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Evolution of overlapping resonances along an isoelectronic sequence
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Near-threshold resonances have been studied for Be-like ions with a focus on overlapping resonances among
Rydberg series converging to different thresholds. The behavior of the overlapping as a function of Z and the
approach to the limit of infinite Z are investigated. The 4s4p resonance is shown and discussed in detail as an
example.
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I. INTRODUCTION

In the experimental or theoretical study of atomic or
ionic photoionization, it is found that the cross sections
are often dominated by resonances in many photon-energy
regions, especially the near-threshold ones. The resonances
are extremely informative of the dynamics of the systems,
but in many situations the information is hard to extract due
to the strong perturbation engendered by nearby resonances,
insufficient energy mesh points, or other issues. The overlap-
ping of the resonance series converging to different thresholds
complicates the analysis of resonances. Since the neutral atoms
are more intensely studied, the aim of this investigation is to
inquire how perturbations affect resonances in ions.

In particular, we study the perturbation of the resonances for
Be-like ions, and focus on the evolution along the isoelectronic
sequence. This sequence is chosen because four-electron
systems are simple enough so that the calculations are
highly accurate, and recent experiments [1–7] offer a large
amount of data. Good agreement has been found between
the measurements and the calculations, thereby ensuring that
the present study is quantitatively accurate. The total cross
sections of the 14 ions, Be, B+, C+2, N+3, O+4, Ne+6,
Mg+8, Si+10, S+12, Ar+14, Ca+16, Ti+18, Cr+20, and Fe+22,
were calculated using the relativistic Breit-Pauli R-matrix
method [8] and were reported earlier [9]. To look closely
at the overlapping resonance profiles, the cross section for
each ion was calculated on an evenly distributed set of 105

photon-energy points between the 2s ionization threshold
and the 4f threshold. Considering the channel interactions
and the relativistic effects, the overlapping of resonances
along the sequence are quite complicated, especially in the
near-threshold regions where resonances are tightly crowded,
but the analysis is aided by knowing the asymptotic behavior
in the limit of infinite Z. At the Z → ∞ limit, we can
calculate exactly where the resonances converging to higher
thresholds will appear as interlopers and perturbers among the
resonances converging to lower thresholds. Since it is expected
that the general appearance of the cross section changes with
Z smoothly along an isoelectronic sequence, this asymptotic
behavior allows us to trace the positions of specific resonances
along the sequence in the energy regions where a strong
perturbation may blur or distort the resonance profiles. The
4s4p resonance is used in this paper as an example to show
how the overlapping evolves with Z.

Section II briefly describes the theory and the calculation
method that is employed in this theoretical work. In Sec. III,

a derivation of the overlapping positions between different
series at infinite Z is presented, along with the example of the
evolution of the 4s4p resonance. The conclusions are given in
Sec. IV.

II. THEORY

In this study the photoionization of the ground 1Se
0 state of

the Be-like systems are calculated, i.e.,

1s22s2(1Se
0

) + hν → [1s2nl + e−(kl′)]
(1P o

1

)
. (1)

The computational package employed is the RMATRX1 program
[8], based on the Breit-Pauli R-matrix method [10]. The
essential idea of R-matrix theory is to divide configuration
space into internal and external regions by a spherical shell
of radius a centered at the nucleus, and connect the wave
functions between the regions by means of the R matrix. In
the internal region, since all the N + 1 electrons are relatively
close to each other, they are considered indistinguishable and
all the exchange terms between them are included in the
calculation of the wave function. In the external region, setting
a large enough, all the discrete wave functions are assumed
to be zero, and the whole system is treated as a two-body
system, which consists of the continuum photoelectron and
the N-electron “target.” In this way, the total wave function at
any given energy E is obtained. Using the initial- and final-state
wave functions obtained, the photoionization cross section is
then calculated in the electric dipole approximation.

To construct accurate wave functions for the N-electron
target states, nine configurations, 1s22s, 1s22p, 1s23s, 1s23p,
1s23d, 1s24s, 1s24p, 1s24d, and 1s24f , are included as the
basis to solve the Schrödinger equation. The associated ten
orbitals are optimized using the CIV+3 program [11]. The target
state wave functions are rather accurate; quite good agreement
between the target state energies and the NIST values was
reported in Ref. [9]. Then the (N + 1)-electron total wave
functions are constructed by adding one more electron to the N-
electron wave functions. In the internal region, antisymmetry is
considered and all exchange terms are included; in the external
region, exchange between the photoelectron and the target is
omitted, and the boundary conditions at r → ∞ are applied.
The connection between the regions is made by requiring that
the total (N + 1)-electron wave function and its first derivative
are continuous at r = a. The energies of the (N + 1)-electron
discrete states are also shown in Ref. [9], which are in good
agreement with experiments, thereby confirming the quality
of the wave functions.
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In Eq. (1), the states are specified by the LSJπ symmetries.
However, in the relativistic Breit-Pauli R-matrix calculations,
the states are specified by only the Jπ terms, where each Jπ

term has the contributions from all the possible LS terms. Thus,
the ground-state transition is actually defined as 0e → 1o.

