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E. Assémat,1 M. Lapert,1 Y. Zhang,2 M. Braun,2 S. J. Glaser,2 and D. Sugny1,*

1Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 5209 CNRS-Université de Bourgogne, 9 Avenue A. Savary,
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We analyze the simultaneous time-optimal control of two-spin systems. The two noncoupled spins, which
differ in the value of their chemical offsets, are controlled by the same magnetic fields. Using an appropriate
rotating frame, we restrict the study to the case of opposite shifts. We then show that the optimal solution of the
inversion problem in a rotating frame is composed of a pulse sequence of maximum intensity and is similar to
the optimal solution for inverting only one spin by using a nonresonant control field in the laboratory frame. An
example is implemented experimentally using nuclear magnetic resonance techniques.
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I. INTRODUCTION

Since its discovery in 1945 by Purcell, Torrey, and Pound,
nuclear magnetic resonance (NMR) has become a powerful
physical tool for studying molecules and matter in a variety
of domains extending from biology and chemistry to solid
physics and quantum mechanics [1]. NMR involves the
manipulation of nuclear spins via interaction with a magnetic
field and is therefore a domain where techniques of quantum
control can be applied (see [2,3] and references therein).
Such an approach has many potential applications, ranging
from the improvement of the resolution and sensitivity of
NMR spectroscopy experiments [4] to quantum computing [5].
The control technology developed over the past fifty years
allows the use of sophisticated control fields for spectroscopy
and also permits the implementation of complex quantum
algorithms [6].

In this context, some challenging control problems are
raised by the experimental constraints of NMR experiments.
Roughly speaking, the measured signal is the magnetization of
a sample which is produced by a large number of spin systems.
One usually assumes in simple models that the static magnetic
field is the same across the sample, that is, the field is perfectly
homogeneous with respect to the different spins. This is not al-
ways true in practice since for technical reasons it is difficult to
generate homogeneous fields. Even in the situation where the
magnetic field is uniform on a macroscopic scale, the interac-
tion between the different atoms (or between a spin and its en-
vironment) induces a chemical shift on the frequency transition
of a given spin. This leads classically to an unwanted rotation of
each individual spin around a fixed axis, which is not taken into
account in the simplest model of spin- 1

2 particles. The shift is
different for each spin, and therefore the rotation is different for
each spin. Note that this effect is useful in NMR spectroscopy
since it encodes in a sense some information about the structure
of the molecules. The consequences are negative from a
control point of view since this phenomenon decreases the
efficiency of the control field. The objective is therefore to find
controls able to bring the system toward a given target state
in a sufficiently robust way with respect to inhomogeneities
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of the transition frequency. This problem has been solved
numerically in different works [7] leading to very efficient but
complicated solutions. In particular, no insight into the control
mechanism is gained from this approach, and no optimality
result has been proven. Note that some related works have been
done in the control of molecular dynamics by laser fields [8]
by using monotonically convergent algorithms [9].

In this article, we revisit this problem using techniques of
geometric optimal control theory [10,11]. Geometric optimal
control is a vast domain based on the application of the
Pontryagin maximum principle (PMP) where the idea is to
use the methods of differential geometry and Hamiltonian
dynamics to solve the optimal control problems [10,11].
This geometric framework leads to a global analysis of the
control problem which completes and guides the numerical
computations. Some geometric results on the optimal control
of spin systems have been first obtained by N. Khaneja and
his co-workers [3]. Recently, the time-optimal control of
dissipative spin- 1

2 particles has been solved theoretically [12]
and implemented experimentally [13]. In this work, we study
the simultaneous control of two noninteracting spins with
different resonance frequencies. More precisely, we consider
as an example the problem to simultaneously invert the
magnetization vectors initially aligned along the z axis defined
by the direction of the static magnetic field.

Using an appropriate rotating frame, we show that we can
always consider the symmetric case where the two transition
frequencies are opposed. In this situation, the time-optimal
solution for inverting the two spins by the same transverse
radio-frequency (rf) control fields is a bang-bang pulse se-
quence in a frame rotating at the rf frequency. The remarkable
point is that the corotating component of the applied rf field
is the same as the one used to invert only one spin with one
nonresonant control field in the laboratory frame [14]. We
finally implement experimentally the optimal solution using
NMR techniques.

