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Isotope effects in the harmonic response from hydrogenlike muonic atoms in strong laser fields
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High-order harmonic generation from hydrogenlike muonic atoms exposed to ultraintense high-frequency laser
fields is studied. Systems of low nuclear-charge number Z are considered where a nonrelativistic description
applies. By comparing the radiative response for different isotopes, we demonstrate characteristic signatures
of the finite nuclear mass and size in the harmonic spectra. In particular, for Z > 1, an effective muon charge
appears in the Schrödinger equation for the relative particle motion, which influences the position of the harmonic
cutoff. Cutoff energies in the million-electron-volt domain can be achieved, offering prospects for the generation
of ultrashort coherent γ -ray pulses.
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I. INTRODUCTION

One of the most successful and accurate methods to probe
nuclear properties employs muonic atoms [1]. Due to the
small Bohr radius of these exotic atoms, the muonic wave
function has a large overlap with the binding nucleus. Precision
measurements of muonic transitions to deeply bound states
can therefore reveal information on nuclear structure such as
finite size, deformation, surface thickness, and polarization.
The first x-ray spectroscopy of muonic atoms was performed
in 1953 using a four-meter cyclotron [2]. Today, large-scale
facilities such as TRIUMF (Vancouver, Canada) or the Paul
Scherrer Institute, PSI (Villigen, Switzerland) exist which are
specialized in the efficient generation of muons and muonic
atoms [3]. New developments aim at the production of radioac-
tive muonic isotopes for conducting spectroscopic studies on
unstable nuclear species [4]. Muons bound in atoms are also
able to catalyze nuclear fission [5] and fusion [6] reactions.

On a different front, the field of laser-nuclear physics is
emerging [7]. While lasers have always represented important
tools for nuclear spectroscopy [8], in recent years their role is
qualitatively changing and growing because of the tremendous
progress in high-power laser technology. The interaction
of intense short laser pulses (I ∼ 1018–1020 W/cm2) with
matter can produce highly energetic electrons, protons, and
photons (e.g., via bremsstrahlung). In pioneering experiments,
this has led to the observation of laser-induced nuclear
fission [9], nuclear fusion [10], and neutron production in
nuclear reactions [11]. Advanced laser sources might also
pave the way to nuclear quantum optics [12] and coherent
γ spectroscopy using ultrashort pulses [13–15].

In light of this, the combination of muonic atoms with
intense laser fields opens promising perspectives. Contrary
to the traditional spectroscopy of muon transitions between
stationary bound states, the exposure of a muonic atom
to a strong laser field renders the problem explicitly time
dependent and thus makes the muon a dynamic nuclear
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probe. In this setup, the muon is coherently driven across
the nucleus, which, for example, gives rise to the emission of
radiation and, in general, allows for time-resolved studies on a
femtosecond scale. The information on the nucleus gained by
laser assistance can in principle complement the knowledge
obtained from the usual field-free spectroscopy of muonic
atoms.

Against this background, we have recently considered the
process of high-harmonic generation (HHG) from strongly
laser-driven muonic hydrogen and deuterium atoms [16]. The
process of HHG represents a frequency up-conversion of
the applied laser frequency due to a nonlinear coupling of
the atom with the driving external field (see [17–20] for
recent reviews). It can be understood within a three-step
model, where the bound lepton is liberated from the atom
by tunneling ionization, propagates in the laser field, and
finally recombines with the core, returning its kinetic energy
upon photoemission. By way of a comparative study, it
was demonstrated that the harmonic response from muonic
hydrogen isotopes is sensitive to the nuclear mass and size [16].
This shows that muonic atoms subject to strong laser fields can
reveal information on nuclear degrees of freedom. Muonic
deuterium molecules in superintense laser fields represent
another interesting example toward this combined effort,
where field-induced modifications of muon-catalyzed fusion
have been investigated [21]. Moreover, muonic hydrogen
atoms have been studied as systems, which could allow for
observation of the Unruh effect [22].

In this article, we extend our previous study on HHG [16]
to hydrogenlike muonic atoms (ions) with nuclear-charge
number Z � 1. To this end, the time-dependent Schrödinger
equation describing the muon in the presence of the binding
nucleus and a strong laser field is considered. Characteristic
isotope effects arising from the finite nuclear mass and size are
found. Moreover, in the case Z > 1, the laser-driven particle
dynamics becomes more complex because the center of mass
of the atomic constituents does not stay at rest any longer. As
a result, an effective muon charge appears in the Schrödinger
equation for the relative motion, which affects the harmonic
cutoff position. The cutoff energies achievable with muonic
atoms in the nonrelativistic domain of interaction are very
large, reaching several million electron volts. This holds in
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SHAHBAZ, BÜRVENICH, AND MÜLLER PHYSICAL REVIEW A 82, 013418 (2010)

principle prospects for the production of coherent γ -ray pulses
of ultrashort duration (see also [23]).

Since muonic atoms are tightly bound systems, laser fields
of extraordinary field strength and photon energy are required
to influence the muon motion. In the ground state of muonic hy-
drogen, for example, the muon is bound by 2.5 keV and expe-
riences a binding Coulomb field strength of 1.8 × 1014 V/cm
corresponding to the field intensity 4.2 × 1025 W/cm2. A
comparison of these numbers with the parameters of the most
advanced present-day and near-future laser sources is useful. In
the range of optical and near-infrared frequencies (h̄ω ∼ 1 eV),
the highest intensity presently attainable is ∼1022 W/cm2 [24]
and the next generation of high-power lasers aims at intensities
of 1023 W/cm2 and beyond [25]. In the vacuum ultraviolet
(VUV) frequency domain (h̄ω ∼ 10–100 eV), a maximum in-
tensity of ∼1017 W/cm2 has been attained with a free-electron
laser at the FLASH facility (DESY, Germany) [26]. The Linac
Coherent Light Source (SLAC, Stanford) has recently entered
the frequency domain h̄ω ∼ 1 keV [27]. Near-future upgrades
of such machines are planned to produce brilliant x-ray beams
(h̄ω ∼ 10 keV) with peak intensities close to 1020 W/cm2.
There are also efforts to generate ultrashort, high-frequency
radiation (h̄ω ∼ 10–1000 eV) from plasma surface harmonics
where considerably higher intensities might be reachable due
to a high conversion efficiency [28]. With these novel sources
of intense coherent radiation, it will become possible to
influence the quantum dynamics of light muonic atoms with
nuclear-charge numbers Z <∼ 10.

