba-
tions a dispersive mode consisting of delocalized states is
preserved.

As we mentioned at the beginning of this subsection, includ-
ing higher-energy orbitals is expected to modify quantitatively
our picture of the p bands. However, we expect minor changes
as far as the s bands are concerned. Therefore it is relevant and
useful to have a quantitative estimate of the s-band gap and a
general idea on how it depends on the parameters of our model.
Shown in Fig. 18 is the gap dependence on the strength of the
vector potential for three different values of V2. Depending on
the parameters, the system has either a direct gap at (π,π ) or
an indirect gap between the maximum of the lower band at
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FIG. 18. (Color online) The s-band gap as function of the vector
potential strength for several values of the superlattice generating
component V2. The main amplitude of the optical lattice potential is
fixed, V1 = 3.4Er . Notice that each curve has a singularity point and
that the slope to the left (right) of the singularity point is positive
(negative). The positive slope correspond to an indirect gap between
the maximum of the lower band at (π,π ) and the minima of the upper
band at (0,π )/(π,0), while the negative slope corresponds to a direct
gap at (π,π ). Note that for weak vector potentials with the strength
α below a critical value α∗(V2) the indirect gap becomes negative.

(π,π ) and the minima of the upper band at (0,π )/(π,0). Note
that the indirect gap becomes negative for α < α∗(V2), i.e.,
vector potentials with a strength lower than a certain critical
value.

IV. TRANSITIONS BETWEEN TOPOLOGICALLY
DISTINCT QUANTUM STATES

In this section we give several examples of phase transitions
between quantum states with distinct topological properties.
These transitions can be induced by applying certain pertur-
bations, i.e., adding some extra terms to the Hamiltonian, or,
in the case of a multiband topological insulator, by simply
varying the parameters that characterize the system.

The topological properties of a quantum state are not
modified by any perturbation of the Hamiltonian that does
not close the bulk gap. Nonetheless, when such a perturbation
determines the closing of the bulk gap, the system undergoes a
phase transition to either a metallic state or an insulating state
with possibly different topological properties. The topological-
insulator-to-metal transition can be exemplified by the band
structure shown in Fig. 17. Let us assume that the first three
bands in the right panel are completely filled, so the only
gapless excitations are provided by the edge mode that crosses
the gap between the third and fourth bands. By simply reducing
the depth of the optical lattice, this bulk gap collapses (see
left panel) and the system becomes metallic. More interesting
are the transitions between two different insulating states.
We discuss two possible ways of inducing such transitions:
(i) by adding an extra term to the Hamiltonian that opens a
(topologically trivial) gap and (ii) by tuning the parameters
V1, V2, and α that characterize the system.

A. Transitions driven by a staggered potential

The tight-binding model described by Eq. (1) is defined
on a square superlattice consisting of two interpenetrating
sublattices A and B, as discussed in Sec. I. If the second-
neighbor hopping is anisotropic, t ′2 �= t2, and the nearest-
neighbor hopping is complex, φ �= 0 and φ �= π , a full gap
�(k) opens in the spectrum, with an explicit wave vector
dependence given by

�2(kx,ky) = 4(t2 − t ′2)2(cos kx − cos ky)2 + 16|t1|2
× [1+ cos kx cos ky+ cos(2φ)(cos kx + cos ky)].

(13)

For the cold-atom realization of this model described by
Eq. (3), the condition for anisotropic second-neighbor hopping
becomes V2 �= 0, while the imaginary components of the
nearest-neighbor hopping are generated by the effective vector
potential, so the second condition becomes α �= 0. Spectra for
the Hamiltonian (3) corresponding to three different sets of
parameters are shown in Fig. 4. Another possibility to open
a gap in a square lattice tight-binding model is to simply add
a staggered potential, i.e., a potential that generates on-site
energies � and −� for the sublattices A and B, respectively.
This amounts to adding a term of the form

Vstagg = �
∑

k

(c†AkcAk − c
†
BkcBk) (14)

to the Hamiltonian. In the presence of such a term, a
simple tight-binding model with t ′2 = t2 and exp(iφ) = ±1 is
characterized by a full gap with a minimum value �min = 2|�|.
If the lowest band is completely filled, the system represents
a standard band insulator with trivial topological properties.
The question that we want to address concerns the evolution
of the spectrum and the fate of the edge modes as the transition
between a topological insulator and a standard band insulator
is induced by tuning the staggered field strength.

In the cold-atom realization of the model described by
Eq. (3) the staggered potential can be introduced as an extra
term. However, we want to point out the possibility that such
a component be generated in the process of constructing
the superlattice itself. This represents a potential problem
for realizing topological quantum states. For example, if the
components V1 and V2 of the optical lattice potential are
produced by different lasers, a misalignment corresponding to
x → x + δx and y → y + δy in the V2 term will effectively
generate a staggered potential. In the calculations we neglect
the detailed effects of such a misalignment on the hopping
matrix elements and consider only the on-site staggered
contributions parameterized by �. We start with a system in
the stripe geometry with parameters V1 = 3.4Er , V2 = 1.7Er ,
α = 2h̄/a, and � = 0, then we turn on � while keeping the
other parameters fixed. The corresponding spectra are shown
in Fig. 19. For � = 0 the system is a topological insulator and
the corresponding spectrum is characterized by an edge mode
that crosses the bulk gap. Applying a small staggered potential
reduces the gap in the vicinity of kx = 0 and, eventually, at the
critical value �c ≈ 0.075Er the gap closes at kx = 0. For larger
values of � the gap opens again but no edge states are present
inside the gap. We conclude that the system is a topological
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FIG. 19. (Color online) Band structure for a system with stripe
geometry described by the parameters V1 = 3.4Er , V2 = 1.7Er , α =
2h̄/a and different values of the staggered potential � (given in units
of Er ). � = 0 corresponds to the case shown in Fig. 7. Applying a
small staggered potential reduces the gap in the vicinity of kx = 0
(top right panel). At the critical value �c ≈ 0.075Er the gap closes
at kx = 0, while for � > �c a full gap opens again. At large values
of � the system is a standard band insulator with no edge modes
inside the gap. Notice that the spectra are shown for half of the
one-dimensional Brillouin zone while the other half can be obtained
by mirror symmetry with respect to kx = π .

insulator for � < �c(V1,V2,α) and a standard band insulator
for � > �c(V1,V2,α).