The article is organized as follows. In Sec. II, we recall the
tools to control one spin in minimum time with a transverse
magnetic field which is not in resonance with the frequency
of the spin. In Sec. III, we establish that this control field is
also the optimal solution to simultaneously invert two spins.
An experimental illustration is given in Sec. IV. A summary
of the different results obtained is presented in Sec. V.
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II. TIME-OPTIMAL CONTROL OF A SPIN- 1
2 PARTICLE

We consider the control of a spin- 1
2 particle whose dynamics

is governed by the Bloch equation:⎛
⎝Ṁx

Ṁy

Ṁz

⎞
⎠ =

⎛
⎝−ωMy

ωMx

0

⎞
⎠ +

⎛
⎝ 0

−ωxMz

ωxMy

⎞
⎠ , (1)

where �M = (Mx,My,Mz) is the magnetization vector and
ω the chemical shift offset. The dynamics is controlled
through only one magnetic field along the x axis which
satisfies the constraint ωx � ωmax. We introduce normalized
coordinates �x = (x,y,z) = �M/M0 where �M0 = M0�ez is
the thermal equilibrium point, a normalized control field
ux = 2πωx/ωmax satisfies the constraint ux � 2π , and a
normalized time is τ = ωmaxt/(2π ). Dividing the previous
system by ωmaxM0/(2π ), we get that the evolution of the
normalized coordinates is given by the following equations:⎛

⎝ẋ

ẏ

ż

⎞
⎠ =

⎛
⎝−�y

�x

0

⎞
⎠ +

⎛
⎝ 0

−uxz

uxy

⎞
⎠ , (2)

where � is the normalized offset given by � = 2πω/ωmax.
The complete description of the time-optimal control

problem of a spin- 1
2 particle by a nonresonant magnetic field

is done in Ref. [14]. In this section, we give only a brief
summary of the results of this article which are used in our
study. The reader is referred to [14] for the different proofs
of these results. Note that when the spin is controlled by two
magnetic fields along the x and y directions, then the system is
equivalent to a two-level quantum system in the rotating-wave
approximation [15]. This means that a unitary transformation
can be used to remove the drift term depending on �. In this
case, the optimal control field is a π pulse.

The problem we consider belongs to a general class of
optimal control problems for which powerful mathematical
tools have been developed [16]. They correspond to systems on
a two-dimensional manifold (here the Bloch sphere) controlled
by a single field. The evolution of the system is ruled by the
following set of differential equations:

�̇x = �F (�x) + u �G(�x), (3)

where �x is the two-dimensional state vector, �F and �G two-
dimensional vector fields and u the control field which satisfies
the constraint u � u0 with, here, u0 = 2π . The time-optimal
control problem is solved by the application of the PMP, which
is formulated using the pseudo-Hamiltonian

H = �p · ( �F + u �G) + p0,

where �p is the adjoint state and p0 is a negative constant such
that �p and p0 are not simultaneously equal to 0. The PMP states
that the optimal trajectories are solutions of the equations

�̇x = ∂H

∂ �p (�x, �p,v), �̇p = −∂H

∂ �x (�x, �p,v),

H (�x, �p,v) = max
|u|�u0

H (�x, �p,u), (4)

H (�x, �p,v) = 0.

Introducing the switching function � given by

�(t) = �p · �G,

one deduces using the second equation of (4) that the optimal
synthesis is composed of a concatenation of arcs γ+, γ−, and
γS ; γ+ and γ− are regular arcs corresponding respectively to
sgn[�(t)] = ±1 or to the control fields u = ±u0. A switching
from u0 to −u0 or from −u0 to u0 occurs at t = t0 when the
function � takes the value zero and when this zero is isolated.
Singular arcs γs are characterized by the fact that � vanishes
on an interval [t0,t1]. In this case, by differentiating two times
� with respect to time and imposing that the derivatives are
zero, one obtains that the singular arcs are located in the set

S = {�x; �S(x) = det( �G,[ �G, �F ])(�x) = 0}.
We recall that the commutator [ �F, �G] of two vector fields �F
and �G is defined by

[ �F, �G] = �∇ �F · �G − �F · �∇ �G,

where �∇ is the gradient of a function. The singular control field
us can be calculated as a feedback control, that is, as a function
of the coordinates by imposing that the second derivative of �

with respect to time is equal to 0:

[ �G,[ �G, �F ]] + us[ �F,[ �G, �F ]] = 0.