As to their lifetime, we point out that light muonic atoms
and molecules may be regarded as quasistable systems on the
ultrashort time scales of strong laser pulses (τ ∼ fs–ps), since
their lifetime is determined by the free muon lifetime of 2.2 µs.
For the field parameters assumed in this article, the influence
of the external laser field on the muon decay is immaterial as
well [29]. In deeply bound states of heavy atoms, the muon
lifetime can be reduced due to absorption by the nucleus to
∼10−8 s which still exceeds typical laser pulse durations by
orders of magnitude.

We organize the article as follows: Sec. II deals with the the-
oretical framework in which the separation into center of mass
and relative coordinates of the two-body Schrödinger equation
for a hydrogenlike muonic atom in a laser field is performed.
We also give here a scaling transformation between ordinary
and muonic atoms. Section III has been reserved for the pre-
sentation of our analytical and numerical results. Section III A
compiles the harmonic cutoff energies available from different
low-Z muonic atoms. Section III B treats the influence of
the nuclear mass on the position of the harmonic cutoff.
Section III C shows a series of numerical calculations devoted
to the impact of the nuclear size on the HHG spectra. A com-
parison of the nuclear signatures predicted for muonic atoms
with those to be expected in highly charged electronic ions is
undertaken in Sec. III D. The conclusion is given in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Separation of relative and center-of-mass motion

We consider the nonrelativistic quantum dynamics of an
initially bound muon in a few-cycle laser pulse described by the

time-dependent Schrödinger equation (TDSE). For our laser
parameters of interest, we may ignore the space dependence
of the laser field (dipole approximation), treating it as a purely
time-dependent electric field. Due to the large muon mass,
the atomic nucleus cannot be considered as infinitely heavy.
We therefore start from the two-particle TDSE written in the
length gauge as

ih̄
∂

∂t
ψ(xµ,xn; t) =

[
p2

µ

2mµ

+ p2
n

2mn

+ exµ · E(t) − Zexn · E(t)

+V (|xµ − xn|)
]
ψ(xµ,xn; t), (1)

where mµ and mn are the muonic and nuclear masses,
xµ and xn are the coordinate vectors for the muon and
the nucleus, and pµ = −ih̄∂/∂xµ and pn = −ih̄∂/∂xn are the
corresponding momentum operators, respectively. Besides, the
nuclear-charge number is Z, the elementary charge unit is e,
the binding potential is V (|xµ − xn|), and the laser electric
field is E(t), which oscillates with angular frequency ω.

The application of the dipole approximation in Eq. (1) con-
siderably simplifies the problem as it renders the Schrödinger
equation (1) for the muon-nucleus two-body system separable
into relative and center-of-mass motion. By introducing
relative and center-of-mass coordinates x = xµ − xn and X =
(mµxµ + mnxn)/M , respectively, with the total mass M =
mµ + mn, one finds that the evolution of the center of mass is
described by

ih̄
∂

∂t
�(X,t) =

[
P2

2M
− (Z − 1)eX · E(t)

]
�(X,t), (2)

with P = −ih̄∂/∂X. Equation (2) is the nonrelativistic Volkov
equation for a particle of charge (Z − 1)e and mass M in
the presence of a laser field. As a consequence, the center-of-
mass motion does not emit higher harmonic frequencies and
may therefore be ignored in the following. Note that in the
special case Z = 1 (i.e., hydrogen isotopes) the center of mass
moves freely, while the laser field couples only to the relative
coordinate [30].

The relative motion is governed by (see also [21,31])

ih̄
∂

∂t
ψ(x,t) =

[
p2

2mr

+ qex · E(t) + V (x)

]
ψ(x,t), (3)

with the reduced mass mr = mµmn/M , the relative momen-
tum p = −ih̄∂/∂x, and the effective charge

qe = mr

(
Z

mn

+ 1

mµ

)
e. (4)

In the special case of Z = 1, the effective charge reduces to
qe = e, whereas qe > e holds for atomic numbers Z > 1.

Formally, Eq. (3) is the Schrödinger equation for a single
particle of charge −qe and mass mr in the presence of a
nucleus and a laser field. The accelerated motion of the relative
coordinate in the combined external fields therefore gives rise
to the emission of higher harmonics. We note that, in physical
terms, the relative coordinate accounts for the fact that both
the nucleus and the muon oscillate in the laser field with
different amplitudes in opposite directions (see also Fig. 2
in [16]).
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We point out that the effective charge in Eq. (4) has already
been derived in Ref. [32]. It was also shown there that the
two-body TDSE in a laser field separates straightforwardly in
the velocity gauge. It is interesting to note that, in contrast,
the separability in the length gauge is a more subtle issue
because the operations of performing gauge transformations
and dipole approximations are not commutative [32,33]. As
a consequence, cross terms appear in the exact version of the
two-body TDSE in the length gauge, which, strictly speaking,
prevent the equation from being separable. The cross terms
typically become important at the borderline to the relativistic
regime when the value of the relativistic field parameter [see
Eq. (9)] approaches unity [32]. For the nonrelativistic laser
parameters applied in the present study, however, these terms
are very small and have therefore been neglected in Eq. (1).

