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Recoil effects in multiphoton electron-positron pair creation
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Triply differential probability rates for electron-positron pair creation in laser-nucleus collisions, calculated
within the S-matrix approach, are investigated as functions of the nuclear recoil. Pronounced enhancements of
differential probability rates of multiphoton pair production are found for a nonzero momentum transfer from the
colliding nucleus. The corresponding rates show a very dramatic dependence on the polarization of the laser field
impinging on the nucleus; only for a linearly polarized light are the multiphoton rates for electron-positron pair
production considerably large. We focus therefore on this case. Our numerical results for different geometries
of the reaction particles demonstrate that, for the linearly polarized laser field of an infinite extent (which is a
good approximation for femtosecond laser pulses), the pair creation is far more efficient if the nucleus is detected
in the direction of the laser-field propagation. The corresponding angular distributions of the created particles
show that the high-energy pairs are predominantly produced in the plane spanned by the polarization vector and
the laser-field propagation direction, while the low-energy pairs are rather spread around the latter of the two
directions. The enhancement of differential probability rates at each energy sector, defined by the four-momentum
conservation relation, is observed with varying the energy of the produced particles. The total probability rates of
pair production are also evaluated and compared with the corresponding results for the case when one disregards
the recoil effect. A tremendous enhancement of the total probability rates of the electron-positron pair creation
is observed if one takes into account the nuclear recoil.
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I. INTRODUCTION

With the recent development of ultraintense optical lasers,
it has become possible to investigate the most fundamental
problems of quantum electrodynamics (QED) (see, e.g.,
Refs. [1–7]), in particular, to probe the structure of the QED
vacuum. In this context, we study the electron-positron pair
creation in collisions of a highly relativistic nucleus with an
ultrastrong electromagnetic plane wave.

Various scenarios of the electron-positron pair production
can be found in the literature. Pair creation from the vacuum
was analyzed for the first time by Sauter [8] and then
reinvestigated by Schwinger [9]. These authors predicted that
the pairs can be extracted from the QED vacuum by a static
electric field if the respective field strength is at least Ecr =
1.3 × 1016 V/cm. This ruled out the experimental observation
of the effect. Later on, the pair creation in an alternating electric
field in different regimes (in the nonperturbative, tunneling
regime and in the perturbative, high-frequency regime) was
treated [10,11]. Again, it turned out that the laser-field strength
approaching the critical Schwinger field Ecr is required to
observe the process experimentally. With recent developments
of very powerful laser sources, in particular the availability of
near-visible lasers working currently at intensities 1022 W/cm2

[12,13], and yet more powerful optical lasers built within the
European Light Infrastructure project [14], or with the coming
x-ray free-electron lasers (XFELs) [15,16], pair production
from a vacuum is becoming feasible in the laboratory. Other
scenarios of pair creation employ therefore laser pulses which,
as long as they are in the femtosecond regime, can be
theoretically described by electromagnetic plane waves. One
has to remember, however, that the pair production in a
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plane-wave field is forbidden by the first principles, as already
was noted in [9]. Thus, in the presence of an electromagnetic
plane wave, an extra “target” such as a nonlaser photon
[17–21], a second counterpropagating field [22–27], or a
charged particle [28–46] must be introduced in order to satisfy
the energy-momentum conservation law. From the point of
view of this article, the latter is of particular importance.

It was Yakovlev who, for the first time, considered the
laser-induced electron-positron pair creation in the vicinity of a
charged particle [28]. In his article, Yakovlev analyzed the case
of a circularly polarized laser wave impinging on a nucleus at
rest. This and subsequent works (cf. Refs. [29,40,41]) showed
that, for a nucleus at rest, the corresponding cross sections
for pair creation are negligibly small. A similar process was
analyzed recently taking into account the motion of the target
particles; namely, the electron-positron pair creation in laser-
heavy-ion collisions was investigated [33–39,42–46]. In all
of the aforementioned articles except Ref. [46], the recoil of
the target particles was neglected. Most of them also used the
standard approach of exactly treating the interaction of the
reaction particles with the laser field by means of the so-called
Volkov states [47]. In a sense, it is similar therefore to the
Keldysh approximation, which is widely used for describing
the nonrelativistic multiphoton ionization of atoms and ions
[48–51].

The idea of producing electron-positron pairs in laser-
nucleus collisions is attributed to Müller et al. [33–36], and
it originates from the fact that if a nucleus is countermoving
with a relativistic velocity (a high Lorentz factor γ ) toward
a laser pulse, then in the rest frame of the nucleus the
photon frequency is Doppler upshifted by a factor of 2γ ,
as is the peak electric field strength [52]. Thus, for today’s
available optical lasers of extreme powers, the peak electric
field experienced by the nucleus approaches, in fact, the critical
Schwinger value, which is necessary for observing the e−e+
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pairs. Let us also mention that the pair creation in collisions
of extremely energetic targets with an intense optical laser
pulse was realized quite recently at SLAC National Accelerator
Laboratory [53,54]. In this experiment, however, an electron
beam was involved only indirectly, as it was backscattered
by a laser beam to produce γ rays, which in turn collided
with the laser beam to produce pairs. Since this indirect
mechanism of pair creation turned out to be not very efficient,
many efforts have been made since then to describe the direct
process [33–39,42–46].

In the works by Müller et al. [33–36], the collision of a beam
of high energy targets with an extreme-power laser pulse was
considered and a circular polarization of the laser pulse was
used, since this choice considerably simplifies the treatment
of the problem. A general elliptic polarization was also
considered in Refs. [35,36], but only for such parameters of
the laser field that one observes a few-photon pair production,
which relates to the perturbative, high-frequency regime of
XFELs. A similar situation was analyzed in Refs. [43–45]
for a linearly polarized light. In our contributions so far
[37–39,42], we investigated laser-induced pair creation in a
linearly polarized laser field and for energies of highly charged
ions such that the number of absorbed laser photons was,
however, very large (i.e., we worked in the nonperturbative,
tunneling regime). Such a situation can be encountered with
the use of already available and anticipated optical lasers
[12–14]. Our estimates of the total rate for the e−e+ pair
production (see Ref. [37]), even though still not very big, show,
however, that for presently available laser fields the creation of
electron-positron pairs by the laser-ion impact process is by far
more efficient than the direct creation of pairs from a vacuum
through the Schwinger mechanism. In order to improve our
theoretical description of the process, leading most likely to
improved respective efficiency of the pair production, it is
essential now to account for the recoil of target particles.

The most recent work by Müller and Müller [46] is particu-
larly interesting from the point of view of this article as it treats
the laser-induced pair production with an exact account of the
recoil of colliding nuclei. However, the authors investigate the
laser-induced pair creation in the perturbative, high-frequency
regime, while the present contribution deals with the nonper-
turbative, tunneling regime of the process. For this reason, their
conclusions cannot be directly related to our case. For instance,
while they predict a feasible effect of pair production in the
case of a circularly polarized laser field, our calculations for a
multiphoton process show a dramatic drop of the probability
rates for any polarization of the laser field different than linear;
in fact, for a circularly polarized laser pulse, we find negligibly
small rates for the multiphoton pair production.

In our case studies, we choose laser-field parameters such
that in the reference frame of the colliding nucleus, the
frequency and the intensity of the laser field are characterized
by numerical values ω = 0.01mec

2 and µ = 100 [see Eq. (8)].
For heavy nuclei, such parameters are rather hardly to be met
in the present-day lasers and ion-accelerators. However, these
conditions can be fulfilled if one combines already-operating
lasers [13] with proton (Large Hadron Collider) or electron
(Large Electron-Positron Collider and TESLA) accelerators.
In this context, it seems to be of a great importance to construct
a tabletop laser source of extreme power. Such efforts are being

made [55], which would make it even more realistic to observe
the laser-induced pair production in the tunneling regime.

In this contribution, we focus our attention mainly on
the theoretical methods and on the general characteristics
of the electron-positron pair-creation process in heavy-nuclei
collisions with very strong laser fields. Emphasis is placed
on the similarities and differences between this process
and its related phenomenon—the multiphoton (called also
above-threshold) ionization of atoms or ions in nonrelativistic
quantum mechanics. Analysis of pair-creation process for
intense laser-field parameters achievable now or in the near
future [12–14,55] and for energies of charged particles (such
as heavy nuclei, protons, or electrons) in contemporary
accelerators will be presented elsewhere.