The optimal solution can follow the singular lines if the control
field is admissible, that is, if |us(�x)| � u0.

Since the two-dimensional manifold of our control problem
is the Bloch sphere, the adapted coordinates are the spherical
ones: ⎧⎨

⎩
x = r sin θ cos φ

y = r sin θ sin φ,

z = r cos θ

(5)

which leads to the following system:⎛
⎝ ṙ

θ̇

φ̇

⎞
⎠ =

⎛
⎝ 0

0
�

⎞
⎠ + u

⎛
⎝ 0

−sin φ

−cos φ cot θ

⎞
⎠ . (6)

The pseudo-Hamiltonian H has the form

H = �pφ − u(sin φ pθ + cos φ cot θ pφ), (7)

where the constant p0 has been substracted in the
definition of H and the switching function is given by
� = sin φ pθ + cos φ cot θ pφ . Since

[ �G, �F ] =
⎛
⎝ 0

−� cos φ

� sin φ cot θ

⎞
⎠ ,

one deduces that S is the set

S = {�x| sin2 φ cot θ = − cos2 φ cot θ} = {�x|θ = π/2};
that is, the singular locus is the equator of the Bloch sphere.
The time-optimal control problem is solved in [14]. It has
been shown that the optimal solution reaching the south pole
from the north pole is the succession of different bang pulses,
that is, of pulses of maximum intensity 2π . The number of
bangs is at most equal to 2 if � < 2π and can be larger if
� > 2π . The singular extremals play no role for this spin
inversion. An example of an optimal pulse sequence and
the corresponding trajectory is displayed in Figs. 1 and 2.
The optimal trajectory is not smooth at switching points
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FIG. 1. (Color online) (a) Plot of the optimal control field for the
simultaneous inversion of two spins with offsets ω/2π = ±483 Hz
and ωmax/2π = 120.75 Hz. (b) Plots of the corresponding optimal
trajectories for Ma

x (t) (solid black line) and Ma
y (t) (red dashed line).

The experimentally measured trajectories are presented by open
circles. (c) Plot of the optimal trajectory for Ma

z (t), together with
the experimental representations (open circles).

where the value of the control field changes. The switching
times can analytically be determined using the material of
Ref. [14]. In the case of Fig. 1, the optimal solution is a
type-2 trajectory described by Proposition 5 of [14]. These
times can also be computed numerically by solving a shooting
equation. More precisely, this means that one has to deter-
mine the initial adjoint state �p(0) = (pθ (0),pφ(0)) such that
the corresponding Hamiltonian trajectory (�x, �p) with initial
conditions (�x(0), �p(0)) goes to the target �xf at time tf . This
condition can be expressed as the determination of the roots of
the equation �x(tf )[ �p(0)] − �xf , which can be solved if one has a
sufficiently good approximation of �p(0) by a standard Newton-
type algorithm. Note that the control field is determined along
the trajectory by computing the switching function �.

At this point, we can extend the previous discussion as a
first step toward the simultaneous inversion of two spins. We
analyze the dynamics in a rotating frame by using the rotating-
wave approximation (RWA) where the offsets of the two spins
are symmetric and given by ±�. The rf field is assumed to
be at the rotating-frame frequency. As a consequence of the
symmetries of the problem, one sees that if u(t), the corotating
component of the applied rf field, steers the spin with offset

Mx
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M
z(a
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)
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M
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)

My
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FIG. 2. (Color online) Projections of the optimal trajectories
for the inversion of the two Bloch vectors with offsets, ω/2π =
±483 Hz, in the (x,z)- and (y,z)-plane are shown in (a) and (b),
respectively. The simulated trajectories of the two spins are plotted
by the black solid line and the red dashed line. The experimentally
measured trajectories of the two magnetization vectors are repre-
sented by open and filled circles.