The mechanism described above is quite general. Any
perturbation capable of opening a gap in the spectrum will
have similar effects and will induce a transition at a particular
critical strength. This critical strength is independent of
the boundary geometry. However, the details that characterize
the edge modes in either side of the transition depend on the
properties of the boundaries. For example, if instead of the
stripe geometry with equivalent edges considered in Fig. 19
we study a system with inequivalent edges (see Fig. 8), we
observe a transition (i.e., the closing of the gap) at the same
critical value �c ≈ 0.075Er . However, the band insulator with
� > �c has now a clearly defined edge mode, as shown in
Fig. 20. In particular, this edge mode ensures the existence
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FIG. 20. (Color online) Band structure for a stripe with in-
equivalent edges and with the same parameters as in Fig. 19. For
� = 0.12Er the system is a standard band insulator but, in contrast
with the equivalent edge case (see Fig. 19), a well-defined edge mode
populates the gap. A clean insulator with the chemical potential inside
the bulk gap supports gapless edge excitations. However, any small
perturbation (such as disorder or interactions) will open a gap in the
edge mode.

of gapless excitations for any value of the chemical potential
inside the gap. Nonetheless, this mode is topologically trivial,
as revealed by the fact that it does not connect the two
bands, and consequently it is not protected against disorder
and interactions, in the sense that any weak perturbation will
open a gap in the edge mode.

B. Transitions in a multiband system

The transition studied in the previous section was driven by
the competition between the contributions to the Hamiltonian
that generate its nontrivial topological properties and terms
like Vstagg that tend to open a conventional band gap. However,
the model described by Eq. (3) contains three independent
parameters, V1, V2, and α, and only the vector potential
(i.e., α) is directly responsible for the nontrivial topology of
the bands. Therefore, we expect several topologically distinct
states to exist in various regions of the parameter space. We
have already seen that small variations of the parameters can
lead to the opening/closing of the gaps corresponding to a
topological insulator to metal transition, as shown in Fig. 17.
The question that we address now is whether insulator to
insulator transitions can be induced by tuning the parameters
of the model. Our purpose is not to determine the full phase
diagram of the model but rather to give an example showing
that such transitions are possible. In general, the parameter
space can be characterized by two independent quantities, for
example V2/V1 and α/

√
2mV1. However, we fix V1 = 3.7Er

and α = 2h̄/a and vary V2, which corresponds to a certain cut
in the parameter space. The resulting bulk spectra are shown
in Fig. 21 for several values of V2. The total flux of Berry
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FIG. 21. (Color online) Energy dispersion curves for a system
with V1 = 3.7Er , α = 2h̄/a, and different values of V2 along the
(0,0) → (π,π ) → (π,0) → (0,0) path in the Brillouin zone. The
numbers inside the yellow circles represent the Chern numbers of
the bands. Note the closing of the direct gap at certain critical values
of V2 (panels b and d) and the corresponding change of the Chern
numbers. The spectra shown in panels a, c, and e are consistent
with different insulating states: (a) topological insulator (with the
first three bands filled) and conventional insulator (four bands filled);
(c) topological insulator (one band filled) and conventional insulator
(four bands filled); and (e) topological insulator I (one band filled),
conventional insulator (two bands filled), and topological insulator II
(four bands filled).
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FIG. 22. (Color online) Detail of the band structure for a system
in the stripe geometry with the same parameters as in Fig. 21(a) (left)
and 21(e) (right). In the left panel notice one pair of topological edge
modes inside the gap above the third band and the topologically trivial
edge states above the fourth band, consistent with the Chern numbers
shown in Fig. 21(a). On the right we observe four pairs of edge modes
inside the gap above the fourth band. This number of pairs of edge
modes is equal to the total Chern number of the bands below the gap
[see Fig. 21(e)].

curvature (i.e., the Chern number) for a given band remains
unchanged as long as the direct gaps separating that band from
the neighboring bands do not vanish. When the direct gap
between two bands vanishes (see panels b and d), the total flux
of Berry curvature is redistributed between the two bands and
the topological properties of the system change accordingly.

As we mentioned above, the topological character of an
insulating state, and hence the existence of robust edge states,
is determined by the sum of the Chern numbers of the occupied
bands. An interesting case revealed by the results shown in
Fig. 21 is when the first four bands are completely filled. Then,
for V2 < 1.53Er the system is a conventional band insulator,
while for V2 > 1.53Er it is a topological insulator with the sum
of the Chern numbers of the occupied bands equal to four. To
identify the structure of the corresponding edge modes we
consider a system with boundaries in the stripe geometry and
determine the spectra for V2 = 1.0Er and V2 = 2.5Er . The
results are shown in Fig. 22. As evident from these results, the
number of pairs of topological edge states that populate a gap
equals the total Chern number of the bands that are below that
gap. In the case shown in right panel of Fig. 22 four pairs of
topological edge modes populate the gap between the fourth
and the fifth bands. Hence, for any given energy inside the
gap at least four different edge states will exist on each of the
two boundaries. The stability of these edge states is a natural
question that we address next.

V. STABILITY OF THE EDGE STATES

The physics that emerges from the nontrivial topological
properties of a system can be directly related to the behavior of
the edge states. The topological features are present as long as
the spectrum is gaped for all bulk excitations and the bulk gap
is populated by gapless edge modes. Weak local perturbations
cannot induce a phase transition to a state with different
topological properties and, consequently, the edge or surface
states are robust against disorder and interactions [22,59–62].
These perturbations modify the bulk properties of the system

and generate extra terms in the Hamiltonian that describes
its quantum mechanical properties. However, the solution
of a quantum mechanical problem is determined not only
by the Hamiltonian but also by the boundary conditions.
In this section we address the question of how changing
these boundary conditions impact the properties of the edge
states. In particular, we discuss the stability of the edge
states against finite size effects and their dependence on the
confining potential that defines the boundaries of the system.
The answers to these questions are particularly relevant for
cold-atom systems, but they can shed meaningful light on the
physics of solid-state topological insulators, for example, in
the case of topological-insulator thin films [71–75] or in the
case of topological-insulator heterostructures.