This article is organized as follows. In Sec. II, we present
general solutions of the Dirac equation for both a particle
and an antiparticle in an electromagnetic plane-wave field of
an elliptic polarization. Then, the derivations of the S-matrix
amplitude for electron-positron pair creation in the laser-
nucleus impact process in the first-order Born approximation
and the probability rates for a particular number N of absorbed
laser photons are outlined. Numerical results are presented in
Secs. III and IV. In particular, in Sec. III, we demonstrate the
dependence of differential probability rates for the e−e+ pair
production on the nuclear recoil in the case of an equal energy
sharing between the produced particles. The dependence on
the polarization of the laser field also is analyzed. The more
general situation, that is, when the created particles have
different energies, still allowed by the energy-momentum
conservation principle, is investigated in Sec. IV. The way
of solving this conservation law is presented in the Appendix.
For a reason that becomes clear later on, in Sec. IV, we only
consider the case of a linearly polarized light. In Sec. IV, the
main focus is on angular distributions of created particles,
which makes it possible to predict the geometry in which pairs
are predominantly created. In Sec. V, the total probability rates
for the electron-positron pair creation using the Monte Carlo
method are calculated. Comparison with the related results
obtained for the case when one disregards the nuclear recoil is
also demonstrated. The final section, Sec. VI, is devoted to a
summary of our results and to some concluding remarks.

II. THEORY

In the theoretical part, we employ the units in which h̄ = 1.
However, in our numerical analysis which follows we take
also c = 1 and me = 1, where me is the electron mass; that
is, we use the relativistic units. Furthermore, we denote the
product of any two four-vectors aµ and bµ with a · b = aµbµ

(µ = 0,1,2,3), where the Einstein summation convention is
used. We employ the Feynman notation /a = γ · a = γ µaµ for
the contraction with the Dirac γ matrices γ µ. Finally, we use
a customary notation ā = a†γ 0, where a† is the Hermitian
conjugate of a.

A. Volkov waves

In the present work, we consider an electromagnetic
plane-wave field propagating along a unit vector n that
is represented by the four-vector potential Aµ = Aµ(k · x),
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where k · x is expressed in terms of the wave four-vector
k = (ω/c)(1,n), with ω being the angular frequency of the
laser-field oscillations. Since k · A = 0 and k2 = 0, one derives
the exact relativistic solutions of the Dirac equation coupled
to the electromagnetic plane-wave field; these solutions are
known in the literature as the Volkov waves [47].

We consider here a particle of mass m and charge Ze

(where e is the electron charge, e < 0, and Z can be either
positive or negative and is related to the atomic number Z such
that |Z| = Z), for which the Volkov wave ψ

(±)
p,λ(x) fulfills the

equation

(i/∂ − Ze/A − mc)ψ (±)
p,λ(x) = 0. (1)

Here, the indices p and λ refer to the particle momentum
outside the laser focus and to its spin projection, respectively,
while the indices (±) label positive- and negative-energy
quantum states that describe either a particle (+) or an
antiparticle (−). The Volkov solutions, normalized in the
volume V , have the general form

ψ
(±)
p,λ(x) =

√
mc2

V E p

(
1 ∓ Ze

2k · p
/A/k

)
u

(±)
p,λe

∓iS
(±)
p (x), (2)

where u
(±)
p,λ are four-spinors satisfying the field-free equations,

(/p ∓ mc)u(±)
p,λ = 0, with the same convention regarding the

indices (±) as before (see also Ref. [56]), while the phase

S(±)
p = p · x +

∫ k·x (
±Ze

A(φ) · p

k · p
− (Ze)2 A2(φ)

2k · p

)
dφ

(3)

has a meaning of the classical action of a charged particle
(antiparticle) in the laser field.

In the most general case when a monochromatic, elliptically
polarized plane wave with two unit four-vectors ε1 and ε2 and
an angle δ, describing the ellipticity, are used, the four-vector
potential is given by

Aµ(k · x) = A0
[
ε

µ

1 cos δ cos(k · x) + ε
µ

2 sin δ sin(k · x)
]
. (4)

Here, A0 is the amplitude of the vector potential, while the
polarization four-vectors are εi = (0,εi), with i = 1,2,

ε2
1 = ε2

2 = −ε2
1 = −ε2

2 = −1, ε1 · ε2 = −ε1 · ε2 = 0. (5)

In this case, the classical action S(±)
p , as defined by Eq. (3), can

be written in the form

S(±)
p (x) = p̄ · x + Q(±)

p (k · x), (6)

where we introduce the so-called dressed four-momentum of
a particle in the laser field,

p̄ = p + (ZeA0)2

4k · p
k, (7)

satisfying the effective-mass on-shell relation p̄2 = (m̄c)2.
Here the effective mass m̄ equals m̄2 = m2 + Z2µ2m2

e/2,
where µ is the dimensionless and relativistically invariant
parameter that is related to the amplitude A0 of the laser

field,

µ = |eA0|
mec

. (8)

At this point let us also remind the reader that the bare
momentum p, which is defined outside the laser focus, is on
the mass shell, p2 = (mc)2. Going back to Eqs. (3) and (6), we
conclude that in the present case of an elliptically polarized
light, the phase Q(±)

p (k · x) equals

Q(±)
p (k · x) = ± ZeA0

ε1 · p

k · p
cos δ sin(k · x)

∓ ZeA0
ε2 · p

k · p
sin δ cos(k · x)

+ (ZeA0)2

8k · p
cos(2δ) sin(2k · x), (9)

which is a periodic function of its argument k · x, and so will
lead later on to the Fourier expansion of the S-matrix element.

B. S-matrix transition amplitude

The process of electron-positron pair creation in laser-
nucleus collisions, represented graphically by the diagram in
Fig. 1, can be described within the S-matrix formalism. The
relevant transition amplitude is given by

Sfi = −4πiZα

∫
d4x

∫
d4yjµ

pe−pe+
(x)

×Dµν(x − y)jν
qfqi

(y), (10)

where the fine-structure constant is α = e2/(4πε0c). Here
(pe− ,pe+ ) are the bare four-momenta of the created electron
and positron, while (qi,qf ) are the bare incoming and outgoing
four-momenta of a nucleus. Further, j

µ
pe−pe+ (x) and jν

qfqi
(y)

denote the relativistic four-currents of a pair and a nucleus,
respectively,

jµ
pe−pe+

(x) = ψ̄
(+)
pe−λe−

(x)γ µψ
(−)
pe+λe+

(x), (11)

jν
qfqi

(y) = ψ̄
(+)
qfλf

(y)γ νψ
(+)
qiλi

(y), (12)

where the Volkov solutions (2) with appropriate m and Z
[m = me and Z = 1 in Eq. (11), or m = MN and Z < 0 in
Eq. (12), where MN is the nucleus mass] should be substituted.

q
f

q i

p
e- p

e+

FIG. 1. (Color online) Feynman diagram for electron-positron
pair creation during the laser-nucleus collision in the lowest order
of approximation with respect to the radiative corrections (the so-
called tree approximation). Each spin-1/2 particle, which includes
also the nucleus, is described by the corresponding Volkov wave for a
Dirac particle in an electromagnetic plane-wave field of an arbitrary
strength.
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The photon propagatorDµν(x − y), which appears in Eq. (10),
is given by

Dµν(x − y) =
∫

d4K
(2π )4

D̃µν(K)e−iK·(x−y), (13)

D̃µν(K) = − 1

K2

(
gµν − ξG

KµKν

K2

)
, (14)

with ξG being the gauge-fixing constant. Taking into account
that currents (11) and (12) satisfy the conservation law, ∂µjµ =
0, we conclude that the S-matrix element does not depend on
ξG and so it is gauge invariant. For this reason, the gauge-
dependent part of the photon propagator can be neglected (we
put, therefore, ξG = 0).