� from the north pole to the south pole, then the same field
will also invert the other spin. The trajectories of the two spins
in the y and z directions will be the same, while they will be
opposite along the x axis. Note that this solution is not the
unique solution and a family of solutions satisfying the same
requirement can be determined. Consider the set of control
fields defined by {

ux = u(t) cos α,

uy = u(t) sin α,
(8)

where α ∈ [0,2π ]. If we consider the following rotation R(α)
of angle α along the z axis:⎛

⎝X

Y

Z

⎞
⎠ =

⎛
⎝ cos α sin α 0

− sin α cos α 0
0 0 1

⎞
⎠

⎛
⎝x

y

z

⎞
⎠, (9)

then the new system in the coordinates (X,Y,Z) is controlled
by a single field u(t) along the X direction. It is also
straightforward to see that this solution is the optimal one for
the inversion control of two symmetric spins by one control
field.

The question that we ask now is whether this simple solution
is the optimal solution of the simultaneous inversion of two
spins when two control fields are considered.

III. SIMULTANEOUS CONTROL OF THE INVERSION
OF TWO SPIN- 1

2 PARTICLES

A. The model system

We consider two different spin- 1
2 particles with the offsets

ωa and ωb. Using the same normalization as in Sec. II and the
RWA, one arrives at the following equations:⎛

⎜⎜⎜⎜⎜⎝

ẋa

ẏa

ża

ẋb

ẏb

żb

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

−�aya

�axa

0
−�byb

�bxb

0

⎞
⎟⎟⎟⎟⎟⎠ + ux

⎛
⎜⎜⎜⎜⎜⎝

0
−za

ya

0
−zb

yb

⎞
⎟⎟⎟⎟⎟⎠ + uy

⎛
⎜⎜⎜⎜⎜⎝

za

0
−xa

zb

0
−xb

⎞
⎟⎟⎟⎟⎟⎠ , (10)

where the coordinates (xa,ya,za) and (xb,yb,zb) are respec-
tively associated with the first and second spins a and b. The
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parameters �a and �b are the offsets of the spins a and b with
respect to the frequency of the rotating frame. The rf field is
here also at the rotating-frame frequency. We assume that the
two spins have the same equilibrium point M0. As mentioned
later, two magnetic fields along the x and y directions are
taken into account in this problem. They satisfy the constraints√

u2
x + u2

y � 2π . By using a rotating frame that rotates at
frequency (�a + �b)/2, it is straightforward to transform this
system into a symmetric one where the frequencies of the two
spins are opposite. This is the case analyzed next.

We introduce the spherical coordinates for the two spins,
and we get

⎛
⎜⎜⎜⎜⎜⎝

ṙa

θ̇a

φ̇a

ṙb

θ̇b

φ̇b

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

0
0
�

0
0

−�

⎞
⎟⎟⎟⎟⎟⎠ + ux

�Gx + uy
�Gy, (11)

where

�Gx =

⎛
⎜⎜⎜⎜⎜⎝

0
− sin φa

− cot θa cos φa

0
− sin φb

− cot θb cos φb

⎞
⎟⎟⎟⎟⎟⎠ , �Gy =

⎛
⎜⎜⎜⎜⎜⎝

0
cos φa

− cot θa sin φa

0
cos φb

− cot θb sin φb

⎞
⎟⎟⎟⎟⎟⎠ .

Since the radial coordinates (ra,rb,pra
,prb

) play a triv-
ial role in this problem, we omit them in the following
equations.

We apply the PMP to this system in the time-optimal case,
and we obtain the following pseudo-Hamiltonian

H = �(pφa
− pφb

) + �p · (ux
�Gx + uy

�Gy), (12)

where �p is the adjoint vector of coordinates (pθa
,pφa

,pθb
,pφb

).
In the normal case, the optimization condition leads to the
following optimal controls:

ux = �p · �Gx√
( �p · �Gx)2 + ( �p · �Gy)2

,

(13)

uy = �p · �Gy√
( �p · �Gx)2 + ( �p · �Gy)2

,

where �p · �Gx and �p · �Gy are not simultaneously equal to 0.
The singular case occurs when �p · �Gx = �p · �Gy = 0, which
defines the switching surface �. In the two-control problems,
singular trajectories are the trajectories which lie on �.
We assume in this article that these controls do not play
any role in our problem. This is expected since singular
extremals are not generically optimal for a two-control
problem [17].