III. RESULTS AND DISCUSSION

It is of interest to study which resonances in a series that
converges to a given threshold lie below the lower threshold,
thereby perturbing the resonance series converging to the lower
threshold. Further, if some of the resonances are embedded
in a series converging to a lower threshold, it is of interest
to determine their positions among the resonances of the
lower series. The analysis starts with the asymptotic region,
Z → ∞, where some definite predictions can be made. As
Z → ∞, the electron-electron interactions in the Hamiltonian
of an atomic system become infinitesimal compared with the
nuclear potential terms, and the system becomes hydrogenic
[12]. The energy levels of each electron in a hydrogenic atomic
system of nuclear charge Z is given by

En = −Z2

n2
, (2)

where n is an integer. In this hydrogenic system, the energy of
an autoionizing two-electron excitation is given by

En,n′ = −Z2

n2
− Z2

n′2 , (3)

where n and n′ are both integers [i.e., Eq. (3) represents
the nln′l′ resonance energy]. However, these energies are
independent of the angular momenta. Thus, the condition that
the nln′l′ resonance lies below the n − 1 threshold is

− Z2

(n − 1)2
> −Z2

n2
− Z2

n′2 (4)

or, equivalently,
1

(n − 1)2
<

1

n2
+ 1

n′2 . (5)

Applying this simple relation to the resonances in Be-like
systems, it is found that for the n = 2 thresholds, no resonances
converging to n > 2 thresholds lie below the n = 2 thresholds.
However, for n = 3, the 4l4l′ resonances lie below this
threshold and perturb the 3ln′l′ resonance series. For the n = 4
thresholds, it is found that the 5l5l′ and the 5l6l′ resonances
lie below the n = 4 thresholds. This analysis can be carried to
higher thresholds as well, and the results are summarized in
Table I. From this table it is clear that, with increasing n, more
and more resonances converging to the next higher threshold
lie below the lower threshold. While these conclusions are
exact in the Z → ∞ hydrogenic limit, they are pretty close
to what happens for finite Z as well, particularly for highly
charged ions.

Using these same ideas, the actual positions of these
interloping resonances compared to the lower resonance series
can be ascertained in the Z → ∞ hydrogenic limit. For
example, the energy of the 4l4l′ resonances, designated E4,4,
lies between E3,8 and E3,9 (i.e., the 4l4l′ resonances lies
between the 3l′′8l′′′ resonances and the 3l′′9l′′′ resonances).

TABLE I. Resonances lying below the next lower threshold in
hydrogenic systems.

Resonances below the next
n lower threshold

3 4l4l′

4 5l5l′,5l6l′

5 6l6l′–6l9l′

6 7l7l′–7l11l′

7 8l8l′–8l14l′

8 9l9l′–9l17l′

9 10l10l′–10l19l′

10 11l11l′–11l24l′

Similarly, the 5l5l′ resonances is situated between 4l′′7l′′′ and
4l′′8l′′′, 6l6l′ between 5l′′8l′′′ and 5l′′9l′′′, etc.

The first few resonances in a Rydberg series can be posi-
tioned below a lower ionization threshold and, consequently,
are strongly perturbed by the resonances converging to the
lower threshold. These strongly perturbed resonances are very
difficult to characterize and to identify because their profiles
are dramatically changed by all the resonances of the lower
series. As an example, Fig. 1 shows the evolution of the 4s4p