B. Scaling considerations

The form of Eq. (3) is equivalent to the Schrödinger
equation for an ordinary hydrogen atom (i.e., an electron bound
to an infinitely heavy proton) in a laser field. The relation can be
made explicit by virtue of a general method known as scaling
transformation. For the special case of a laser-driven atom, the
scaling procedure is nicely explained in [31]. Suppose, that
we have a hydrogenlike muonic system of nuclear charge Z

on the one side and an ordinary hydrogen atom on the other
side. We introduce an electronic coordinate vector xe and time
te and relate them to the muonic coordinate x and time t of
Eq. (3) according to

xe = Z

ρ
x; te = Z2

ρ
t, (5)

with the mass ratio ρ ≡ me/mr and the electron mass me.
When rewritten in the scaled space and time, Eq. (3) becomes

ih̄
∂

∂te
ψ(xe,te) =

[
p2

e

2me

+ exe · Ee(te) + V (xe)

]
ψ(xe,te),

(6)

with pe = −ih̄∂/∂xe and the scaled laser frequency and field
strength

ωe = ρ

Z2
ω; Ee = qe

e

ρ2

Z3
E . (7)

This means that a muonic hydrogenlike atom in a laser field
with parameters E and ω behaves like an ordinary hydrogen
atom in a field with Ee and ωe given by Eq. (7), provided that
the binding potential V (x) arises from a pointlike nucleus.
To give an example, the typical parameters of an intense
Ti:sapphire laser h̄ωe = 1.5 eV, Ee = 2.7 × 108 V/cm (1014

W/cm2), translate to a muonic helium atom as h̄ω = 1.2 keV,
E = 9.1 × 1013 V/cm (1.1 × 1025 W/cm2). This comparison
demonstrates that despite the huge laser intensities applied in
our computations, the laser-driven muon dynamics remains
nonrelativistic due to the large muon mass. Moreover, since
the laser intensities required for HHG from muonic atoms
are very large already for hydrogen isotopes and steeply
increase with the nuclear charge, we restrict our consideration
to muonic atoms with Z <∼ 10. An advantage of these systems
as compared to heavier ones is that the relative differences in

mass and size among isotopes are larger for low-Z atoms in
the nuclear chart.

We emphasize that the scaling procedure does not account
for nuclear properties like the finite nuclear size or the nuclear
shape. Evidently, when the transition from, for example, a
muonic hydrogen atom to an ordinary hydrogen atom is
performed, the proton radius is not to be length scaled in
accordance with Eq. (5) but remains fixed. As a consequence,
for atomic systems where nuclear properties play a role, not
all physical information can be obtained from the knowledge
of the ordinary-atom case via scaling. In Sec. III C, we show
results which display the influence of the nuclear size on the
process of HHG.

III. RESULTS

Based on Eq. (3), we demonstrate in the following various
isotope effects in the HHG spectra of muonic atoms. By
analytical means, the harmonic cutoff position is shown to
depend on the nuclear mass via the reduced mass of the two-
body system and the effective muon charge; these findings are
illustrated by numerically computed HHG spectra. Numerical
calculations within an approximate model are used moreover
to provide indications that the harmonic plateau height depends
in addition on the nuclear size. The nuclei chosen for the
calculations are given in Table I.

To begin, let us give a general consideration of the laser
field parameters required and the maximum cutoff energies
attainable from muonic atoms.

A. Maximum cutoff energies

Since the conversion efficiency into high harmonics is
rather low (∼10−6), it is generally desirable to maximize the
radiative signal strength. In our situation, the optimization is of
particular importance as the target density of muonic atoms is
low. A sizable HHG signal requires efficient ionization on the
one hand, as well as efficient recombination on the other hand.
The former is guaranteed if the laser peak field strength lies
just below the border of overbarrier ionization (OBI) where
the Coulomb barrier is suppressed all the way to the bound
energy level by the laser field [19]. From Eq. (3), we obtain

E <∼ EOBI = m2
r c

3

qeh̄

(αZ)3

16
, (8)

TABLE I. Nuclear masses and rms charge radii of various isotopes
which have been used in the calculations. The half-lives of 9Li and
23Ne amount to 178 ms and 37 s, respectively; the other nuclei are
stable.

Isotope Mass mn (GeV/c2) Ref. Size R (fm) Ref.

H 0.9383 [34] 0.875 [35]
D 1.8756 [34] 2.139 [35]
3He 2.8084 [34] 1.9448 [36]
4He 3.7274 [34] 1.6757 [36]
6Li 5.6016 [34] 2.517 [37]
9Li 8.4069 [34] 2.217 [37]
20Ne 18.493 [38] 3.0053 [36]
23Ne 21.277 [38] 2.9126 [36]
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with the fine-structure constant α ≈ 1/137 and the speed of
light c. Efficient recollision is guaranteed if the magnetic drift
along the laser propagation direction can be ignored, which
limits the relativistic parameter to [39,40]

ξ ≡ qeE

mrcω
<

(
16h̄ω√
2mrc2Ip

)1/3

. (9)

Here, Ip denotes the atomic ionization potential. The condi-
tion (9) also confirms the applicability of the dipole approxi-
mation in Eq. (3).

The Eqs. (8) and (9) define a maximum laser intensity
Imax ≈ IOBI and a minimum laser frequency

ωmin = mrc
2

16h̄
(αZ)5/2, (10)

which are still in accordance with the conditions imposed. At
these laser parameters, the maximum harmonic cutoff energies
are attained, while Eqs. (8) and (9) guarantee an efficient
ionization-recollision process. Note, however, that smaller
driving frequencies generally lead to reduced harmonic signal
strengths because of the more pronounced and unavoidable
quantum wave-packet spreading [41–43] (for an exception
to this rule, see [44]). For muonic hydrogen, the lowest
frequency according to Eq. (10) lies in the VUV range,
h̄ωmin ≈ 27 eV, while the maximum field intensity is IOBI ≈
1.6 × 1023 W/cm2. At these values, the harmonic spectrum
extends to a maximum energy of εmax = Ip + 3.17Up ≈ 0.55
MeV, where Up is the ponderomotive energy [see Eqs. (11)
and (12)]. For light muonic atoms with nuclear-charge number
Z > 1, the achievable cutoff frequencies are even higher,
reaching several million electron volts. A summary is given in
Table II.