We get the normal Hamiltonian Hn by replacing the control
fields with their expressions:

Hn = �(pφa
− pφb

) +
√

( �p · �Gx)2 + ( �p · �Gy)2. (14)

The normal extremals are given by the Hamiltonian trajectories
of Hn. The next step of our study consists in the analysis of
this Hamiltonian flow.

For that purpose, we introduce the following canonical
transformation on the φ coordinates:{

φ+ = φa + φb,

φ− = φa − φb,
(15)

which is defined through the generating function

F2 = 1
2pφa

(φ+ + φ−) + 1
2pφb

(φ+ − φ−),

with the transformation

pφ+ = ∂F2

∂φ+
; pφ− = ∂F2

∂φ−
; φa = ∂F2

∂pφa

; φb = ∂F2

∂pφb

.

This leads to {
pφa

= pφ+ + pφ− ,

pφb
= pφ+ − pφ− .

(16)

The Hamiltonian Hn expressed in the new set of coordinates
does not depend on φ+, so pφ+ is a constant of the motion.
Since at the initial time in the north pole, pφa

(0) = pφb
(0) = 0,

one deduces that pφ+ = 0. One finally arrives at

Hn = 2�pφ− + [
p2

θa
+ p2

θb
+ p2

φ−(cot2 θa + cot2 θb)

+ 2 cos φ−
(
pθa

pθb
− p2

φ− cot θa cot θb

)
− 2pφ− sin φ−

(
pθa

cot θb − pθb
cot θa

)]1/2
.

Care has to be taken with the use of these coordinates on
the poles of the sphere. On a pole, we have cot θ → ±∞
and pφ = 0, but the product pφ cot θ remains finite. In this
article, spherical coordinates are used only to describe the
geometric properties of the extremals and to highlight their
symmetries. All the numerical computations are done in
Cartesian coordinates.

Note also the symmetric role played by θa and θb in the
Hamiltonian Hn. This symmetry is used in the proof.

B. The optimal control problem

We first analyze the characteristics of the extremal trajecto-
ries which are solutions of the control problem. In particular,
if the inversion is realized by an extremal trajectory, then the
following relations are satisfied:

∀t ∈ [0,tf ], pθa
(t) = pθb

(t), and θa(t) = θb(t),

where tf is the control duration.
To show this property, we assume that the south pole is

reached by the extremal. In this case, the final point satisfies
by definition

θa(tf ) = θb(tf ), θ̇a(tf ) = θ̇b(tf ), pφ− = 0.

Using the Hamiltonian Hn, we obtain⎧⎨
⎩

θ̇a = ∂Hn

∂pθa
= (pθa

+ cos φ−pθb
− pφ− sin φ− cot θb)/

√
Q,

θ̇b = ∂Hn

∂pθb

= (pθb
+ cos φ−pθa

− pφ− sin φ− cot θa)/
√

Q,

(17)
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where

Q = p2
θa

+ p2
θb

+ p2
φ−(cot2 θa + cot2 θb)

+ 2 cos φ−(pθa
pθb

− p2
φ− cot θa cot θb)

− 2pφ− sin φ−(pθa
cot θb − pθb

cot θa).

We consider that Q(0) �= 0, which is always possible by a
judicious choice of the initial adjoint vector �p(0). This implies
that Hn > 0 since pφ− = 0 at a pole. Using the fact that Hn

is a constant of motion, one deduces at the final point that
Q(tf ) �= 0. From Eqs. (17), one finally arrives at[

pθa
(tf ) − pθb

(tf )
]
[1 − cos φ−(tf )] = 0.