Now, let us present the four-currents (11) and (12) in a
more explicit form. Substituting the Volkov solutions (2) into
Eqs. (11) and (12), we obtain

jµ
pe− pe+

(x) = mec
2

V
√

E pe− E pe+
ū

(+)
pe− λe−

(
1 + e/A/k

2k · pe−

)

× γ µ

(
1 + e/A/k

2k · pe+

)
u

(−)
pe+λe+

ei(p̄e− +p̄e+ )·x

× e
iQpe− (k·x)+iQpe+ (k·x)

, (15)

and similarly,

jν
qfqi

(y) = MNc2

V
√

Eqf
Eq i

ū
(+)
qfλf

(
1 + Ze/A/k

2k · qf

)
γ ν

(
1 − Ze/A/k

2k · qi

)

× u
(+)
qiλi

ei(q̄f−q̄i)·yeiQqf (k·y)−iQqi (k·y), (16)

where the relation (6) has been used. Since both currents
are periodic functions of k · x and k · y, respectively, we can
represent them as a Fourier series each. Doing so, we arrive at
the following decompositions:

jµ
pe− pe+

(x) = mec
2

V
√

E pe− E pe+

∞∑
N=−∞

e−i(Nk−p̄e− −p̄e+ )·x

× Cµ

N (pe−λe− ,pe+λe+), (17)

jν
qfqi

(y) = MNc2

V
√

Eqf
Eq i

∞∑
N=−∞

e−i(Nk+q̄i−q̄f )·y

×F ν
N (qfλf,qiλi), (18)

which define the Fourier coefficients Cµ

N (pe−λe− ,pe+λe+) and
F ν

N (qfλf,qiλi). One can show that these coefficients can be
expressed in terms of the generalized Bessel function BN ,
which is an infinite sum over products of ordinary Bessel
functions JN such that

BN (x,y,θ ) =
∞∑

N ′=−∞
JN−2N ′ (x)JN ′ (y)e−iN ′θ . (19)

Noting that in the case considered in this article, the func-
tion e

iQpe− (k·x)+iQpe+ (k·x) in Eq. (15) can be rewritten as
e−ia sin(k·x+η)−ib sin(2k·x), where the coefficients a,b,η follow
from Eq. (9), we find out that

e
iQpe− (k·x)+iQpe+ (k·x) =

∞∑
N=−∞

e−iN(k·x+η)BN (a,b, − 2η), (20)

with

eA0

(
ε1 · pe−

k · pe−
− ε1 · pe+

k · pe+

)
cos δ = −a cos η,

eA0

(
ε2 · pe−

k · pe−
− ε2 · pe+

k · pe+

)
sin δ = a sin η, (21)

(eA0)2

8

(
1

k · pe−
+ 1

k · pe+

)
cos(2δ) = −b.

Since the same applies to the function eiQqf (k·y)−iQqi (k·y), we
have also

eiQqf (k·y)−iQqi (k·y) =
∞∑

N=−∞
e−iN(k·y+ξ )BN (u,v, − 2ξ ), (22)

where

ZeA0

(
ε1 · qf

k · qf
− ε1 · qi

k · qi

)
cos δ = −u cos ξ,

ZeA0

(
ε2 · qf

k · qf
− ε2 · qi

k · qi

)
sin δ = u sin ξ, (23)

(ZeA0)2

8

(
1

k · qf
− 1

k · qi

)
cos(2δ) = −v.

The Fourier decomposition of the four-currents into the gener-
alized Bessel functions and finding the related coefficients Cµ

N

and F ν
N seem to be straightforward now. Hence, let us present

the final formulas for Cµ

N and F ν
N :

Cµ

N (pe−λe− ,pe+λe+) = e−iNηū
(+)
pe− λe−

[
γ µBN (a,b, − 2η) + eA0

4
cos δ

(
/ε1/kγ µ

k · pe−
+ γ µ/ε1/k

k · pe+

)
[e−iηBN+1(a,b, − 2η)

+ eiηBN−1(a,b, − 2η)] + eA0

4i
sin δ

(
/ε2/kγ µ

k · pe−
+ γ µ/ε2/k

k · pe+

)
[e−iηBN+1(a,b, − 2η) − eiηBN−1(a,b, − 2η)]

+ (eA0)2 cos2 δ

16(k · pe− )(k · pe+)
/ε1/kγ µ/ε1/k[e−2iηBN+2(a,b, − 2η) + 2BN (a,b, − 2η) + e2iηBN−2(a,b, − 2η)]

− (eA0)2 sin2 δ

16(k · pe− )(k · pe+)
/ε2/kγ µ/ε2/k[e−2iηBN+2(a,b, − 2η) − 2BN (a,b, − 2η) + e2iηBN−2(a,b, − 2η)]

+ (eA0)2 sin 2δ

32i(k · pe−)(k · pe+)
(/ε1/kγ µ/ε2/k + /ε2/kγ µ/ε1/k)[e−2iηBN+2(a,b, − 2η) − e2iηBN−2(a,b, − 2η)]

]
u

(−)
pe+ λe+

(24)
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and

F ν
N (qfλf,qiλi) = e−iNξ ū

(+)
qfλf

[
γ νBN (u,v, − 2ξ ) + ZeA0

4
cos δ

(
/ε1/kγ ν

k · qf
− γ ν/ε1/k

k · qi

)
[e−iξBN+1(u,v, − 2ξ )

+ eiξBN−1(u,v, − 2ξ )] + ZeA0

4i
sin δ

(
/ε2/kγ ν

k · qf
− γ ν/ε2/k

k · qi

)
[e−iξBN+1(u,v, − 2ξ ) − eiξBN−1(u,v, − 2ξ )]

− (ZeA0)2 cos2 δ

16(k · qf )(k · qi)
/ε1/kγ ν/ε1/k[e−2iξBN+2(u,v, − 2ξ ) + 2BN (u,v, − 2ξ ) + e2iξBN−2(u,v, − 2ξ )]

+ (ZeA0)2 sin2 δ

16(k · qi)(k · qf)
/ε2/kγ ν/ε2/k[e−2iξBN+2(u,v, − 2ξ ) − 2BN (u,v, − 2ξ ) + e2iξBN−2(u,v, − 2ξ )]

− (ZeA0)2 sin 2δ

32i(k · qf)(k · qi)
(/ε1/kγ ν/ε2/k + /ε2/kγ ν/ε1/k)[e−2iξBN+2(u,v, − 2ξ ) − e2iξBN−2(u,v, − 2ξ )]

]
u

(+)
qiλi

. (25)

Introducing expressions (13), (17), and (18) into Eq. (10) and
performing the relevant space-time integrals exactly, we arrive
at

Sfi = −4πiZα√
Eqf

Eq i
E pe− E pe+

meMNc4

V 2
(2π )4

∑
M,L

∫
d4K

× δ(Mk + K − p̄e− − p̄e+)δ(Lk − K + q̄i − q̄f )

× Cµ

M (pe−λe− ,pe+λe+)D̃µν(K)F ν
L(qfλf,qiλi). (26)

Even though the laser field is treated classically, one concludes
from this equation that numbers M and L can be interpreted as
numbers of photons that are either absorbed from or emitted
into the laser field by the pair (M) or by the nucleus (L). Let
then N be the total number of photons that are exchanged with
the field, N = M + L. Thus, we find from Eq. (26)

Sfi =
∑
N

S
(N)
fi δ(q̄i − q̄f − p̄e− − p̄e+ + Nk)

= −4πiZα(2π )4
∑
N

δ(q̄i − q̄f − p̄e− − p̄e+ + Nk)

× meMNc4

V 2

tN (pe−λe− ,pe+λe+ ; qfλf,qiλi)√
Eqf

Eq i
E pe− E pe+

, (27)

where the first row in this equation implicitly defines the
N th order S-matrix element, S

(N)
fi , while the argument of the

δ function expresses the dressed four-momenta conservation
condition. For simplicity, we have also introduced the matrix
element tN , which is the sum over all possible realizations of
the N th photon process,

tN ≡ tN (pe−λe− ,pe+λe+ ; qfλf,qiλi)

=
∑
L

Cµ

N−L(pe−λe− ,pe+λe+)D̃µν(q̄i − q̄f + Lk)

×F ν
L(qfλf,qiλi). (28)

This is represented schematically in Fig. 2. Introducing N1, N2,
N3, and N4 as numbers of photons that are absorbed from the
laser field by the reaction particles and N ′

1, N ′
2, N ′

3, and N ′
4 as

numbers of photons that are emitted back to the laser field, we
find out that the net number of photons that are exchanged
with the field by the nucleus is L = N1 + N2 − N ′

1 − N ′
2,

and similarly for the pair, M = N3 + N4 − N ′
3 − N ′

4. Hence,

the net number of photons that are exchanged with the laser
field by all particles, which specifies the N -photon channel
for pair creation, equals N = N1 + N2 + N3 + N4 − N ′

1 −
N ′

2 − N ′
3 − N ′

4, and, moreover, it must be positive in order
for pair creation to take place. It is clear from this picture
that for very large N , the matrix element tN is the sum of
a huge number of amplitudes corresponding to elementary
diagrams that have a specific sequence of absorbed or emitted
by the charged particles laser photons. This will lead later on
to very rapid oscillations of probability rates. Hence, these
oscillations can be interpreted as the interference between
probability amplitudes corresponding to different paths which
lead, however, to the same final state.