A. Finite size effects

The chiral edge states robustness against disorder and inter-
actions can be linked to the absence of backscattering. In a large
system, counterpropagating edge modes are localized near
boundaries that are well separated spatially and, consequently,
have a vanishing overlap. However, as the size of the system
in a certain direction is reduced, edge states propagating along
opposite edges may acquire a finite overlap. Consequently, a
gap opens in the edge states spectrum. The dependence of this
gap on the size of the system depends on the spatial behavior of
the edge states, in particular on how fast they decay away from
the boundary. As suggested by the profiles shown in Figs. 9
and 10, the edge state amplitude decreases exponentially with
the distance from the edge. The characteristic length scale for
this exponential decay, ξ , depends on the size of the bulk gap,
roughly scaling as the bandwidth over the gap size, but also on
the location of the edge state within the bulk gap. In addition,
the exponential decay is generally nonmonotonic and includes
one or more oscillatory components.

To illustrate this general behavior, we show in Fig. 23
the spectrum for a system with a stripe geometry described
by the square superlattice model given by Eq. (1) with
the parameters t1 = (1 + 0.2i)Er , t2 = −0.3Er , and t ′2 =
−0.06Er . The edges of the stripe are chosen along one of the
next nearest-neighbor directions and, as discussed above, may
contain sites from the same sublattice (what we call equivalent
edges) or from different sublattices (inequivalent edges). As
shown in the upper panel of Fig. 23, the dispersion of the
edge modes is extremely sensitive to changes in the boundary
conditions (see also Figs. 7 and 8). In addition, different states
from a given edge mode have different asymptotic behaviors,
as shown in the lower panel of Fig. 23. As the parameters
describing the asymptotic behavior of an edge state deep inside
the system depend on bulk properties but also on the position
of the state within the gap, they can be modified by changing
the boundary conditions.

If the edges of the stripe are chosen along one of the
nearest-neighbor directions, the corresponding spectrum does
not exhibit any even-odd variation with the number of layers
in the system. The band structure for such a stripe is shown
in Fig. 24 for the same model parameters as in Fig. 23. The
amplitude of an edge state from the vicinity of the Dirac point is
also shown in the lower panel. Although the bulk parameters
are the same as in Fig. 23, the asymptotic behavior of the
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FIG. 23. (Color online) (Upper panel) Spectrum for the square su-
perlattice model (1) with parameters t1 = (1 + 0.2i)Er , t2 = −0.3Er ,
and t ′

2 = −0.06Er in the stripe geometry. The system is finite in the
y direction and infinite in the x direction, with the axes are oriented
along the next-nearest-neighbor directions (see Fig. 3). For an odd
number of layers (i.e., equivalent edges) the edge states (red/dark gray
lines) with kx < π are localized near y = 0, while the edge states with
kx > π are localized near the opposite boundary. For an even number
of layers (i.e., inequivalent edges) the mode localized near y = 0
remains unchanged, while the other mode is now characterized by
kx < π (green/light gray line). (Lower panel) Edge state amplitudes
multiplied by exponential factors to reveal the oscillatory behavior.
Blue (dark gray): edge state corresponding to kx = 0.97π/

√
2a and

ξ = 1.441
√

2a. Orange (light gray): edge state with kx = 0.7π/
√

2a

and ξ = 1.351
√

2a.

edge states is generally different, as a consequence of the
new boundary conditions. Note that the edge state shown in
Fig. 24 is characterized by multiple oscillatory components,
in addition to the exponential decay. The relative amplitude of
those components depend on kx , the wave vector component
parallel to the edge, for example, at kx = π/a only the short
wavelength oscillatory component is present.

Knowing the precise asymptotic behavior of the edge states
for a given system is important for predicting the dependence
of the finite size induced gap on the system size. As mentioned
above, the size of the gap depends on the overlap between
edge states propagating along opposite edges. More precisely,
let us consider an infinitely wide stripe described by a certain
Hamiltonian and two Kramers degenerate edge states ψ

(1)
k0
x

(δy)

and ψ
(2)
k0
x

(δy), where δy is the distance from the boundaries
along which the states propagate. Next, consider a relatively
thin stripe of width W described by the same Hamiltonian.
The relevant overlap can be written as

s12(w) =
∫ w

0
dyψ

(1)
k0
x

(y)ψ (1)
k0
x

(w − y). (15)
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FIG. 24. (Color online) (Upper panel) Spectrum for the square
superlattice model (1) in the stripe geometry for the same parameters
as in Fig. 23 but with the symmetry axes oriented along the
nearest-neighbor directions. The dispersion of the edge modes is
independent of the parity of the number of layers. (Lower panel) Edge
state amplitude multiplied by an exponential factor with ξ = 2.396a

for the state with kx = 0.97π/a. Note the even-odd oscillations and
the k-dependent long wavelength oscillatory component. At kx = π/a

the extra oscillatory component is absent.

If w � ξ , where ξ is the characteristic length scale for the
exponential decay of the edge states, the overlap is negligible,
but as the width of the stripe is reduced we expect s12(w) to
grow exponentially. However, this exponential dependence is
not monotonic, due to the extra oscillatory components of the
wave functions.

The dependence of the spectrum on the width of the stripe
is shown in Fig. 25. The model parameters and the geometry
of the stripe are the same as in Fig. 24. As the width of the
system is varied, the bulk spectrum changes dramatically, in
contrast to the edge modes that are practically unaffected if
the number of layers exceed N = 30. For thiner stripes, s12(w)
becomes finite if the number of layers is even and a gap opens
at the degeneracy point. The even-odd effect is a consequence
of the oscillatory asymptotic behavior of the edge states at
kx = π .