For comparison, we note that the highest harmonic cutoff
energy, which has been attained experimentally with ordinary
(helium) atoms, amounts to ≈1 keV [45]; the corresponding
harmonic order at the cutoff was εmax/ω ≈ 800. Higher cutoff
energies are difficult to achieve due to the detrimental effects
of dephasing [46] and electron drift motion; various schemes
have been proposed to overcome this obstacle (see [19,39,47]
and references therein). Muonic atoms are advantageous in
this respect since the large muon mass in principle allows for
the generation of million-electron-volt harmonics in the dipole
regime of interaction.

TABLE II. Maximum HHG cutoff energies εmax achievable with
hydrogenlike muonic atoms of nuclear-charge number Z. The applied
laser frequency ωmin and intensity parameter ξmax are chosen in
accordance with Eqs. (8)–(10) to allow for an efficient ionization-
recollision process. ξmin denotes the minimum intensity parameter
leading to tunneling ionization [19].

Z h̄ωmin ξmin ξmax εmax

1 27 eV 0.007 0.085 0.55 MeV
2 170 eV 0.015 0.12 1.1 MeV
4 960 eV 0.03 0.17 2.2 MeV
10 9.5 keV 0.07 0.27 5.7 MeV

As a result, muonic atoms are promising candidates for
the generation of hard x rays or even γ rays which might be
employed to trigger photonuclear reactions.

B. Nuclear-mass effects

In this section, we consider the effect on the harmonic cutoff
position stemming from a variation of the nuclear mass among
isotopes. In a strong laser field with Up � Ip, the harmonic
cutoff position εmax is mainly determined by the value of the
ponderomotive energy (of the relative motion). The latter is
determined by the coupling of the relative coordinate to the
laser field and exhibits a dependence on nuclear parameters,
as an inspection of Eq. (3) shows.

For muonic hydrogen isotopes, the ponderomotive energy
of the relative motion reads

Up = e2E2

4ω2mr

= e2E2

4ω2

(
1

mµ

+ 1

mn

)
(11)

and is, thus, larger as the reduced mass becomes smaller.
Consequently, in an intense laser field with Up � Ip, muonic
hydrogen (H) will give rise to a larger cutoff energy than
muonic deuterium (D). The relative difference is about 5%
according to ε(H)

max/ε
(D)
max ≈ m(D)

r /m(H)
r ≈ 1.05. Note that m(H)

r ≈
0.90mµ, whereas m(D)

r ≈ 0.95mµ.
The difference in the cutoff positions due to the nuclear-

mass effect can also be understood more intuitively within
the two-particle picture, instead of the relative motion. The
right-hand side of Eq. (11) describes a ponderomotive energy
that consists of two parts: one for the recolliding muon and one
for the recolliding nucleus. The total pondermotive energy is
thus a sum of the ponderomotive energies of the muon and the
nucleus. Both particles are driven into opposite directions by
the laser field, and when they recollide, their kinetic energies
add up. In this picture, the higher cutoff energy of the hydrogen
atom arises from the larger ponderomotive energy of the proton
as compared to the heavier deuteron.

For higher nuclear-charge numbers (Z > 1), the pondero-
motive energy of the relative motion differs from Eq. (11). The
laser-driven dynamics of the muon-nucleus system becomes
more complex then, which is reflected in the effective muon
charge being different from unity (qe > e). Hence, in the
general case, we obtain from Eq. (3) the ponderomotive energy
of the relative motion

U (Z)
p = q2

e E
2

4ω2mr

= e2E2mr

4ω2

(
Z

mn

+ 1

mµ

)2

, (12)

which reduces to Eq. (11) for Z = 1. It is interesting to
observe that Eq. (12), in contrast to Eq. (11), does not
simply separate into a sum of the ponderomotive energies
of the muon and the nucleus; that is, it is different from
U ′

p ≡ (e2E2/4ω2)(Z2/mn + 1/mµ). The reason is that in the
case of Z > 1, the center of mass does not stay at rest. Rather,
the ponderomotive energy U (cm)

p ≡ (Z − 1)2e2E2/4ω2M is
connected with its motion. The relation between the various
ponderomotive energies is

U ′
p = U (Z)

p + U (cm)
p . (13)

Only in the case of hydrogen isotopes (Z = 1) does the
center-of-mass coordinate remain at rest since the total charge
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FIG. 1. (Color online) HHG spectra for muonic hydrogen (dashed
black line) and deuterium [solid grey (red) line], respectively. The
laser parameters are I = 1.05 × 1023 W/cm2 and h̄ω = 118 eV,
corresponding to ξ ≈ 0.02. The calculation was performed in one
spatial dimension using the soft-core potential (14).

is zero, so that U (cm)
p = 0 and U (Z=1)

p [see Eq. (11)] fully
accommodates the single-particle ponderomotive energies.

As an illustration, Figs. 1 and 2 show numerically calculated
HHG spectra for muonic hydrogen and helium isotopes
exposed to very intense laser fields of high frequency. They
were produced by solving the TDSE (3) in one spatial
dimension via the Crank-Nicolson time-propagation scheme.
The muon-nucleus interaction is modeled by a soft-core
potential

Vs(x) = − Ze2

√
x2 + a2

, (14)

with the Bohr radius a = ρa0/Z of the muonic atom; a0

denotes the usual Bohr radius of the electronic ground state
of hydrogen. The potential (14) results from the standard
soft-core potential V (xe) = −e2/

√
x2

e +a2
0 [48] by applying the

scaling transformation of Eq. (5). Note that the precise shape
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FIG. 2. (Color online) HHG spectra for muonic 3He (dashed
black line) and 4He [solid grey (red) line], respectively, at the laser
parameters I = 8 × 1024 W/cm2 and h̄ω = 347 eV. The inset shows
an enlargement of the cutoff region.

of the binding potential is immaterial for the position of the
harmonic cutoff as long as Up � Ip. The laser field has been
chosen as a five-cycle pulse of trapezoidal envelope having
one cycle for linear turn on and one for turn off. The HHG
spectrum is obtained from a Fourier transformation of the
dipole acceleration.