C. Probability rates

The probability rate of pair production due to the absorption
of N -laser photons is defined as

WN =
∑
{λ}

∫
V d3qf

(2π )3

V d3pe−

(2π )3

V d3pe+

(2π )3

∣∣S(N)
fi

∣∣2

T
, (29)

q
f

q i

p
e- p

e+

N1

N3
N2N4

N4'

N1'

N2'N3'

N1 N3N2 N4 N4'N1' N2' N3'N +++ ----=

N1 N3N2 N4 N4'N1' N2' N3' ,,,,,,,

ΣΣ
FIG. 2. (Color online) Schematic representation of the matrix

element tN [Eq. (28)], where N is the net number of photons being
exchanged with the laser field by the reaction particles. While N1,
N2, N3, and N4 denote numbers of photons that are absorbed from the
laser field, N ′

1, N ′
2, N ′

3, and N ′
4 stand for photons that are emitted by

the particles into the field. Thus, N = N1 + N2 + N3 + N4 − N ′
1 −

N ′
2 − N ′

3 − N ′
4. Let us emphasize that the thick lines describing the

nuclear and electron-positron currents in Fig. 1 are represented here
as thin lines dressed by the laser field.
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where the quantity |S(N)
fi |2/T describes the corresponding

transition rate between well-defined momentum and spin
states of particles and where integration over the density
of final momentum states for nuclei V d3qf/(2π )3, electrons
V d3pe−/(2π )3, and positrons V d3pe+/(2π )3 is carried out. To
simplify the notation, we have introduced the symbol∑

{λ}
= 1

2

∑
λi=±

∑
λf=±

∑
λe−=±

∑
λe+=±

, (30)

where 1
2

∑
λi=± arises from the averaging of |S(N)

fi |2/T with
respect to the initial spin degrees of freedom while the rest
corresponds to the summation over the final spin degrees of
freedom. Then, from the matrix element S

(N)
fi [Eq. (27)], we

obtain by the usual methods (see, for instance, Ref. [56]) that∣∣S(N)
fi

∣∣2

T
= Z2α2m2

eM
2
Nc9

2π3V 3

|tN |2
Eq i

Eqf
E pe− E pe+

× δ(q̄i − q̄f − p̄e− − p̄e+ + Nk). (31)

As one can conclude from Eqs. (29) and (31), to perform
the corresponding integrations by means of the δ function is
not straightforward. With the reference to our definition of
the laser-dressed momenta (7), let us find first the Jacobian
|∂ pe+/∂ p̄e+|,

J (p̄e+) ≡
∣∣∣∣∂ pe+

∂ p̄e+

∣∣∣∣ =
∣∣∣∣1 − (mec)2µ2

4k · p̄e+

k0

p̄0
e+

∣∣∣∣ , (32)

that enables us to perform the integral over d3pe+ exactly. This
leads to

WN = Z2α2m2
eM

2
Nc9

2π3

∑
{λ}

∫
d3qf

Eqf
Eq i

d3pe−

E pe− E pe+
J (p̄e+)

× |tN |2δ(q̄0
i − q̄0

f − p̄0
e− − p̄0

e+ + Nk0
)
, (33)

where one has to remember that p̄e+ = q̄ i − q̄f − p̄e− + Nk
must obey the related on-mass-shell condition, p̄2

e+ = (m̄ec)2

and also that any quantity which encounters the dependence
on p̄e+ or pe+ in Eq. (33) is in fact the function of the other
momenta. In particular, it also relates to the argument of the
remaining one-dimensional δ function, and so we rewrite it
using the well-known property

δ[f (x)] =
∑

�

1

|f ′(x(�))|δ[x − x(�)], (34)

where x(�) is the �th solution to the equation f (x) = 0; with
this substitution, one of the remaining integrals in Eq. (33)
becomes trivial. To see this better, we write that d3pe− =
d� pe− | pe−|p0

e−dp0
e− (and similarly for d3qf), and then, in

Eq. (33), we perform the related one-dimensional integral with
respect to dp0

e− , making use of the aforementioned property.
This yields

WN = Z2α2m2
eM

2
Nc6

2π3

∑
�

∑
{λ}

∫
dEqf

d�qf
d� pe−

× |tN |2 |qf|
Eq i

| pe−|
E pe+

J (p̄e+)

D(pe−)

∣∣∣∣∣
E pe− =E

(�)
pe−

, (35)

where E
(�)
pe− is the �th solution of the energy conservation

relation that follows from Eq. (33) (Appendix), whereas the
denominator D(pe−) is found to be

D(pe−) =
∣∣∣∣∣−1 + p0

e−

p̄0
e+

pe− · p̄e+

p2
e−

+ (mec)2µ2

4(k · pe−)2

×
(

k0 − p0
e−

k · pe−

p2
e−

)(
k0 − k · p̄e+

p̄0
e+

)∣∣∣∣∣. (36)

As anticipated previously, the function that must be integrated
in (35) encounters huge oscillations. This makes the numerical
evaluation of the probability rate WN rather demanding. Let
us note that the preceding oscillating function has essentially
the meaning of the triply differential probability rate of N -
photon pair production for the case when the value of energy
transfer from the nucleus and orientations of the nucleus and
the electron are known, R

(�)
N (qf,p̂e−). The definition

WN =
∑

�

∫
dEqf

d�qf
d� pe− R

(�)
N (qf,p̂e−), (37)

as compared to Eq. (35), enables us to explicitly write the
formula

R
(�)
N (qf,p̂e− ) ≡ d3W

(�)
N

dEqf
d�qf

d� pe−
= Z2α2m2

eM
2
Nc6

2π3

×
∑
{λ}

|tN |2 |qf|
Eq i

| pe−|
E pe+

J (p̄e+)

D(pe−)

∣∣∣∣∣
E pe− =E

(�)
pe−

.

(38)

Let us note that the second line in this equation, if one neglects∑ |tN |2, is proportional to the nonrelativistic density of final
states. For this reason, we refer to it as the laser-modified
density of final states G(�)(qf,p̂e−),

G(�)(qf,p̂e−) = |qf|
Eq i

| pe−|
E pe+

J (p̄e+)

D(pe−)

∣∣∣∣∣
E pe− =E

(�)
pe−

. (39)

We further remark that the same differential rate would be
obtained if, instead of the electron orientation, the positron
orientation was known. In both instances, we can explicitly
study the effect of energy (or momentum) transfer from a
nucleus which is the main subject of this article.

D. Massive nucleus approximation

In most theoretical works so far on the electron-positron
pair production in laser-nucleus collisions, one of the key
assumptions was to treat a nucleus as an infinitely heavy
particle. Such a situation is not met, however, in real life. The
question to be asked is: How do we approximately account for
the finite mass of the recoil nucleus, which is indeed heavy?

Intuitively, one can expect that the motion of such a nucleus
would not be affected by the laser field rather than at the instant
of a collision, when the pair is produced; in other words, the
effect of the electromagnetic field on the nucleus wave function
would be neglected. In this case, the nucleus is described by a
field-free plane wave, which corresponds to Eq. (2), if A0 = 0.
Such a heavy nucleus is not dressed by the field, so it carries the
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z

y

x

k

qf

pe-
p

e+

θe-θe+

FIG. 3. (Color online) Geometry of the symmetric equal energy
sharing between an electron and a positron that are created in a
nucleus–laser-field collision, in a reference frame where a nucleus is at
rest long before the collision takes place. Only asymptotic momenta,
which would be measured outside the laser focus in the chosen
frame of reference, are depicted. For this geometry, | pe− | = | pe+ | and
θe− = θe+ .

momenta qi and qf before and after collision, respectively. In
the following, we discuss briefly how good this approximation
is in comparison with the exact results based on the formulas
derived in the previous section. In the case of a massive recoil
nucleus, all the formulas derived previously stay the same but
one has to put A0 = 0 correspondingly.