To investigate further the consequences of the oscillatory
asymptotic behavior on the finite size induced gap we consider
a system described by the square superlattice model given
by Eq. (1) with the parameters t1 = (1 + 0.05i)Er , t2 =
−0.05Er , and t ′2 = 0.05Er . The system has a stripe geometry
with edges along one of the nearest-neighbor directions. The
asymptotic behavior of the edge states is qualitatively similar
to that shown in Fig. 24, but the characteristic length scales
ξ are significantly larger due to the smaller value of the
bulk gap. The dispersion of the edge modes for thin stripes
with three different numbers of layers is shown in the upper
panel of Fig. 26. For N > 44 layers, a small gap opens at the
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FIG. 25. (Color online) Opening of a gap in the edge state
spectrum due to finite size effects. The system is a thin stripe with
the same geometry and hopping parameters as in Fig. 24. The size
of the gap is determined by the overlap of edge states localized on
opposite boundaries and, consequently, varies roughly exponentially
with the width of the stripe and inherits the oscillatory behavior of the
edge states. For large N the edge states are gapless and independent of
parity. For thin films, a finite gap opens in systems with even number
of layers, while systems with odd number of layers remain gapless.
Note that the “bulk” spectrum varies dramatically with the system
size, in contrast with the edge modes that are practically unaffected if
the system size is much larger than their characteristic length scale.

degeneracy point kx = π due to the overlap between the edge
states propagating on the two edges. The wave functions at
kx = π are characterized by oscillations with a period 2a, in
addition to the exponential decay. This leads to the vanishing
of the overlap, and implicitly of the induced gap, in stripes
with odd number of layers, as shown in the lower panel of
Fig. 26. By reducing the system size, the gap induced at
kx = π increases exponentially if the number of layers is even.
However, edge states with kx �= π are characterized by extra
oscillatory components, similar to the situation shown in the
lower panel of Fig. 24, and the overlap of these states may
vanish for certain stripe widths even if the number of layers
is even. Consequently, the minimum gap shifts away from
kx = π when N < 44 and the dependence of the (minimum)
gap amplitude on the system size is no longer exponential (see
Fig. 26).

We have shown that the amplitude of the edge states gap
induced by finite size effects depends on the asymptotic
behavior of the edge states. Of course, the presence of
perturbations, such as impurities, will also impact the size
of this gap. For example, the exact vanishing of the gap in
stripes with an odd number of layers does not happen in the
presence of impurities. More generally, in the presence of
disorder one expects the amplitude of the induced oscillatory
effects to decrease. Another interesting question concerns the
effect of extended defects, such as a one-dimensional lattice
mismatch, on the edge states and on the finite size induced
gap. Although in cold-atom systems the relevance of these
type of defects is not clear, this type of problem is highly
relevant for solid-state topological insulators. For example,
scanning tunneling spectroscopy (STS) measurements on bulk
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FIG. 26. (Color online) Gap dependence on the stripe thickness
(w) for a system with t1 = (1 + 0.05i)Er , t2 = −0.05Er , and t ′

2 =
0.05Er and the symmetry axes oriented along the nearest-neighbor
directions. (Upper panel) Edge mode dispersions for stripes with
w = (N − 1)a, where N is the number of layers. The gap at kx = π

is almost zero for N = 48, 0.1Er for N = 24, and 0.36Er for N = 12.
Edge states with kx �= π have extra oscillatory components (similar
to that shown in the lower panel of Fig. 24) that may generate a
vanishing overlap between edge states located on opposite edges.
Consequently, for N < 44 the gap minima shift away from kx �= π .
(Lower panel) Dependence of the minimum gap amplitude on the
stripe thickness. Note the even-odd oscillations. The long period extra
oscillatory components of the edge states (see Fig. 24) determine a
deviation from an exponential dependence of the gap amplitude on
the stripe thickness for N < 44 in stripes with even number of layers
(red/smooth line).

crystals of Bi2Se3 and Bi2Te3 have revealed mechanical
instabilities of the surface due to the strongly layered structure
of these materials, which causes microcracking between the
layers [76,77]. We will not address this issue in detail, but note
that the presence of these extended perturbations induces states
inside the bulk gap that are spatially localized in the vicinity
of the defect. As an example, we show in Fig. 27 the spectrum
of a two-dimensional square superlattice model with t1 =
(1 + 0.3i)Er , t2 = −0.3Er , and t ′2 = 0.3Er . The system has no
boundaries but has a one-dimensional defect along one of the
nearest-neighbor directions. The defect is modeled as a pair of
lattice lines coupled by nearest-neighbor hoppings δt . A lattice
mismatch corresponds to the case when the nearest-neighbor
hopping couples sites of the same sublattice. Note that the
limit δt → 0 corresponds to the stripe geometry. As shown in
Fig. 27, in the absence of a lattice mismatch the dispersion of
the in-gap modes is similar to that of topologically trivial edge
states, while in the presence of the lattice mismatch the dis-
persion is similar to that of topological edge modes. The main
difference between edge states and these extended defect states
is that the defect modes are not connected to the bulk bands.
In thin stripes these extended defect states can overlap with
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FIG. 27. (Color online) In-gap states localized along a line defect
in a system with no boundaries described by Eq. (1) with t1 = (1 +
0.3i)Er , t2 = −0.3Er , and t ′

2 = 0.3Er . The one-dimensional defect
is oriented along the nearest-neighbor direction and is characterized
by (see main text): δt = 0.5Er and no lattice mismatch (green or light
gray lines), δt = 0.5Er and a lattice mismatch (red lines and circles),
δt = Re[t1] = Er and a lattice mismatch (black lines and triangles).
In thin stripes the edge states can overlap with states localized along
extended defects and increase the size of the finite size induced gap.

the edge states modifying significantly the size of the induced
gap. Also, if such extended defect states are present close to the
edge/surface of a topological insulator, the transport properties
of the edge states can be significantly affected.