Figure 1 shows the harmonic spectra for muonic hydrogen
(where the nucleus is a proton) versus muonic deuterium. In
accordance with Eq. (11), for muonic hydrogen the spectrum
extends further including five more (odd) harmonics as
compared with that of deuterium, corresponding to an increase
of the cutoff position by 5%. Besides, a relative enhancement
of the spectral plateau height is found. The difference between
the cutoff positions increases to about sixty harmonics, when
the applied frequency is reduced to 59 eV (see Fig. 1
in [16]).

In Fig. 2, the harmonic spectra for different muonic helium
isotopes in an ultraintense, soft x-ray laser field are shown.
The spectrum for 3He extends further by ten more harmonics
in contrast with that of 4He. We point out that formula (11),
which holds for hydrogen atoms (Z = 1) and takes into
account only the different reduced masses, would predict a
difference of only five harmonics for this case. The general
formula (12), however, correctly predicts the difference in the
cutoff positions in Fig. 2. Hence, we see that the effective muon
charge can have a measurable impact on the HHG response.

C. Nuclear-size effects

In this section, we study the influence of the nuclear
extension on the harmonic spectra from muonic atoms. While
the impact of the nuclear mass on the cutoff position followed
from analytical considerations in Sec. III B, our investigation
of nuclear-size effects will rely on numerical solutions of the
TDSE (3) and a comparative study of the radiative responses
from different muonic isotopes.

The softcore potential (14), which has been applied in
Figs. 1 and 2 and which is very common in strong-field physics,
is not suitable to incorporate a finite nuclear extension. Instead,
we apply for this purpose the nuclear drop model and consider
the nucleus as a sphere of uniform charge density within the
nuclear radius R. The corresponding potential, restricted to
one dimension, reads

Vh(x) =
{

−Ze2

R

(
3
2 − x2

2R2

)
if |x| � R,

−Ze2

|x| if |x| > R,
(15)

which explicitly takes the nuclear radius into account. We
point out that in the limit R → 0, the binding energy of
the lowest lying state of this potential becomes infinite and,
thus, unphysical [49]. Following a well-established procedure
[49–51], we therefore start our calculations from the first
excited state, which has the correct binding energy. By
monitoring the projection onto the unphysical state during the
time evolution, we take care that the occupation of this state
always stays negligibly small.

The dimensional reduction of the problem clearly rep-
resents an approximation which, however, is indicated for
reasons of computational feasibility. We note that even the
one-dimensional (1D) numerics is a nontrivial task in our
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case because of the fine grid spacing required to resolve
the nuclear extension and the nonstandard laser parameters
employed; with regard to ordinary atoms, the latter would
correspond to intense fields in the midinfrared region, giving
rise to large muon momenta and ponderomotive energies. As
a consequence of the approximate approach, the following
discussion is more qualitative in nature (contrary to the
preceding sections).

Two isotopes with different radii also differ in mass. It is
useful to separate the impact of the nuclear size on the HHG
process from the nuclear-mass effect, which was discussed in
the previous section. To this end, we compare HHG spectra
from different isotopes where the nuclear-mass effect has been
removed by a suitable adjustment of the laser frequencies
and intensities. In accordance with the scaling relations (7),
this was achieved by applying the scaled parameters ω ∝ mr

and E ∝ m2
r /qe (at a given value of Z). In this manner,

the laser-driven muonic isotopes become equivalent to the
same ordinary hydrogen atom, with the only difference being
the size of the binding nucleus. In particular, the harmonic
cutoff positions are forced to coincide this way. [Note that the
application of either potential (14) or (15) gives rise to the
same harmonic cutoff position.]

We start with the calculations for muonic hydrogen and
deuterium shown by Fig. 3. As mentioned previously, in
order to avoid residual signatures from the nuclear-mass effect
we apply the laser parameters I (H) = 1.05 × 1023 W/cm2

and h̄ω(H) = 177 eV to muonic hydrogen, whereas muonic
deuterium is subject to the parameters I (D) = 1.30 ×
1023 W/cm2 and h̄ω(D) = 186 eV. The harmonic signal from
muonic hydrogen is larger (by about 50% in the cutoff
region) than that from muonic deuterium. The reason is
that in the case of muonic hydrogen the nuclear radius is
smaller, which generates a steeper potential near the origin (see
Fig. 4). This leads to a larger potential gradient in this region,

0 20 40 60
Harmonic Order

10
-10

10
-8

10
-6

10
-4

H
ar

m
on

ic
 S

ig
na

l [
ar

b.
 u

ni
ts

]

56 60 64 68
0

5×10
-7

1×10
-6

FIG. 3. (Color online) HHG spectra calculated with the hard-
core potential (15). The dashed black line represents the spec-
trum for muonic hydrogen at the laser parameters I (H) = 1.05 ×
1023 W/cm2 and h̄ω(H) = 177 eV. The solid grey (red) line represents
the spectrum for muonic deuterium at the appropriatly scaled laser
parameters I (D) = 1.30 × 1023 W/cm2 and h̄ω(D) = 186 eV in order
to compensate for the nuclear-mass effect. The inset shows an
enlargement of the cutoff region on a linear scale.
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FIG. 4. (Color online) Inner region of the hardcore potentials
generated by a proton in muonic H (dashed black line) and by a
deuteron in muonic D [solid grey (red) line], according to Eq. (15).

which accelerates the atomic dipole according to Ehrenfest’s
theorem [52]. The muon in hydrogen is thus more strongly
accelerated, leading to enhanced harmonic emission. A relative
enhancement of 50% of the near-cutoff harmonics was also
found at lower laser frequencies (ω ≈ 60 eV) at the same
laser intensity [16]. We note that the relative enhancement is
reduced to about 10%, when smaller laser intensities (I ≈ 4 ×
1022 W/cm2) are applied.