III. SYMMETRIC GEOMETRY

We start our investigations on triply differential probability
rates in the process of electron-positron pair production
[Eq. (38)], considering the head-on nucleus-laser collision
such that it leads to equal energy sharing between the
created particles. The corresponding coplanar kinematics in
the reference frame related to a nucleus initially at rest is
depicted in Fig. 3; in other words, it is understood that q i = 0.
As one can see from Fig. 3, we assume that the plane-
wave laser field propagates along the z axis, with the wave
vector k = −(ω/c)ez. For coplanar symmetric kinematics, the
created electron and positron are detected with equal energies
symmetrically with respect to the field direction (if θ measures
the polar angle, then θe+ = θe− ), and therefore the nucleus is
accelerated along the z axis. As is anticipated in Fig. 3, we
consider the case when the recolliding nucleus is detected
with momentum qf,z < 0. In this case, the minimal number of
photons that are absorbed from the laser field in order to create
pairs is

Nth = 4(m̄ec)2 − (q̄i − q̄f)2

2k · (q̄i − q̄f )
, (40)

which has been derived using the conservation relation of
four-momenta. This equation holds also for a very massive
nucleus if the dressed momenta (q̄i,q̄f ) are replaced by (qi,qf ).
Let us emphasize that Nth corresponds to the smallest possible
energy of created particles in the laser focus. Thus, the energy
threshold for pair production is much higher than the field-free
energy threshold, 2mec

2, as we illustrate in Sec. III A.
A number of theoretical studies have been performed to

investigate the electron-positron pair creation in the process
of laser-nucleus collisions assuming that the colliding nucleus
is infinitely massive (i.e., neglecting the nuclear recoil). In
the present article, we employ a more accurate approach

by taking into account the finite mass of the nucleus. In
this context, it is important to realize that in this more
realistic situation the pair creation cannot occur without the
nuclear recoil (see the Appendix). At the same time, based
on our earlier results for a linearly polarized laser field
assuming the infinite mass of a nucleus [3,42], one can expect
that the pairs would be preferably created in the coplanar
symmetric configuration. Thus, we analyze this case more
closely using our exact treatment of a nucleus in the laser
field.

A. Parallel case

With reference to our earlier works [3,42], we investigate in
the following a linearly polarized laser field, with the polariza-
tion vector in the xz plane, in which the ellipticity parameter
is zero, δ = 0. For a relativistic nucleus counterpropagating
toward a laser pulse of linear polarization, it holds that the
laser field remains linearly polarized but its frequency becomes
Doppler upshifted by a factor of γD = 2γ for sufficiently large
γ , where γ is the relativistic Lorentz factor. For the figures
discussed in the following, we take ω = 0.01mec

2 (in the
chosen frame of reference) and the parameter µ describing the
laser-field strength, µ = 100. As a colliding nucleus we choose
isotope of Ne (Z = 10), with ten protons and nine neutrons
and with a total spin of 1/2. Moreover, the results presented
here are obtained taking into account at most five-laser-photon
exchange between a nucleus and a pair, −5 � L � 5 [for the
definition of the respective photon exchange, see Eq. (28)].

In Fig. 4, we show kinematical parameters for the process
being considered as functions of nucleus momentum transfer
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−
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e−
|/
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g
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|p̄
e−
|/
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FIG. 4. (Color online) For a laser source such that ω = 0.01mec
2

and µ = 100 colliding with a beam of Ne nuclei (Z = 10), kinemat-
ical parameters for the process of pair creation in the configuration
depicted in Fig. 3 as functions of the momentum transfer from
the nucleus (qi,z − qf,z) are presented. The top left panel shows the
corresponding dependence of the minimum number of absorbed laser
photons necessary for the pair creation to take place, Nth; the bottom
left panel shows the dependence of the polar angle of a detected
electron θe− (or positron); the right panels present the respective
dependence of electron (positron) asymptotic and dressed momenta
(top and bottom panels, respectively).
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in the counterpropagating setup (Fig. 3). At this point, let
us only mention that for the present geometry there is only
one solution to the four-momenta conservation condition,
and so in Eq. (34) there is only one term. For this reason,
we keep in the following the notation RN (qf,p̂e− ) for the
corresponding triply differential probability rate andG(qf,p̂e−)
for the density of final states. The top left panel displays the
dependence of threshold number of photons that is necessary
for the e−e+ pair creation, Nth, on the momentum transfer
from the nucleus (qi,z − qf,z) in units of mec. Further, the
bottom left panel presents the similar dependence of the polar
detection angle of an electron (positron) θe− , while the right
panels refer to the electron (positron) momentum measured
either outside of (top panel) or in (bottom panel) the laser
focus. One can see from the top left panel that in the limiting
case of zero-momentum transfer from the nucleus, the number
of absorbed laser photons becomes infinite, which reflects
the fact that such a transition is energetically forbidden.
Then, with growing (qi,z − qf,z) up to around 100mec, the
minimum number of laser photons that must be absorbed in
order to create pairs drops significantly (however, it is still
larger than the field-free energy threshold for pair production,
as explained previously). As one can expect, an additional
momentum kick from the nucleus does result in an increasing
probability rate of pair creation, which we illustrate in the
next figure (cf. Fig. 5). At this point, let us only mention that
the smallest value of Nth does not necessarily correspond to
the maximum of the triple probability rate of pair production;
we rather observe (comparing Figs. 4 and 5) that the rate
is maximum for such momentum transfer from the nucleus
that the electron (positron) asymptotic momentum | pe−| is
minimum. One can see from Fig. 4 that this takes place when
electrons and positrons are detected perpendicularly to the
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FIG. 5. (Color online) Dependence of triply differential prob-
ability rates (a), (b) and of the density of final states G(qf,p̂e− )
(c), (d) on momentum transfer from the recoil nucleus (qi,z − qf,z)
(in units of mec) in the case when 10- and 1000-above-threshold laser
photons are absorbed in order to produce pairs [panels (a, c) and
(b, d), respectively; the head-on configuration presented in Fig. 3 is
considered].

laser-field propagation direction. This indicates that the most
favorable process in this configuration is such that the total
momentum of absorbed photons is preferably transferred to the
nucleus.

Next, we examine the dependence of triply differential
probability rates for electron-positron pair creation on the
momentum transfer from the Ne nucleus in the configuration
presented in Fig. 3. In Fig. 5, we show the corresponding results
for the case when 10- [panels (a) and (c)] and 1000-above-
threshold laser photons [panels (b) and (d)] are absorbed.
For our purpose let us denote the number of laser photons
absorbed above the electron-positron pair-creation threshold
as S = N − Nth, meaning that in the present case we consider
the situation when S is either 10 or 1000. Here, Nth depends
on the momentum transfer (qi,z − qf,z) the way displayed in
Fig. 4. Looking at panels (a) and (b) of Fig. 5, one can see
very rapid and dense oscillations of the corresponding rates,
discussed already in Sec. II B. Rather than that, we observe a
clear qualitative difference between both panels. For S = 10
[panel (a)], the triply differential probability rates exhibit the
so-called plateau structure, which means the flat dependence
of the probability rates over the finite range of momentum
transfer from the nucleus (qi,z − qf,z), which is not observed in
the case when S = 1000 [panel (b)]. It is a well-known fact that
similar plateaus are observed in multiphoton ionization spectra
of photoelectrons [57]. While in multiphoton ionization such
structures are believed to originate from the rescattering of
ionized electrons by an ionic core under the influence of the
laser field [57,58], the similar explanation does not apply here;
this is due to the fact that our theoretical approach is based
on the first-order Born approximation. The appearance of the
plateau in the probability rates of pair creation by 10-above-
threshold-photon absorption, shown in Fig. 5(a), is related to a
very strong modification of the density of final statesG(qf,p̂e−)
by the presence of the laser field. The density of final states as
a function of the momentum transfer from the nucleus in the
case when S = 10 is presented in Fig. 5(c). We see in this panel
that G(qf,p̂e− ) exhibits a very deep minimum for momentum
transfer around 2mec, which exactly corresponds to the region
where the respective plateau in panel (a) is observed. While in
the case of 10-above-threshold-photon absorption, the density
of final states changes by two orders of magnitude on the
scale where (qi,z − qf,z) changes from 2mec to 10mec. In the
case of 1000-above-threshold photon absorption [panel (d)],
G(qf,p̂e−) changes by much less than one order of magnitude.
Such a rapid [panel (c)] versus slow [panel (d)] dependence
of G(qf,p̂e− ) on the nucleus momentum transfer (qi,z − qf,z)
results in the inflection [panel (a)] or in an abrupt decrease
[panel (b)] of the envelope of triply differential probability
rates with changing (qi,z − qf,z) from 2mec to 10mec. Here,
we should also mention that in the first case the density of
final states oscillates with a small amplitude as a function
of (qi,z − qf,z), which manifests itself in Fig. 5(c) as a bold
line, but in the second case, Fig. 5(d), the amplitude of such
oscillations is even smaller.