B. Effects of the confining potential

The properties of the edge states are strongly dependent
on the boundary conditions, as we have shown in the
previous subsection. In cold-atom systems these boundary
conditions are determined by the extra confining potential that
supplements the optical lattice confinement, i.e., the term Vc(r)
in Eq. (3). So far, in all the calculations we have used hard
wall boundary conditions, which for the stripe geometry are
equivalent with having a confining potential

Vc(y) =
{

0 if 0 � y � W,

∞ if y < 0, or y > W.
(16)

The question that we want to address next is how are the
edge states properties modified if we relax the hard wall
boundary conditions. In general, a given confining potential
sharply defines the boundary of a system if it is characterized
by values much smaller than the topological-insulator gap
over a large area (volume), the “bulk” of the system and
increases to values larger than the bandwidth within a length
scale much smaller that the linear size of the “bulk.” The
region defined by this length scale is the “boundary region.” A
harmonic confining potential, as typically used in cold-atom
experiments, does not contain any intrinsic length scale that
could define a boundary. The “boundary” of a system of
atoms in a harmonic trap potential Vc(r) has a characteristic
length given by d = L� − LW , where L� is the length scale
at which the confining potential becomes comparable to the
bulk gap, Vc(L�) = �, and LW is the length scale at which
the confining potential becomes comparable to the bandwidth,
Vc(LW ) = W [32]. For a very smooth potential, the “boundary

region” can represent a significant fraction of the bulk. The
system confined by such a potential is an inhomogeneous
system with no insulating properties, at least in the absence of
interparticle interactions, which represents an inhomogeneous
topological metal [32]. Before discussing this case, it is
instructive to study the effect of a confining potential that has
an intrinsic length scale on the properties of the edge states.
The particular question that we address is how the edge states
depend on the characteristic length scale of an exponential
confining potential.

We restrict our analysis to the stripe geometry and consider
the simple square superlattice model described by Eq. (1).
To detect easily the changes in the edge mode dispersion we
choose a set of model parameters that generates a large bulk
gap: t1 = (1 + 0.3i)Er , t2 = −0.3Er , and t ′2 = 0.3Er . One
edge of the stripe, y = W , is defined by a hard wall boundary
condition, while the opposite “edge” is soft and generated by
an exponential confining potential. Explicitly we have:

Vc(y) =
{

5Ere
− y

2a if y � W,

∞ if y > W.
(17)

Notice that the characteristic length scale for the soft boundary,
ξc = 2a, is larger than (but comparable to) the typical decay
length of the edge states that are localized near the hard wall,
ξ = 0.8a. The corresponding spectrum is shown in Fig. 28.
The edge mode represented by the red line propagates along
the hard boundary, while the orange lines represent the edge
states near the soft boundary. Notice that the soft mode retains
the fundamental property of a topological edge mode to
continuously cross the gap and connect the two bulk bands.
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FIG. 28. (Color online) Spectrum for a system with a soft
boundary described by Eq. (1) with t1 = (1 + 0.3i)Er , t2 = −0.3Er ,
and t ′

2 = 0.3Er in the stripe geometry. The stripe is oriented along
the nearest-neighbor directions and is finite along the y direction.
The confinement at y ≈ 0 is given by the exponential potential
Vc(y) = 5.0exp[−y/(2a)], while the confinement at the opposite
boundary is given by an infinite potential wall. The dispersion of
the edge mode near the soft boundary (orange or light gray lines
inside the gap) differs significantly from the dispersion of the hard
boundary edge mode (red or dark gray line inside the gap) but retains
the fundamental property of a topological-insulator edge mode, i.e.,
it connects the two bulk bands (note that kx = 2π has to be identified
with kx = 0). Notice the topologically trivial edge modes that are
generated at high energies (light green or light gray lines).

013608-20



TOPOLOGICAL STATES IN TWO-DIMENSIONAL OPTICAL . . . PHYSICAL REVIEW A 82, 013608 (2010)

kx

E
(k

) 
/ E

r

D

C

B

A

E

FIG. 29. (Color online) Detail of the band structure shown in
Fig. 28. For comparison the dispersion of an edge mode corresponding
to a softer boundary, Vc(y) = 5.0exp[−y/(6.5a)], is also shown
(black lines).

Increasing the characteristic length scale of the boundary
region will further soften the edge mode. For comparison, a
detail of the gap region from Fig. 28 together with the edge
mode corresponding to a confining potential with ξc = 6.5a

are shown in Fig. 29. We conclude that in a clean system and in
the absence of interactions, topological edge states exist for any
value of ξc. In a real system, because the edge mode softens
with increasing ξc and the gaps between different branches
become smaller, the spectrum of the edge modes will be
significantly renormalized by perturbations such as disorder or
interactions. However, due to the topological nature of the edge
states, these perturbations will not open a gap in the spectrum.

The next question that we want to clarify concerns the
spatial profile of the edge states in the vicinity of the soft
boundary. The amplitude of the states marked A–E in Fig. 29
are shown in Fig. 30. Near the soft boundary, four different
states, A–D, are characterized by the same wave vector,
kx = π/a. Each state has a maximum amplitude inside the
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FIG. 30. (Color online) Amplitudes for the edge states localized
near a soft boundary marked in Fig. 29. The corresponding confining
potential, Vc(y) is also shown. For comparison we also show
|�E(W − y)|2 for the state E which is localized near the hard
boundary.
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FIG. 31. (Color online) Average position (left panel) and average
angular momentum (right panel) for a stripe with a soft boundary and
same parameters as in Fig. 28.

boundary region and decay exponentially in the bulk. Note
that the highest energy state, ψA, has the maximum near the
point y� where the confining potential equals the bulk gap,
Vc(y�) = �. No topological edge states exist in the region
where the confining potential exceeds the gap. The edge states
with lower energies have the maxima at points with decreasing
values of the confining potential and are progressively less
confined as the edge mode eventually merges with the bulk.