In the case of muonic helium isotopes, the harmonic
signal from 4He is expected to be larger than that from
3He. The reason is that 4He is a doubly magic nucleus
of very compact size (see Table I). This expectation is
confirmed by Fig. 5(a), where a relative difference of about
10% in the cutoff region is observed. The fact that the
difference is reduced in comparison with the muonic hy-
drogen isotopes can be attributed to the smaller relative
difference of the nuclear radii: R(3He)/R(4He) ≈ 1.16, whereas
R(D)/R(H) ≈ 2.44. On the other hand, however, the muon
comes closer to the binding nucleus when the charge number
Z increases, which should enhance the sensitivity to the
nuclear size. This circumstance becomes important when we
move on to muonic lithium (Z = 3). Here, the difference
between the harmonic signals from muonic 6Li versus muonic
9Li amounts to about 20% in the cutoff region [see Fig. 5(b)],
which is larger than for the helium isotopes, although the ratio
of the nuclear radii R(6Li)/R(9Li) ≈ 1.14 is similar here. In
order to facilitate the comparison between helium and lithium,
the laser parameters in Fig. 5 were chosen to generate a
uniform cutoff position. Finally, a comparison of the radiative
responses from muonic 20Ne and 23Ne at the corresponding
field parameters reveals almost identical HHG spectra (not
shown). The relative enhancement of the HHG signal from the
smaller isotope 23Ne as compared with 20Ne is of the order of
1%. Here, the ratio of the nuclear radii, R(20Ne)/R(23Ne) ≈ 1.03,
is close to unity. We note moreover that in the cases of
lithium and neon practically no mass effect needs to be
compensated since the corresponding reduced muon masses
almost coincide.

It is interesting to note that recent studies of recollision
phenomena such as above-threshold detachment of negative
ions [53] or laser-assisted potential scattering [54] have
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FIG. 5. (Color online) HHG spectra calculated with the hard-core
potential (15). (a) The dashed black line shows the spectrum for
muonic 4He at the laser parameters I (4He) = 8.7 × 1024 W/cm2 and
h̄ω(4He) = 255 eV. The solid grey (red) line represents the spectrum
for muonic 3He at the accordingly scaled values I (3He) = 8.3 ×
1024 W/cm2 and h̄ω(3He) = 253 eV. (b) Same as (a) but for muonic 9Li
at I (9Li) = 1.06 × 1026 W/cm2, h̄ω(9Li) = 583 eV (dashed black line)
and muonic 6Li at I (6Li) = 1.01 × 1026 W/cm2, h̄ω(6Li) = 580 eV
[solid grey (red) line].

found a relative enhancement of the rescattering probability
for atomic systems of larger core size. For example, the
rescattering contribution is more pronounced in Br− than
F− ions [53]. The reason for the enhancement effect is similar
as in the present case: The larger Br− ion of nuclear charge
Z = 35 creates a potential of increased depth and spatial
variation as compared with the F− ion where Z = 9. The
nuclear extension is immaterial in these electronic systems
of Angstrom dimension. In our comparative study of the
harmonic yield from different hydrogenlike muonic isotopes
of the same element (Z = const), the situation only differs
in the sense that here the nuclear size does play a role, with
the deeper and steeper potentials arising from smaller nuclear
isotopes of the same element.

When considering laser-driven recollisions, the de Broglie
wavelength of the returning quantum wave packet can be of
importance as well. In fact, for the case of ordinary molecules,
it has been shown that the electron wavelength can become
as small as the internuclear distance within the molecule,

causing characteristic diffraction patterns [55]. In the present
case of muonic atoms, a similar effect could in principle arise
when the de Broglie wavelength of the recolliding muon
compares with the nuclear size. However, the wavelength
of a muon with a kinetic energy of a few million electron
volts (see Table II) amounts to about 50 fm, which exceeds
any nuclear radius substantially and thus prevents diffractive
muon-nucleus scattering.

Concluding this subsection, our 1D model calculations
provided evidence for characteristic nuclear-size signatures in
the HHG spectra of muonic atoms: Smaller nuclear isotopes
are expected to produce enhanced harmonic emission due
to the larger potential depths and gradients associated with
them. We point out, however, that the influence of the nuclear
size might be overestimated by our 1D hardcore-potential
approach as the muon meets the nucleus more often than in
the real three-dimensional (3D) case. In particular, the muon’s
wave-packet spreading in the transversal direction is neglected,
which can substantially reduce the absolute harmonic yield.
One may in principle expect that the relative differences in the
HHG spectra revealed in the present benchmark calculations
are less sensitive to model assumptions than absolute numbers.
Nevertheless, a future calculation in higher dimensionality
would be desirable, providing more accurate quantitative
predictions on the nuclear-size effect whose physical origin
and basic features have been presented here.

D. Comparison with electronic systems

Finite nuclear-size effects—in the absence of any external
laser field—have been revealed in high-precision spectroscopy
of electron transitions in (ordinary) highly charged ions (see,
e.g., [56] for recent experiments). When such ionic systems are
exposed to a superintense laser field [57], nuclear signatures
may be present in their high-harmonic response as well. It is
of interest to compare the expected effects with those found
for laser-driven muonic atoms in Sec. III C. To this end, we
perform a simple analysis which is based on nonrelativistic
Schrödinger theory; the relativistic electron motion in highly
charged ions is ignored in this rather qualitative discussion.