At this point let us comment on the validity of the heavy
nucleus approximation. We have compared the results for
the triply differential probability rates assuming that the Ne
nucleus is massive enough, so one can disregard dressing
it by the laser field as discussed already in Sec. II D, with
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the results of our exact treatment of the Ne nucleus in the
laser field (for the cases when we have at most five- and
at most ten-photon exchange between the nucleus and the
laser field, −5 � L � 5 and −10 � L � 10, respectively) that
is along the lines presented in Secs. II B and II C. In each
case, we observe very dense and rapid oscillations of the
differential probability rates with the nucleus momentum kick
(qi,z − qf,z), as seen in Fig. 5. At this point, let us note
that such dense oscillations are typical for a multiphoton
pair creation characterized by a small frequency of the laser
field ω; however, they smooth out with increasing ω. Despite
these oscillations, which are uncorrelated for different L’s,
the respective envelopes turned out to be almost identical.
This follows from the fact that the correction to the rest-mass
energy squared of the nucleus, due to its dressing by the laser
field, equals (Zµmec

2)2/2, which is much smaller than the
rest-mass energy squared of the nucleus itself. Therefore, we
conclude that one can neglect the influence of the laser field on
the nucleus, unless one considers pair creation by the impact
of very light particles on the laser beam. At the same time,
it should be emphasized that the calculations are performed
under certain general approximations (such as, for instance,
a plane-wave laser-field approximation) which prevent the
theory employed to be quantitatively predictive on such
small details like dense oscillations observed, for instance,
in Fig. 5.

In Fig. 6, we show the above-threshold triply differential
probability rates (in the log10 scale) as functions of the number
of laser photons above the electron-positron pair-creation
threshold, S, for three different values of momentum transfer
from the colliding nucleus: 1.89mec [blue (upper) curve],

0 2 4 6 8 10
x 10

6

10
−100

10
−50

10
0

S

R
at

es
(i
n

re
l.

un
it
s)

S ∗ 10; qf,z = −1.89mec

S/10; qf,z = −0.0189mec

S; qf,z = −0.189mec

FIG. 6. (Color online) Triply differential probability rates vs the
number of above-threshold-laser-photons S that are absorbed in order
to produce electron-positron pairs [in the head-on collision setup
(Fig. 3)] for the fixed momentum transfer from the recoil nucleus:
1.89mec [blue (upper) curve], 0.189mec [pink (middle) curve], and
0.0189mec [red (lower) curve]. The triply differential probability rates
are presented on the log10 scale. For the largest momentum transfer
(upper curve), the horizontal axis should be scaled by a factor of 10,
while for the smallest transfer (lower curve), the same axis must be
scaled by 1/10.

0.189mec [pink (middle) curve], and 0.0189mec [red (lower)
curve]. One should be aware that the horizontal scale should be
multiplied by ten in the case of the biggest momentum transfer
from the nucleus [blue (upper) curve] and divided by ten in the
case of the smallest momentum transfer [red (lower) curve] that
are presented in this figure. As one can see here, the probability
rates of pair creation show a dramatic increase with increasing
momentum transfer from the nucleus (qi,z − qf,z); that is, a
change in (qi,z − qf,z) of only one order of magnitude induces
an increase in the rate of several orders of magnitude (see lower
vs middle and upper curves). However, what is not shown here
is that for larger (qi,z − qf,z) the probability rates start rapidly
decreasing. To understand this better, let us note that in the case
plotted as the red (lower) curve here there is approximately
108 laser photons necessary for the pair creation to take
place (see Fig. 4, panel specifying Nth), while the number
of the above-threshold photons S that are absorbed from the
laser field is of the order of 105. It means that we deal here
with the case nearly above the reaction threshold (S � Nth).
Most importantly, in this case the number of absorbed laser
photons N (N = Nth + S) is very large, which results in a
small probability of pair creation. The pink (middle) curve,
on the other hand, corresponds to Nth and S of the order of
107 and 106 photons, while for the blue (upper) curve we have
106 and 107 photons, respectively. In both of these cases, we
can talk about the pair creation that is relatively far beyond the
threshold and with substantially smaller N than in the previous
case. Thus, the respective rates are much bigger than the one
plotted in red (lower curve). Increasing (qi,z − qf,z) even more,
we observe in Fig. 4 that Nth does not change rapidly any
longer (and hence also N ), which explains the saturation of
the probability rates with growing (qi,z − qf,z). As one can see
in Fig. 4, at some point Nth even starts to increase (and so N

does), which results in decreasing the probability rates of pair
production. Let us emphasize that such a dependence of the
probability rates on the momentum transfer from the nucleus
is typical also for other geometries of the reaction particles.
It also confirms that, taking into account the recoil imparted
on the colliding nucleus, one can significantly enhance the
probability rates of the electron-positron pair creation. The
point being that the e−e+ pairs can be created if there is
enough energy supplied by both the laser field and by the
colliding nucleus. The more energy is transferred from the
nucleus, the fewer laser photons N have to be absorbed from
the laser field (for momentum transfer less than 100mec)
in order to produce pairs. This results in a tremendous
increase in the probability rates of the process of pair creation,
however, with a tendency to become saturated, as discussed
previously.

In closing our considerations on pair creation via head-on
laser-nucleus collisions in this configuration let us mention
that similar results have been obtained for even heavier
nuclei, like Pb82+ having 82 protons and 125 neutrons
(Z = 82). The fact that the results for Ne10+ and Pb82+
are indeed very similar can be expected since for both
nuclei the energy correction that originates from the dressing
by the laser field, (Zµmec

2)2/2, is still small in compar-
ison with the nucleus rest-mass energy squared. For this
reason, we do not present here the corresponding results
for Pb82+.
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FIG. 7. (Color online) The same as in panels (a) and (b) of Fig. 5
(here, top and bottom panels, respectively) for the case when the
laser-field polarization vector is along the y axis (see Fig. 3).

B. Perpendicular case

In this section, we consider the case of equal energy sharing
between an electron and a positron that are created in the head-
on laser-nucleus collisions, as presented in Fig. 3, for the case
when the ellipticity parameter of the laser field [see Eq. (4)]
is δ = π/2; in other words, the only difference in comparison
with the situation considered in the previous section is that the
polarization of the laser field is along the y axis. Figure 7 shows
the dependence of triply differential probability rates for pair
creation on momentum transfer from the colliding nucleus
for the case of 10- and 1000-above-threshold-photon pair
production (top and bottom panels, respectively). This time,
contrary to the previous case, we observe a very pronounced
difference between the results for even- and odd-laser-photon
pair production. This feature of probability rates can be
understood based on formulas describing the electron-positron
and nuclear currents [see Eqs. (17)–(19), (21), (23)–(25)]. For
δ = π/2, the first argument of the generalized Bessel functions
is in each case equal to zero [see Eqs. (21) and (23)], meaning
that only the even-photon-number Bessel functions (BN , with
N being an even number) enter into the coefficients Cµ

N and
F ν

N [see Eqs. (24) and (25)]. This, however, does not mean that
only an even number of photons can be exchanged between
particles and the laser field. Let us note that in the formulas
defining the Fourier coefficients Cµ

N and F ν
N there are terms

with N,N ± 1 and N ± 2 photon numbers, while the even-N
terms are multiplied by µ2 the odd-N terms are only multiplied
by µ; hence, the rates of pair production with absorption of
an even number of photons should be approximately µ2 times
larger than the rates of pair production with absorption of an

odd-photon number. In the case illustrated in Fig. 7, that is
for µ = 100, one should observe therefore a four-order-of-
magnitude difference between these two cases. This agrees
quite well with the results presented in Fig. 7.

Let us note that in the present geometry, the rates of
near-threshold pair production (top panel) are of comparable
magnitude as those for the geometry considered in the
preceding section. However, by comparing both panels in
Fig. 7, one can conclude that with increasing the number of
above-threshold photons (bottom panel) the rates decrease in
magnitude dramatically, which has not been observed for the
previous geometry. Moreover, by looking at Fig. 7, one could
get an impression that this time the differential rates depend
smoothly on the momentum transfer from the nucleus; that is,
they do not exhibit similar interference oscillations as func-
tions of (qi,z − qf,z). In fact, just like for the previous geometry,
each curve in Fig. 7 is an oscillating function of the momentum
transfer (qi,z − qf,z) but with a very small amplitude.