To have a global characterization of the spatial amplitude
distribution for all the single-particle states it is useful to
represent the energy of a given state as function of the average
position. The resulting diagram is shown in Fig. 31 (left panel)
together with diagram showing the energy as function of the
average angular momentum (right panel). This type of diagram
is particularly useful in analyzing systems with geometries
that have no translation invariance, as, for example, the disk
geometry discussed above. In the left panel of Fig. 31 one
can clearly see the difference between the soft boundary near
y = 0 and the hard wall at y = 250a. Note that the topological
edge states are not the only edge states localized in the vicinity
of the soft boundary, as topologically trivial edge states exist
at higher energies. The softening of the edge mode produces a
spiral-like shape of energy versus angular-momentum curve.
Note that for certain energies the edge states propagating
along opposite edges do not necessarily counterpropagate, as
one would naively expect given their chiral nature. This is
generally the case for systems with inequivalent edges. The
consequences of this observation for the transport properties
of topological insulators with asymmetric boundaries remain
an interesting open question.

We return now to the case of smooth confining potentials
and in particular to harmonic potentials. As mentioned above,
in this case one cannot talk, strictly speaking, about a boundary,
but rather a boundary region that can cover, in principle,
a significant area. This boundary region is occupied by an
inhomogeneous topological metal [32]. The spectrum that
characterizes this inhomogeneous metal can be understood
qualitatively from Fig. 29. In the limit of a smooth confining
potential, the dispersion of the “edge” mode becomes weaker
and the gaps between different branches become smaller,
leading to a quasicontinuous spectrum. Explicitly, we consider
a system in the stripe geometry characterized by the same
parameters as in Fig. 28 and confined by a harmonic potential
Vc(y) = 1

2�y2/y2
0 , where � is the bulk gap of the uniform

system and y0 = 60a. The corresponding spectrum is shown
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FIG. 32. (Color online) Spectrum of a system with harmonic
confining potential. Panel (a) corresponds to a square superlattice
topological “insulator” model with the same parameters as in Fig. 28,
while panel (b) represents a standard-insulator model on the square
superlattice with t1 = Er , t2 = −0.3Er , t ′

2 = 0.3Er and a staggered
on-site potential ±� with � = Er . The lower panels show the
low-energy spectra that characterize the inhomogeneous topological
(left) and normal (right) metals. Note that the topological metal has a
spectrum consisting of two modes that are qualitatively the same as
the soft mode shown in Fig. 29 (in the present case both boundaries
are soft). By contrast, the spectrum of the normal metal contains many
disconnected modes.

in Fig. 32. For comparison we also show the spectrum of a
model with trivial topological properties (panel b), i.e., a square
superlattice model with staggered on-site potential, which in
the absence of a confining potential would describe a standard
insulator at half filling. Note that from the overall features
of the spectra no distinction can be made between the two
systems, unlike the hard boundary case when the presence
of the characteristic edge modes can clearly identify the
topological insulator. Nonetheless, a detailed analysis of the
low-energy spectrum reveals a qualitative difference between
the two systems. Indeed, the topological metal has a spectrum
consisting of two modes that are qualitatively the same as the
soft mode shown in Fig. 29, while the spectrum of the normal
metal contains many disconnected modes. In terms of average
orbital momentum, this difference would correspond to the
difference shown in Fig. 31 between the in-gap “spiral” and
the disconnected high-energy “rings.” Perturbations can open
a gap in the normal metal spectrum [Fig. 32(b)] but not in the
topological metal [Fig. 32(a)].

VI. DETECTION OF TOPOLOGICAL EDGE STATES

Probing quantum Hall states in a condensed matter system
typically involves transport measurements. However, this is
a rather difficult task in a cold-atom system. Alternatively,
as the nontrivial topological properties represent a feature of
the single-particle Hamiltonian best revealed by the presence
of chiral edge states, it was proposed [32] to directly map
out these edge states using bosons. The procedure involves
loading bosons into the edge states and then imaging the
atoms. Note that this technique does not involve the realization
of an equilibrium topological insulating state but rather a

real-space analysis of the properties of the single-particle
states. In some sense, it is an effective way of “seeing” a
topological phase, something one cannot easily realize in
the condensed matter context. First, the optical lattice is
loaded with atoms and cooled so that the bosons occupy
the lowest-energy single-particle states. Then, a sequence
of staged resonance excitation processes is used to promote
atoms into states of increasing angular momentum, for
example, via a sequence of the two-photon-stimulated Raman
transitions [78]. These intermediate states provide the overlap
needed to make resonant Raman transitions to the edge states
possible. Finally, the atoms loaded into the edge states are
imaged using a direct in situ imaging technique, such as the
method developed by the Greiner group [49,50].

Another possibility is to perform density profile measure-
ments on fermionic atomic systems [31,70]. We emphasize
that such a measurement can probe the existence of an incom-
pressible insulator but cannot distinguish between a TI and
a trivial insulator, unless supplemented by another probe. To
illustrate this point, we calculate explicitly the density profile
for a system with harmonic confinement. Note that in the
presence of a smooth confining potential the spectral analysis
does not offer much information about the system (see Fig. 32).
In particular, there is no sharp criterion for distinguishing
the “bulk” states from the “edge” states. However, a clear
signature for the existence of an incompressible “insulating”
bulk surrounded by a compressible metal can be seen in the
particle density. Assuming that the system contains fermions
with a chemical potential µ, the particle density is defined as

ρ(r) =
εn�µ∑

n

|ψn(r)|2, (18)