If cos φ−(tf ) = 1, then Q = 0, which is not possible from our
hypothesis. We have therefore pθa

(tf ) = pθb
(tf ), and by using

the Hamiltonian equations, we then obtain that θa(t) = θb(t)
and pθa

(t) = pθb
(t) for any time t since at time t = tf we have

θa(tf ) = θb(tf ) and pθa
(tf ) = pθb

(tf ).
We also get that φ̇+ = 0, that is, φ+ = φ+0. In the new

coordinates �Xa and �Xb such that �Xa = R(φ+0/2)�xa and �Xb =
R(φ+0/2)�xb, the sum of the new azimuthal angles is zero, and
we obtain the following symmetry on the trajectory:⎧⎪⎨

⎪⎩
Xa(t) = Xb(t),

Ya(t) = −Yb(t),

Za(t) = Zb(t)

(18)

for any t ∈ [0,tf ]. In these coordinates, the two control fields
are given by{

uX(t) = ux(t) cos
(

φ0

2

) + uy(t) sin
(

φ0

2

)
,

uY (t) = −ux(t) sin
(

φ0

2

) + uy(t) cos
(

φ0

2

)
.

(19)

From this symmetry, we have uX(t) = 0 and thus
ux(t) cos(φ0+/2) + uy(t) sin(φ0+/2) = 0. Since ux(t)2 + uy(t)2

� 4π2, this leads to{
ux(t) = u0(t) cos(φ0+/2),

uy(t) = −u0(t) sin(φ0+/2),
(20)

where u0(t) is a bang-bang pulse of amplitude 2π . We therefore
recover the case of Sec. II of the optimal control of a one-spin
system.

IV. EXPERIMENTAL ILLUSTRATION

Here we demonstrate the inversion for the case where
the symmetric offsets ωa = −ωb are four times larger than
the maximum rf amplitude using NMR techniques. The
optimal pulse (a bang-bang pulse) is shown in Fig. 1 and
implemented on a Bruker Avance 600-MHz spectrometer
with linearized amplifiers. The experiment was performed

using the two distinct proton spin signals of methyl acetate
(dissolved in deuterated chloroform). The two resonances,
one from the −OCH3 moiety and the other from the
−OOCCH3 moiety, were separated by 966 Hz in the 1H
NMR spectrum. The irradiation frequency was positioned
in the center of the two peaks, that is, ω0 = (ωa + ωb)/2,
resulting in offsets of ω = (ωa − ωb)/2 = 2π × 483 Hz for
the two resonances. The maximum rf amplitude was chosen
to be ωmax = ω/4 = 2π × 120.75 Hz, and the duration of the
optimal inversion pulse shown in Fig. 1 is Tp = 6.409 ms.
At room temperature (298 K), the experimentally measured
relaxation time constants of the two spins are T a

1 ≈ T b
1 = 4.95

s and T a
2 ≈ T b

2 = 140 ms, which have a negligible effect
during the much shorter pulse duration Tp. The x and y

components of the Bloch vectors, Ma,b
x (t) and Ma,b

y (t), were
measured experimentally by interrupting the optimal pulse
shape after the time t and measuring the amplitude and
phase of the signal after Fourier transformation of the resulting
free induction decay (FID). In order to measure the z compo-
nent of the Bloch vectors, the experiments were repeated with
the addition of a pulsed magnetic field gradient (of duration
about 0.2 ms with sine shape), followed by a 90◦ hard pulse.
A reasonable match between simulated and experimentally
determined trajectories is found. For example, Fig. 1 shows
the simulated and experimental trajectories of Ma

x (t), Ma
y (t),

and Ma
z (t) as a function of time. Figure 2 shows the projections

of the simulated and experimental trajectories of both Bloch
vectors.

V. SUMMARY

In this last section, we give a brief overview of the
results obtained in this article. The four relevant cases for
the simultaneous inversion of two spins are the following:

(1) Two control fields along the x and y directions and one
offset ω: The optimal solution is a π pulse [15].

(2) One control field and one offset ω: The optimal solution
is a bang-bang pulse sequence with a number of switching
depending upon the ratio ω/ωmax [14].

(3) One control field and two offsets ω and −ω: The optimal
solution is the same as in (2).

(4) Two control fields and two offsets ω and −ω: The
optimal solution is also the same as in (2).
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Vol. 43 (Springer-Verlag, Berlin, 2004).

[17] Y. Chitour, F. Jean, and E. Trélat, SIAM J. Control Optim. 47,
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