C. Elliptic polarization

For the configuration setup analyzed in Sec. III A, we
concentrate now on the dependence of triply differential prob-
ability rates of pair creation RN (qf,p̂e− ) on the polarization
of the laser field; in other words, we take this time the
ellipticity parameter such that δ �= 0 and δ �= π/2. Figures 8
and 9 show the dependence of the respective probability rates
on momentum transfer from the nucleus (qi,z − qf,z) for 10-
and 1000-above-threshold-photon pair production (top and
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FIG. 8. (Color online) For the same parameters as in Sec. III A
and for the ellipticity parameter δ = 0.005π , the triply differential
probability rates RN (qf,p̂e− ) as functions of momentum transfer
from the nucleus. The top and bottom panels correspond to 10- and
1000-above-threshold-photon pair production.
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FIG. 9. (Color online) The same as in Fig. 8 but for the ellipticity
parameter δ = 0.01π .

bottom panels, respectively) for two cases, when δ = 0.005π

(Fig. 8) and δ = 0.01π (Fig. 9). One can see from these figures
that the probability rates depend strongly on the polarization
of the colliding laser beam. If one compares these figures
with similar results presented in Fig. 5, panels (a) and (b)
appropriately, for the case of the linear polarization when
δ = 0, one can see a very dramatic decrease of the differential
probability rates when δ increases. For even higher δ, for which
however we do not present the respective results here, the
differential probability rates become negligibly small (already
for δ = 0.1π , they become smaller than 10−300 in relativistic
units, and even less for δ = 0.25π , which corresponds to
a circular polarization of the laser field). Such a dramatic
dependence of the probability rates on the polarization of
the laser field is not usually observed in other multiphoton
processes. One should remember, however, that we deal here
with a multiphoton process, in which millions of photons
are absorbed; this explains such a dramatic dependence of
the probability rates on the ellipticity of the laser field. At the
same time, one can observe that the maximum of probability
rates shifts toward higher momentum transfer from the nucleus
with increasing δ.

IV. ANGULAR DISTRIBUTIONS

Our foregoing investigations of pair production in the
case of symmetric equal energy sharing between the created
particles show the importance of nuclear recoil, which is
imparted during the process, as was already suggested in our
previous work [38]. Since the differential probability rates
R

(�)
N (qf,p̂e− ) are maximal for nonzero momentum transfer from

the nucleus, in the following we consider the situation when

the Ne nucleus is reflected in the direction of the laser-field
propagation such that, in the reference frame where the
nucleus is at rest before the collision takes place (meaning that
q i = 0), its momentum equals qf = −mecez. This time, for the
parameters analyzed in Sec. III A (µ = 100,ω = 0.01mec

2,
δ = 0, and −5 � L � 5), we fix the number of photons which
are absorbed from the laser field, N = 1 060 000, to analyze the
dependence of R

(�)
N (qf,p̂e−) on the electron detection angles,

θe− and ϕe− .
In order to calculate the differential probability rates of

pair production R
(�)
N (qf,p̂e− ) for a general configuration of

the created particles, one has to start with solving the four-
momentum conservation law given by the equation,

q̄i − q̄f − p̄e− − p̄e+ + Nk = 0. (41)

For the method of solving this equation, see the Appendix.
Based on the preceding equation, one can check that the
momenta of particles | pe−| and | pe+| do not depend on
the electron azimuthal angle ϕe− . Therefore, in Fig. 10, we
present the electron and positron momenta (in units of mec)
as functions of the electron polar angle θe− (top and bottom
panels, respectively), which follows from solving Eq. (41).

2.6 2.8 3

1

2

3

4

5

6

2.6 2.8 3

1

2

3

4

5

6

θe− (rad)

θe− (rad)

(|p
e−
|/
m

ec
)0

.3
(|p

e+
|/
m

ec
)0

.3

(a)

(a)

(c)

(c)

(b)

(b)

(d)

(d)

FIG. 10. (Color online) Dependence of the electron and positron
momenta (| pe− | and | pe+ |, respectively, in units of mec) on the
electron polar angle θe− , which follows from solving the four-
momentum conservation equation, as shown in the Appendix. Low-
energy particles are in sectors (a) and (b), marked as dark blue (solid
dark gray) and dark green (dashed dark gray) curves respectively,
while high-energy particles are in sectors (c) and (d) that are marked
by light blue (solid light gray) and light green (dashed light gray)
curves. Note that values of scaled momenta are raised to the power
0.3, which lowers them substantially.
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One can see that for the chosen momentum transfer of the
Ne nucleus and for the chosen number of absorbed laser
photons, the particles are created predominantly in a window
of θe− close to π or, in other words, they are mostly created
in the direction of laser-field propagation. Besides, one can
distinguish naturally different sectors in both panels in Fig. 10.
While sectors (a) and (b) for θe− ∈ [2.5,π ] and θe− ∈ [2.8,π ],
respectively, correspond to the low-energy pairs created during
the collision, sectors (c) and (d), for θe− ∈ [2.5,3.1] and θe− ∈
[2.8,3.1], are related to the high-energy pairs. Therefore, one
can see that these three electron polar angles, namely, θ

(1)
e− =

2.5, θ
(2)
e− = 2.8, and θ

(3)
e− = 3.1 mark the thresholds between

different sectors for pair production. From Fig. 10, one notes
that, with increasing the momentum of created particles,
for θ

(1)
e− , the sectors (a) and (c) become open; for θ

(2)
e− , the

sectors (b) and (d) are open; whereas for θ
(3)
e− , the high-energy

sectors (c) and (d) become closed. This resembles the concept
of channel closings that has been adapted recently in the
nonrelativistic theory of ionization to explain enhancements in
the photoelectron energy spectrum from negative ions. As has
been demonstrated in Refs. [59–63], a dramatic enhancement
(up to an order of magnitude) in the energy spectrum of
ionized electrons is observed at multiphoton thresholds. As we
present this in Fig. 11 for the zero azimuthal angle ϕe− = 0,
a similar enhancement of differential probability rates for
the multiphoton pair creation R

(�)
N (qf,p̂e− ) is observed at the

threshold between different sectors of created particles, which
have been specified in Fig. 10. Even though the presented
data (Fig. 11) are for the zero azimuthal angle, the probability
rates for pair production exhibit a similar behavior for other
angles ϕe− close to 0 and π . Such a behavior is due to a
significant increase of the laser-modified density of final states
G(�)(qf,p̂e−) near the respective thresholds.
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FIG. 11. (Color online) Triply differential probability rates of
pair creation R

(�)
N (qf,p̂e− ) as functions of the electron polar angle

θe− , measured with respect to the z axis. Each panel corresponds to
the appropriate sector, labeled with the same letter in Fig. 10. The
rates are raised to the power 0.3, which enhances the small values as
compared with the large ones.
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FIG. 12. (Color online) Angular maps of P
(�)
N (qf,p̂e− ), as defined

in Eq. (42), for different sectors specified in Fig. 10; each panel
corresponds to the sector labeled in Fig. 10 with the same letter. Note
that the values of P

(�)
N (qf,p̂e− ) in each panel have been raised to the

power 0.25.

Let us now define a new quantity,

P
(�)
N (qf,p̂e−) = E(�)

pe−
R

(�)
N (qf,p̂e−), (42)

that has the meaning of energy emitted per unit time in the
form of electrons in the course of the laser-nucleus collision.
For this reason, we call it in the following the electron energy
transfer rate, P

(�)
N (qf,p̂e− ). In Fig. 12, we show the respective

color mappings of angular distributions of P
(�)
N (qf,p̂e−), where

the values of P
(�)
N (qf,p̂e−) have been raised to the power

0.25 for the visual effect. Each panel here corresponds to
one sector (denoted by a letter), that has been specified
when discussing Fig. 10. In particular, sectors (a) and (b)
describe low-energy electrons, while sectors (c) and (d) are
for high-energy electrons. One can see a qualitative difference
between the production of low- and high-energy pairs. The
high-energy electrons (and positrons) are created mainly in
the plane spanned by the direction of the laser-field propagation
(as follows already from Fig. 10) and by the polarization
vector (in our configuration, in the xz plane). The low-energy
electrons are emitted at slightly larger polar angles θe− but,
most importantly, they are spread significantly with respect
to the azimuthal angle ϕe− . For low-energy pairs, which are
better seen in panel (a), one can distinguish even a vortexlike
structure, which we expect, however, not to be observed in an
experiment.

For comparison, we present the results for an entirely
asymmetric case, when the nucleus final momentum qf is such
that |qf| = mec, θqf

= 0.9π , and ϕqf
= 0.4π . This time we

draw the color mappings of PN (qf,p̂e− ), which is defined as

PN (qf,p̂e−) =
�max∑
�=1

P
(�)
N (qf,p̂e−) (43)
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FIG. 13. (Color online) Angular maps of PN (qf,p̂e− ), defined by
Eq. (43), for the case when the nucleus of final momentum |qf | = mec

is measured at angles θqf
= 0.9π and ϕqf

= 0.4π . For the visual
effect, the values of PN (qf,p̂e− ) have been raised to the power 0.1.

and is zero if �max = 0, meaning that there is no solution to the
four-momentum conservation condition. The corresponding
map of PN (qf,p̂e−) as a function of the electron polar and
azimuthal angles, θe− and ϕe− , is presented in Fig. 13. Let
us note that for the visual purpose the values of PN (qf,p̂e−)
have been raised to the power 0.1. From this figure one
can distinguish different low-energy sectors with borders at
approximately θe− = 2.6 and 2.7. These low-energy sectors,
which are spread with respect to ϕe− , constitute a background
for the high-energy sectors being concentrated around the
polarization vector of the laser field, that is, around ϕe− = 0
and π . This is analogous to the case discussed before, when
the colliding nucleus (of the same energy) is detected in
the propagation direction of the laser field. If one compares,
however, the magnitudes of the rates presented in Figs. 12
and 13, one can see that in the previous case the values of
PN (qf,p̂e−) are two or even three orders of magnitude bigger
than in the present, nonsymmetric case. One can conclude,
therefore, that the electron-positron pair production is more
efficient in the configuration setup where the nucleus is
reflected in the direction of the laser wave propagation, which
is the case we have thoroughly analyzed in this article.