where ψn(r) are single-particle wave functions with energies
εn. In the absence of interactions, a small region of the
system around r characterized by an effective “chemical
potential” µ − Vc(r) that falls within the gap corresponding
to a uniform infinite system should be an insulator with one
particle per site, ρ(r) = 1. Figure 33 shows the results for
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FIG. 33. (Color online) Density profiles for a fermionic system
with harmonic confinement and different values of the chemical
potential. Panel (a) corresponds to a topological-insulator model,
while panel (b) shows the density of a standard insulator. The
parameters for the models are the same as in Fig. 32. Note the plateaus
characterized by ρ = 1 (particles per lattice site), which correspond
to the insulating phase. No qualitative difference can be observed
between the two types of models.
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the topological- and standard-insulator models with the same
parameters as in Fig. 32. For µ = −1.2Er the effective local
chemical potential will reside in the lower band or below
for any given position and the system is entirely metallic.
If µ = 0, the effective chemical potential will reside inside
the bulk gap for −y0 � y � y0. This region, characterized
by ρ = 1, represents the insulating incompressible “bulk”
and is surrounded by the compressible metal. Increasing the
chemical potential further will determine the occupation of
bulk states from the second band and the appearance of a
compressible island near the bottom of the trap. In conclusion
measuring the density profile represents a possible way to
probe the existence of an insulating phase. However, such a
measurement cannot distinguish between a normal insulator
and a topological insulator. Complete evidence should be
obtained by probing the characteristic boundary states. How
to probe them remains an important open question in this field.
We note here that there are two different regimes in which these
states can be investigated: (i) In systems with sharp boundaries
there are a relatively small number of well-defined chiral edge
states with energies within the bulk gap and (ii) in systems
with shallow trapping the insulating “bulk” is surrounded by
a boundary region populated with a large number of boundary
states which, when occupied, form a topological metal. The
two regimes are adiabatically connected. A possible advantage
of the shallow trapping is that the ratio between the number
of “boundary” and “bulk” states can become significant. We
suggest that the chiral nature of the boundary states of a
topological insulator with broken time reversal symmetry
could help distinguishing them from the boundary states
of a standard insulator. Perturbations with opposite angular
orientations should determine different responses from the
topological metal, in contrast to the normal metal.

The third type of probe that we propose for detecting
topological phases is optical Bragg spectroscopy [79,80]. As
in the case of the density profile measurement, using this
probe requires the realization of an equilibrium insulating
state. This is obtained by loading fermions into the optical
lattice so that the chemical potential lie within the bulk
insulating gap. The atomic system is illuminated with a pair
of lasers with wave vectors k1 and k2, respectively, and a
frequency difference ω = ω1 − ω2 much smaller than their
detuning from an atomic resonance. The two beams create a
traveling intensity modulation Imod(r,t) = I cos(q · r − ωt),
where q = k1 − k2. Consequently, the atoms experience a
potential proportional to Imod due to the ac Stark effect and
may scatter. The optimal geometry for detecting the edge
states involves shining the lasers on a certain part of the atomic
system that contains a portion of the boundary (see Fig. 34).
Therefore, we will take into account the laser beam profile,
which we assume to be Gaussian. The term in the Hamiltonian
describing the light-atom interaction can be expressed using
the second-quantized notation as

Hint = �

∫
dr

[
e
− 2r2

w2 e−iq·r−iωt ψ̂(r)†ψ̂(r) + H.c.
]
, (19)

where � is the effective two-photon Rabi frequency, w is the
beam width, and ψ̂(r) is the atom field operator. The response
of the many body system to this perturbation can be evaluated
using Fermi’s golden rule. If we neglect the beam profile,

r

S(
q,

   
)ω

Eω /

FIG. 34. (Color online) Dynamical structure factor for a system
described by Eq. (1) with t1 = (1 + 0.3i)Er , t2 = −0.3Er , and t ′

2 =
0.3Er . The blue (dark gray) line corresponds to a sharp boundary,
while the red (gray) line is for a soft boundary with the same profile
as in Fig. 28. The extra in-gap contribution represents transitions
between different branches of the soft edge mode. The green (light
gray) line corresponds to the same parameters as the red curve and
opposite scattering wave vector −q. Note the absence of the low-
energy peak. The inset is a schematic illustration of the intersecting
laser beams illuminating a portion of the system.

light Bragg scattering measures the dynamical structure factor
S(q,ω), i.e., the density correlations. In general, we have

S̃(q,ω) =
∑
νi ,νf

∑
ki ,kf

[1 − f (εf )]f (εi)

× |〈�νf kf
|Hint|�νiki

〉|2δ(h̄ω − εf + εi), (20)

where |�νiki
〉 and |�νf kf

〉 are the initial atomic state and
the state after scattering, respectively, and f (ε) is the
Fermi distribution function. We assume that the wave vector
q is oriented along the x axis and that the laser beam
illuminates a sufficiently small region near the boundary
with local properties similar to those of a stripe (Fig. 34).
Taking into account the beam profile, the matrix elements
in Eq. (20) become 〈�νf kf

|Hint|�νiki
〉 ∝ exp{−w2

8 (q − kf −
ki)2}�kf ki

νf νi
, where we approximate the wave functions �νk(r)

with those of a system with stripe geometry that has similar
local properties, and

�
kf ki

νf νi
=

∑
α,n

�∗
νf kf

(yn,α)�νiki
(yn,α)e− 2y2

n

w2 ei(kf −ki )δα . (21)

For a stripe oriented along the nearest-neighbor direc-
tion which is finite in the y direction one has �νk(r) =∑

m,n,α �νk(yn,α)eikxmψ(x − xm − δα,y − yn), where ψ(x,y)
are orbitals localized in the vicinity of the lattice nodes.
The eigenstates �νk(yn,α) are indexed by the wave vector
k (oriented along the x direction) and the discrete quantum
number ν and depend on the position yn and the sublattice
index α = 1,2. The two sublattices are shifted by one lattice
spacing, i.e., δ1 = 0 and δ2 = a.

First we consider the TI model on a square superlattice
described by Eq. (1) and hard wall boundary conditions. We
assume that the system has a portion of the boundary oriented
along the nearest-neighbor direction that is longer than the
width of the intersecting laser beams (Fig. 34) and focus
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the lasers on that edge. Note that the light field will cover a
significant part of the system but no other edge. The dynamical
structure factor (blue/dark gray line in Fig. 34) is characterized
by a gap corresponding to transitions between bulk states and
a low-energy peak at ω ≈ qv0, where v0 is the velocity of the
edge mode in the vicinity of the chemical potential, associated
with the edge states. In addition, edge-bulk transitions generate
a small in-gap contribution.