We assume a hydrogenlike system of nuclear-charge
number Z and employ the mass scaling parameter ρ from
Eq. (5), with ρ ≈ 1/200 for a muonic atom and ρ = 1 for
an electronic ion. The K-shell Bohr radius, binding energy,
and Coulombic field strength amount to aK (Z,ρ) = a0ρ/Z,
Ip(Z,ρ) = ε0Z

2/ρ, and EK (Z,ρ) = E0Z
3/ρ2, respectively,

where a0, ε0, and E0 denote the corresponding quantities for
ordinary hydrogen. The nuclear radius can be approximated
roughly as R(Z) ≈ 1.2(2Z)1/3 fm and has a typical relative
variation among different isotopes of a few percents (except
for hydrogen verus deuterium). Similar finite nuclear-size
effects in the HHG spectra can be expected when the ratio
R(Z)/aK (Z,ρ) ∝ Z4/3/ρ has a similar value for two atomic
systems that are compared. This is the case, for example,
for electronic U91+ (where Z = 92,ρ = 1) and muonic He+
(where Z = 2,ρ ≈ 1/200).

These relations imply, however, that the binding energy and
electric field strength in the electronic ion are substantially
larger than in the muonic atom when both have the same
ratio of Z4/3/ρ = const. As a consequence, the laser frequency
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and intensity that must be applied to the electronic highly
charged ion in order to reveal finite nuclear-size effects in
the harmonic response need to be larger than in the muonic
atom case. Against this background, muonic atoms appear as
more favorable systems than ordinary heavy ions to study the
influence of the nuclear size on the HHG process.

IV. CONCLUSION AND OUTLOOK

Motivated by the sustained progress in the development of
powerful laser sources, we have studied the harmonic radiation
emitted by muonic atoms exposed to high-intensity, high-
frequency laser fields. It was shown that maximum harmonic
cutoff energies in the million-electron-volt domain can be
achieved, rendering this species of exotic atoms promising
candidates for the generation of (weak) ultrashort coherent
γ -ray pulses which might be employed to trigger photonuclear
reactions. Our results demonstrate, moreover, that strongly
laser-driven muonic atoms can, in principle, be utilized to
dynamically gain structure information on nuclear ground
states via their high-harmonic response.

(1) On the one hand, the harmonic cutoff position extends
to larger values for isotopes of smaller mass. For the hydrogen
isotopes, this effect is fully explicable in terms of the reduced
mass, whereas for atomic numbers Z > 1 an additional
contribution stems from an effective muon charge which
affects the relative motion generating the harmonics. (2) On the
other hand, 1D model calculations provide clear indications
that the harmonic signal strength additionally depends on
the nuclear size, being enhanced for more compact isotopes

of the same element because of the deeper and steeper
potential they create. Corresponding nuclear-size effects in the
high-harmonic emission from ordinary highly charged ions are
expected to be less pronounced.

Furthermore, we point out that the interaction of a muonic
atom with ultrastrong laser fields may lead to excitation of the
nucleus. Nonresonant nuclear Coulomb excitation has recently
been studied when a bound muonic wave packet is driven
into coherent oscillations by an external laser field [58]; the
resulting nuclear-excitation probabilities were found to be
small, though. When the laser field is sufficiently strong to
ionize the muon as in the HHG scenario, however, the kinetic
energy gain in the continuum up to the million-electron-volt
range allows for nuclear excitation upon the muon-nucleus
recollision. Corresponding studies of laser-driven electron-
impact excitation of the nucleus have been carried out in
ordinary atoms and ions [59]. It is even conceivable to
conduct pump-probe experiments on excited nuclear levels:
The periodically driven muon can first excite the nucleus and
then probe the excited state and its deexcitation mechanism
during a subsequent encounter.
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[17] D. B. Milošević, G. G. Paulus, D. Bauer, and W. Becker, J. Phys.
B 39, R203 (2006).

[18] A. Scrinzi, M. Y. Ivanov, R. Kienberger, and D. M. Villeneuve,
J. Phys. B 39, R1 (2006).

[19] Y. I. Salamin, S. X. Hu, K. Z. Hatsagortsyan, and C. H. Keitel,
Phys. Rep. 427, 41 (2006).

[20] Further aspects of HHG which have recently been studied may
be found, e.g., in Z. Zhao, J. Yuan, and T. Brabec, Phys. Rev.
A 76, 031404(R) (2007); A. L. Lytle, X. Zhang, J. Peatross,
M. M. Murnane, H. C. Kapteyn, and O. Cohen, Phys. Rev. Lett.
98, 123904 (2007); S. Baker et al., ibid. 101, 053901 (2008);
S. V. Popruzhenko, M. Kundu, D. F. Zaretsky, and D. Bauer,
Phys. Rev. A 77, 063201 (2008); Z. Zhou and J. Yuan, ibid. 77,
063411 (2008).