V. TOTAL RATES

A desirable question to be asked is whether the nuclear
recoil modifies the probability rates of produced electron-
positron pairs. Thus, we compare both situations, that is, when
one takes into account or diregards the nuclear recoil, for the
total probability rates defined as

W =
∑
N

WN, (44)

where WN is the N -photon probability rate of pair production.
In the case considered in this article, this is given by Eq. (37),
while the summation in (44) is over all photons N . More
information on the theory describing the situation when one
disregards the nuclear recoil can be found in Ref. [38].
Additionally, in Ref. [38], we worked out the Monte Carlo
method of estimating the sum over N and spatial integrals that
arise in WN . Let us note that in the present case, when the
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FIG. 14. (Color online) The total rates of electron-positron pair
creation as a function of the dimensionless parameter µ for the
linearly polarized laser field (δ = 0) and for the laser frequency
ω = 0.01mec

2. The results are shown for µ = 10, 20, 40, 60, 80,
and 100. The blue circles correspond to the case when the nuclear
recoil is taken into account, while the red diamonds are for the case
when one disregards the recoil effect. These points are connected by
lines to guide the eye. A very pronounced enhancement (up to four
orders of magnitude) is observed when a more accurate approach
with an exact account for the nuclear recoil is applied.

differential probability rates are rapidly oscillating functions
of the nuclear recoil, it is rather difficult to explicitly calculate
the total rates. For this reason, we choose to estimate them
using the same Monte Carlo method [38].

Figure 14 shows total probability rates for pair creation for
the case of a linearly polarized laser field (with δ = 0) when its
frequency is ω = 0.01mec

2 as a function of the dimensionless
relativistic invariant parameter µ. Here, µ takes the values
10, 20, 40, 60, 80, and 100. The blue circles mark the results
that are obtained using our more accurate approach of treating
the colliding nucleus, that is, with the exact account for the
nuclear recoil. These results were obtained assuming that
the net number of photons exchanged between the nucleus
and the laser field is zero, L = 0 [see Eq. (28) for the
definition of L]. On the other hand, red diamonds correspond
to the case when one disregards the recoil imparted on the
nucleus, treating it as an infinitely heavy particle. In both
cases, the presented rates (connected by lines to guide the
eye) were calculated using more than 109 sample points. For
the parameters considered here, a tremendous enhancement
(up to four orders of magnitude) of the total probability rates
of pair creation is observed when one takes into account the
nuclear recoil. The reason for such a significant descrepancy
between these two situations is that the number of absorbed
laser photons is much smaller when the recoil is accounted for.
The situation might be different, however, when only few laser
photons are needed for the pair creation. This case is going to
be considered elsewhere. In addition, one can see from Fig. 14
that with increasing the parameter µ the total rates tend to
saturate, which is the case for both situations.

VI. CONCLUSIONS

In the present article, the results for electron-positron pair
creation in the head-on laser-nucleus collisions that account for
the nuclear recoil have been presented. While there is recent
work by Müller and Müller [46], where the authors consider
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pair creation by highly energetic photons (mainly the one-,
two-, and three-photon pair creation), we have described here
the multiphoton pair creation. In light of both these works, it
is important to realize that the pair creation with zero nuclear
recoil is energetically forbidden, which has been proved here
from first principles.

Variations in triply differential probability rates for laser-
induced electron-positron pair creation due to the nuclear
recoil have been studied in this article in great detail. For
instance, our analysis has shown a dramatic dependence of the
corresponding probability rates on the polarization of the laser
wave impinging on the nucleus, with the highest efficiency of
pair production in the case of a linearly polarized laser field.
Let us emphasize that such a dependence is characteristic only
for multiphoton processes, not for few-photon processes [46].
Moreover, our results for different geometries have shown
that for the linear polarization the respective probability rates
significantly increase if the colliding nucleus is detected in the
direction of the laser-field propagation. Thus, we have mainly
focused on this situation.

We have demonstrated that the differential probability
rates for electron-positron pair creation increase tremendously
owing to the nuclear recoil. At the same time, the differential
probability rates oscillate rapidly with varying the energy
transfer from the nucleus, which is not observed for instance
in the case of few-photon pair production [46]. These rapid
interference oscillations make it rather difficult to calculate the
total probability rate of pair production in the tunneling regime.
We have estimated it by means of the Monte Carlo method
and have compared it with the result for the corresponding
case when one neglects the nuclear recoil. For the parameters
considered in the article, we have found a tremendous increase
in the total rate of pair production when one uses a more
accurate approach for treating the colliding nucleus.
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APPENDIX: SOLVING THE FOUR-MOMENTUM
CONSERVATION CONDITION

In accordance with Eq. (41), we analyze here the solutions
to the four-momentum conservation condition,

p̄ + q̄ + r̄ = 0, (A1)

where p̄ and q̄ are unknown laser-field-dressed momenta such
that

p̄ = p + (epA0)2

4(p · n)
n, (A2)

q̄ = q + (eqA0)2

4(q · n)
n, (A3)

which fulfill the on-mass-shell relations

p̄2 = (m̄pc)2, (A4)

q̄2 = (m̄qc)2. (A5)

Moreover, we assume that r̄ present in Eq. (A1) is known,
but in principle it can be an arbitrary four-vector that does not
satisfy an on-mass-shell relation. In the following, we keep
the direction of the vector p as known; we further denote it as
np. Expressing now q̄ in terms of p̄ and r̄ , which follows from
Eq. (A1), we find out from Eq. (A5) that

r̄2 + 2(p̄ · r̄) + m̄2
pc2 − m̄2

qc
2 = 0. (A6)

The preceding formula can be rewritten using Eq. (A2),

(p · n)(p · r̄) + κ(p · n) + ζ = 0, (A7)

where we have introduced two constants κ and ζ ,

κ = 1

2

(
r̄2 + m̄2

pc2 − m̄2
qc

2
)
, (A8)

ζ = (epA0)2

4
(n · r̄). (A9)

Besides, let us recall that p = (E p/c, p), n = (1,n), and there

is the dispersion relation E p/c =
√

p2 + m2
pc2. Let us also

explicitly write down that r̄ = (r̄0,r̄). With this in mind, we
can derive the following fourth-order equation to be satisfied
by | p|,
| p|4[(np · r̄)2 + r̄2

0 (np · n)2 − r̄2
0 − (np · n)2(np · r̄)2

]
+ 2κ| p|3(np · r̄)[(np · n)2 − 1] + | p|2{m2

pc2[(np · r̄)2

+ r̄2
0 (np · n)2 − 2r̄2

0

] − κ2[(np · n)2 − 1]

− 2ζ [r̄0 + (np · n)(np · r̄)]
} + 2κ| p|[ζ (np · n)

−m2
pc2(np · r̄)

] + κ2m2
pc2 − (

ζ + r̄0m
2
pc2

)2 = 0. (A10)

Solving this equation for the fixed direction np, we are able
to specify the momentum p, and hence also the momentum
q. Among all four solutions of Eq. (A10), | p̄|(�) where � =
1,2,3,4, we choose only those which are real and positive
and for which the zero component of q̄ is also positive. In
particular, for the analysis presented in this article we have

p̄ = p̄e− , q̄ = p̄e+ , r̄ = q̄f − q̄i − Nk, (A11)

in the four-momentum conservation law (41). Let us also note
that in the case of a zero-momentum transfer from the nucleus,
when q̄f = q̄i, we have κ = 0 and ζ = 0, and so Eq. (A10) is
simplified to the form

| p|4[(np · n)2 − 1]2 − 2| p|2(mpc)2

× [(np · n)2 − 1] + (mpc)4 = 0. (A12)

As follows from this equation, if only np · n �= 1 there is a
double root to this equation,

| p|2 = (mpc)2

2[(np · n)2 − 1]
, (A13)

which, however, is negative. In other words, the four-
momentum conservation law given by Eq. (41) has no physical
solutions if one neglects the nuclear recoil.
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