Next we consider a soft boundary. The edge mode softens
and develops multiple branches (see Fig. 28). The low-energy
peak moves to lower frequencies due to a smaller value of
v0 and, in addition, an extra peak develops inside the gap
(see the red/gray curve in Fig. 34). This peak corresponds to
transitions between different branches of the edge mode. The
chiral character of the edge states can be probed by reversing
the scattering wave vector, q → −q, or by inverting the vector
potential that generates the Peierls phases, i.e., t1 → t∗1 . As
a result, qv0 < 0 and there are no low-energy transitions.
Consequently, the characteristic low energy peak in the
structure factor is absent (green/light gray line in Fig. 34). Note
that the secondary in-gap peak corresponding to interbranch
transitions is weakly modified. In a chiral metal generated by
very soft confining (see Fig. 32) inter-branch contributions that
occur at low energy become dominant and eventually destroy
this signature of the chiral character of the edge states.

VII. SUMMARY

In this article, we have presented a comprehensive anal-
ysis of two-dimensional optical lattice Hamiltonians that
give rise to topological insulating states with broken time-
reversal symmetry. We have extracted the main ingredients
responsible for the appearance of such states and shown that
there are an infinite number of lattice models that possess
the nontrivial topological structure. It is suggested that the
choice of a model is to be dictated by experimental convenience
and as such, square superlattices may be an optimal choice
from the experimental point of view. We also note here
that using the setups to create spin-orbit-coupled systems
proposed in Refs. [34,44,81], one can engineer in a similar
way time-reversal topological-insulator systems. However, in
cold-atom settings these systems would represent a higher
degree of experimental complexity (in contrast to solid-state
systems) and therefore the intimately related and simpler
lattice quantum Hall states studied here represent a natural
starting point for initial experiments in this line of research.

One particularly important question that remains open
is how to experimentally probe the nontrivial topological
properties of a given optical lattice model. We note that
our analysis here, as well as most other existing analyses of
noninteracting topological-insulator models, represent essen-
tially mathematical studies of a complicated single-particle
Hamiltonian, which is not specific to the types of particles that
would occupy the lattice sites in a physical model. In fact, our
calculations in the finite-size case are basically solving for the
spectrum of a large and finite matrix, either associated with
the sites of a lattice in real space or those in dual space, which
are related to each other via discrete Fourier transform. The
resulting spectrum exists in and of itself, and how to probe this
spectrum and in particular its topological states within the band

gap is a completely separate issue of great physical importance.
In solids, the choice of particles to occupy the bands is limited
to electron excitations or fermionic quasiparticles arising in
various mean-field-like treatments of interacting models (e.g.,
Bogoliubov excitations in superconductors). The experimental
signatures there include charge or spin transport dominated by
the edge modes or direct probes of the gapless spectrum at the
boundary, which is especially relevant in three-dimensional
topological insulators. However, cold atoms are drastically
different. First, because there are many possible choices
of atoms that can be loaded in the optical lattice, which
could be either bosons or fermions. Second, these particles
are necessarily electrically neutral and therefore transportlike
probes, while not impossible in principle, are probably too
difficult to realize in practice especially if quantized transport
is the goal of such a measurement. Hence, other approaches
need to be developed and we point out here that cold-atoms
bosons, rather than fermions, may become the first line of
choice to visualize the topological properties of the spectrum.

While fermions can indeed be used to fill up the band up to
the band gap, so the Fermi level crosses the topological modes,
there are little observable consequences for, e.g., time-of-flight
measurement, which will generally be dominated by the
less interesting bulk contributions. One possible solution to
increase the boundary contribution is to use shallow trap-
ping potentials. Alternatively, one can use noninteracting or
weakly interacting bosons which occupy or condense into the
lowest-energy states in the spectrum, while in thermodynamic
equilibrium at low temperatures. Such low-energy states are
not topological. However, as pointed out in Ref. [32], using
two-photon-stimulated Raman transitions (such as that used
in Ref. [78]), one can transfer a macroscopic number of
bosons from the condensate specifically into the topological
edge states and then use time-of-flight measurement to
observe a vortex, associated with a few-lattice-constant-thick
chiral topological modes. We emphasize here that while
such a nonequilibrium measurement would not represent a
thermodynamic topological phase, it would, however, lead
to an impressive and explicit manifestation of the nontrivial
topology of the underlying exotic spectrum.

Another particularly interesting avenue is to use interacting
bosons, e.g., bosons with strong on-site repulsion. Since
bosons with hard-core repulsion are not equivalent to free
fermions in two dimensions, the noninteracting spectrum
will necessarily be modified and it is an interesting open
problem as to what states may arise out such a system.
However, it is conceivable that at the fillings corresponding to a
Mott-insulating phase, the chiral hopping terms will constraint
the bosons into a topological Mott-insulating state.

Finally, we reiterate that measuring a system with nontrivial
topological properties can be realized following two possible
avenues. Any successful experiment that would be capable
of probing well-defined topological edge states will need to
address the problem of creating “sharp-enough” boundaries
of the trapping potential. We have shown in this article
and Ref. [32] that a standard quadratic trap is not sufficient
for this purpose, as it leads to an inhomogeneous metallic
phase. Adding any term to the confining potential capable
of introducing a boundary length scale would solve this
problem and should give rise to detectable edge states. Another
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possibility would be to create a different type of inhomogeneity
in the bulk of the system, e.g., by adding a strongly repulsive
potential in the center of a regular trap or by strongly altering
the lattice hopping terms along a certain line of links of the
optical lattice. Topological edge modes are bound to appear
not only at the external boundaries of the system, but in
all such cases, as long as the perturbation is larger than
the relevant bandwidth. The second avenue toward detecting
topological quantum states is to probe the inhomogeneous
topological metal that forms in weakly confined systems. The
significantly increased fraction of boundary states could lead
to observable consequences in a time-of-flight experiment.

Regardless of the boundary sharpness, the existence of an
incompressible insulating “bulk” can be revealed by a density
profile measurement. Nonetheless, we emphasize that, while
the presence of a density plateau proves the existence of
an insulator, it does not determine its topological nature.
Ultimately, distinguishing between a topological insulator and
a standard insulator requires probing the gapless states that
form at their boundaries.
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