013418-8

http://dx.doi.org/10.1103/RevModPhys.54.67
http://dx.doi.org/10.1103/RevModPhys.54.67
http://dx.doi.org/10.1016/S0370-1573(00)00077-6
http://dx.doi.org/10.1016/S0370-1573(00)00077-6
http://dx.doi.org/10.1103/PhysRev.92.789
http://dx.doi.org/10.1103/PhysRevA.73.034501
http://www.triumf.info
http://www.psi.ch
http://dx.doi.org/10.1016/j.nuclphysa.2004.09.139
http://dx.doi.org/10.1103/PhysRevLett.44.1576
http://dx.doi.org/10.1103/PhysRevLett.44.1576
http://dx.doi.org/10.1146/annurev.ns.39.120189.001523
http://dx.doi.org/10.1146/annurev.ns.39.120189.001523
http://dx.doi.org/10.1103/PhysRevLett.85.1642
http://dx.doi.org/10.1103/PhysRevLett.85.1642
http://dx.doi.org/10.1016/S0370-1573(97)00084-7
http://dx.doi.org/10.1016/S0370-1573(97)00084-7
http://dx.doi.org/10.1126/science.1080552
http://dx.doi.org/10.1070/PU1987v030n10ABEH002968
http://dx.doi.org/10.1070/PU1987v030n10ABEH002968
http://dx.doi.org/10.1140/epja/i2001-10220-2
http://dx.doi.org/10.1140/epja/i2001-10220-2
http://dx.doi.org/10.1103/PhysRevLett.84.899
http://dx.doi.org/10.1103/PhysRevLett.84.903
http://dx.doi.org/10.1038/19037
http://dx.doi.org/10.1088/0022-3727/36/8/202
http://dx.doi.org/10.1103/PhysRevLett.96.142501
http://dx.doi.org/10.1103/PhysRevLett.96.142501
http://dx.doi.org/10.1080/09500340802213666
http://dx.doi.org/10.1080/09500340802213666
http://dx.doi.org/10.1103/RevModPhys.69.1085
http://dx.doi.org/10.1103/RevModPhys.69.1085
http://arXiv.org/abs/arXiv:0707.2900v1
http://dx.doi.org/10.1103/PhysRevLett.103.152301
http://dx.doi.org/10.1103/PhysRevLett.103.152301
http://dx.doi.org/10.1103/PhysRevLett.98.263901
http://dx.doi.org/10.1088/0953-4075/39/14/R01
http://dx.doi.org/10.1088/0953-4075/39/14/R01
http://dx.doi.org/10.1088/0953-4075/39/1/R01
http://dx.doi.org/10.1016/j.physrep.2006.01.002
http://dx.doi.org/10.1103/PhysRevA.76.031404
http://dx.doi.org/10.1103/PhysRevA.76.031404
http://dx.doi.org/10.1103/PhysRevLett.98.123904
http://dx.doi.org/10.1103/PhysRevLett.98.123904
http://dx.doi.org/10.1103/PhysRevLett.101.053901
http://dx.doi.org/10.1103/PhysRevA.77.063201
http://dx.doi.org/10.1103/PhysRevA.77.063411
http://dx.doi.org/10.1103/PhysRevA.77.063411


ISOTOPE EFFECTS IN THE HARMONIC RESPONSE FROM . . . PHYSICAL REVIEW A 82, 013418 (2010)

[21] S. Chelkowski, A. D. Bandrauk, and P. B. Corkum, Phys. Rev.
Lett. 93, 083602 (2004).

[22] M. Kalinski, Laser Phys. 15, 1367 (2005).
[23] Y. Xiang et al., J. Mod. Opt. 57, 385 (2010).
[24] V. Yanovsky et al., Opt. Express 16, 2109 (2008).
[25] See, e.g., the proposal on the extreme-light infrastructure (ELI)

available at [http://www.eli-laser.eu].
[26] W. Ackermann et al., Nat. Photon. 1, 336 (2007); A. A. Sorokin,

S. V. Bobashev, T. Feigl, K. Tiedtke, H. Wabnitz, and M. Richter,
Phys. Rev. Lett. 99, 213002 (2007).

[27] M. Hoener et al., Phys. Rev. Lett. 104, 253002 (2010).
[28] A. Pukhov, Nature Phys. 2, 439 (2006); G. D. Tsakiris et al.,

New J. Phys. 8, 19 (2006); B. Dromey et al., Nature Phys. 5,
146 (2009).

[29] V. I. Ritus, Trudy FIAN 111, 5 (1979) [J. Rus. Laser Res. 6,
497 (1985)]; D. A. Dicus, A. Farzinnia, W. W. Repko, and T. M.
Tinsley, Phys. Rev. D 79, 013004 (2009).

[30] We note that this is contrary to the case of two-electron atoms,
where the light field interacts with the center-of-mass coordinate
of the two electrons [see C. Ruiz, L. Plaja, L. Roso, and
A. Becker, Phys. Rev. Lett. 96, 053001 (2006)].

[31] L. B. Madsen and P. Lambropoulos, Phys. Rev. A 59, 4574
(1999).

[32] H. R. Reiss, Phys. Rev. A 19, 1140 (1979).
[33] A. D. Bandrauk, O. F. Kalman, and T. T. Nguyen Dang, J. Chem.

Phys. 84, 6761 (1986).
[34] J. W. Rohlf, Modern Physics from α to Z0 (Wiley, New York,

1994).
[35] P. J. Mohr and B. N. Taylor, Rev. Mod. Phys. 77, 1

(2005).
[36] I. Angeli, At. Data Nucl. Data Tables 87, 185 (2004).
[37] R. Sánchez et al., Phys. Rev. Lett. 96, 033002 (2006).
[38] R. C. Nayak and L. Satpathy, At. Data Nucl. Data Tables 73,

213 (1999).
[39] K. Z. Hatsagortsyan et al., J. Opt. Soc. Am. B 25, B92 (2008).
[40] S. Palaniyappan, I. Ghebregziabher, A. DiChiara, J. MacDonald,

and B. C. Walker, Phys. Rev. A 74, 033403 (2006).
[41] M. V. Frolov, A. V. Flegel, N. L. Manakov, and A. F. Starace,

Phys. Rev. A 75, 063408 (2007); M. V. Frolov, N. L. Manakov,
and A. F. Starace, Phys. Rev. Lett. 100, 173001 (2008).

[42] J. Tate, T. Auguste, H. G. Muller, P. Salieres, P. Agostini, and
L. F. DiMauro, Phys. Rev. Lett. 98, 013901 (2007); K. D. Schultz
et al., J. Mod. Opt. 54, 1075 (2007).

[43] K. Schiessl, K. L. Ishikawa, E. Persson, and J. Burgdörfer, Phys.
Rev. Lett. 99, 253903 (2007).

[44] M. V. Frolov, N. L. Manakov, T. S. Sarantseva, M. Y. Emelin,
M. Y. Ryabikin, and A. F. Starace, Phys. Rev. Lett. 102, 243901
(2009).

[45] J. Seres et al., Nature 433, 596 (2005).
[46] S. L. Voronov, I. Kohl, J. B. Madsen, J. Simmons, N. Terry,

J. Titensor, Q. Wang, and J. Peatross, Phys. Rev. Lett. 87, 133902
(2001).

[47] V. D. Taranukhin, Laser Phys. 10, 330 (2000); C. C. Chirilǎ,
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