FIG. 1. (Color online) Calculated photoionization cross sections
near the 4s4p resonances for the ground states of Be, B+, C+2, N+3,
O+4, and Ne+6. The 4s4p resonance profiles are encircled. The vertical
dashed lines indicate the various n = 3 thresholds. The resonance
starts overlapping the n = 3 series in C+2, and is more and more
perturbed as Z increases.
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resonance profile for ground-state photoionization of six of
the lower members of the Be isoelectronic series, which is
an excellent example of this type of strong perturbation. The
top two panels present the cross sections in the vicinity of the
4s4p resonance for Be and B+. On the lower photon-energy
side of the 4s4p resonance are the 3d, the 3p, and the 3s
thresholds (they are not shown for Be because they are much
lower than the energy range shown), from right to left, which
are characterized by the convergence of the 3dnl, the 3pnl, and
the 3snl resonances. Because these thresholds are all below
the 4s4p resonance for Be and B+, the interaction of the
lower series of resonances with the 4s4p resonance is quite
small owing to the large energy denominator in the mixing
coefficient. Thus the perturbation to 4s4p resonances is quite
small, and the resonance profile is clean. The third panel
from top is the cross section for C+2. In this case the 4s4p
resonance lies between the 3p and the 3d thresholds, so that a
number of the 3dnl resonances, which are nearly degenerate
with the 4s4p resonance, perturb the 4s4p resonance and
build many narrow “spikes” on its profile. The 4s4p profile
is still clearly recognizable since it is much wider than all
the narrow resonances converging to the 3d threshold, but
the characterization is harder and definitely less clear than
that in the case of Be and B+. The fourth panel from top is
for N+3. Here the 4s4p resonance lies between the 3s and
the 3p thresholds, and its profile is much messier, where it
overlaps not only 3dnl but also 3pnl resonances. The narrow
resonances sort of cut the 4s4p profile to short pieces, and
the 4s4p profile becomes the “background” or modulation of
those narrow resonances. In other words, what is happening
is that the wave functions of the resonances in the region are
strongly mixed between 3dnl (or 3pnl) and 4s4p so there is
no longer a pure 4s4p resonance. We can estimate where this
mixed 4s4p resonance exists very roughly, but the complete
characterization is extremely difficult. The fifth panel from the
top shows the cross section for O+4. The 4s4p resonance in
this case lies between the 3s and the 3p thresholds; its profile
is quite flat, and its width is difficult to pick out among the
surrounding (perturbing) resonances. The bottom panel is the
cross section for Ne+6, and here the 4s4p resonance is situated
below the 3s threshold, so it overlaps all of the resonances
series converging to the 3l thresholds. It is seen that it is
almost completely hidden among the 3lnl′ resonances. Thus,
although the 4s4p resonance does move below the n = 3
threshold with increasing Z, as expected from the analysis
of the asymptotic Z → ∞ case, as the resonance moves down
below lower thresholds, it also gets very mixed until its identity
is virtually gone.

Nevertheless, the quantum defect µ (and the associated
effective quantum number ν) of a resonance changes with n
and with Z smoothly, which provides us a way to trace the
resonance positions as a function of Z. As an example, the
cross section in the vicinity of the 4s4p resonance is displayed
in Fig. 2 as a function of ν with respect to the 4s threshold
(ν4s) for the same six ions as in Fig. 1 to demonstrate the
smooth trajectory of the 4s4p resonance along the sequence.
The quantum defect µ for the 4s4p resonance goes to zero as
Z → ∞ (as all quantum defects must do), which means the
associated ν converges to 4 asymptotically. By knowing the
ν’s for the lowest-Z ions and by the convergence of ν toward

FIG. 2. (Color online) As of Fig. 1, but plotted against effective
quantum number ν with respect to the 4s threshold. Note that the
cross sections are on logarithmic scale. The long vertical dashed
line indicates ν = 4, and the short lines are for the various n = 3
thresholds in each case. The 4s4p resonance positions are seen to
converge to ν = 4 asymptotically.

ν = 4 as Z → ∞, the 4s4p resonance positions for all ions
in the sequence can be accurately estimated since the shifts
along the sequence are monotonic and smooth with respect to
ν. In addition, the 4s4p resonance width (in ν) remains almost
constant with increasing Z.

IV. CONCLUDING REMARKS

Using hydrogenic theory, resonance positions with respect
to lower thresholds have been analytically calculated for
Z → ∞, and predictions were made as to which resonances
overlap with lower series along with the positions of these
overlapping resonances with respect to the resonances of lower
series.

In addition, using our earlier calculations of the photoion-
ization cross sections of the 1Se

0 ground state of Be-like ions [9],
the position of the 4s4p resonance along the sequence is
analyzed as a function of both photon energy and effective
quantum number ν. The quantum defect of the resonance is
found to decrease smoothly and monotonically with increasing
Z, and the position of the resonance is seen to be converging to
ν = 4 as predicted by hydrogenic theory. At the higher-Z val-
ues, all resonances in all isoelectronic sequences will converge
monotonically to zero quantum defect, but near the neutral
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end of the sequence, where the electron-electron correlation is
important and the wave functions are complicated, it is possible
for the quantum defect to change nonmonotonically with Z,
unlike the present case.

The 4s4p is an isolated resonance in the photoionization of
Be and B+, but as Z increases, it begins to overlap lower
Rydberg series converging to the n = 3 thresholds. This
overlap becomes greater with increasing Z; consequently, the
resonance becomes more and more strongly perturbed, and
the resonance profile becomes more and more distorted by the
interactions with the lower series and less recognizable as a
resonance.

While the analysis of a particular resonance arising from
the photoionization of the Be-like sequence has been detailed

in this study, the methodology employed should be applicable
to other resonances in this and other isoelectronic sequences
as well. On the experimental side, since photoionization cross-
section measurements of many of the ions are now possible
with excellent resolution, it would be of great interest to see
experimental investigation of the 4s4p resonance along the
isoelectronic sequence.
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