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On the basis of the Floquet formalism, the ionization mechanisms of atomic hydrogen in circularly and
linearly polarized intense laser fields are discussed. By using the complex scaling method in the velocity gauge,
the pole positions of the scattering-matrix on the complex quasienergy Riemann surface are calculated, and pole
trajectories with respect to the variation of the laser intensity are obtained. In the low-frequency regime, the
pole trajectory exhibits a smooth ponderomotive energy shift in the case of circular polarization. In contrast, the
smoothness is lost in the case of linear polarization. In the high-frequency regime, the pole trajectories exhibit
the stabilization phenomenon for both the types of polarization. These observations are elucidated by a unified
picture based on the analysis of the adiabatic potentials for the radial motion of the electron in the acceleration
gauge. The ionization in the case of circular polarization of the low-frequency regime is governed by the electron
tunneling through a barrier of a single adiabatic potential. The stabilization in the high-frequency regime can be
explained by the change in the avoided crossings among the adiabatic potential curves. The transition between the
different frequency regimes is explicable by the change in the structure of the adiabatic potentials. The difference
caused by the type of polarization is ascribable to the difference in the space-time symmetry.
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I. INTRODUCTION

Intense lasers have been extending the frontiers of atomic
physics. Many novel and intriguing phenomena have been
found to be caused by nonperturbative atom-laser interactions.
In particular, mechanisms of ionization have extensively been
studied because ionization is one of the most dominant
processes in intense laser fields. Tunneling ionization is known
to be typically observed in laser fields of the low-frequency
regime [1]. As a phenomenon peculiar to the high-frequency
regime, several theoretical studies have predicted the stabiliza-
tion phenomenon [2–4], in which the ionization rate decreases,
in a counterintuitive manner, with increasing laser intensity
when intensity exceeds a certain critical value. The low-
and high-frequency regimes have independently been studied
based on the approximations which are valid only within each
regime. In this context, the authors have recently presented
a unified picture which explains how different ionization
mechanisms work in the different frequency regimes [5]. That
previous study is hereafter referred to as Paper I. In Paper
I, a two-dimensional (2D) model mimicking an atom having
one electron is theoretically analyzed, and it is shown that
the transition between the different frequency regimes can be
explained by the change in the avoided crossings among the
adiabatic potential curves for the radial motion of the electron.
The present study aims at demonstrating applicability of the
theory of Paper I to the real system, i.e., atomic hydrogen.

The hydrogen atom takes the most fundamental position
as the simplest realistic system, in the study of interaction
between matter and intense lasers. Many studies have been
reported since the work of Keldysh [6], in which the ionization
in the tunneling regime was discussed for the first time. As
regards the high-frequency regime, Pont et al. discussed the
energy shift and the distortion of electronic wave functions
within the Kramers-Henneberger (KH) high-frequency ap-
proximation [7–9]. Pont and Gavrila predicted the stabilization
phenomenon by calculating complex quasienergy eigenvalues

on the basis of the high-frequency Floquet theory (HFFT)
[10]. Behaviors of complex quasienegy eigenvalues have
extensively been studied for a wide range of laser intensities
and frequencies on the basis of the Floquet complex scaling
method [11–13] and the R-matrix Floquet method [14–16].
These rigorous methods have helped the progress in the studies
of the stabilization phenomenon [17] and the generation of
a light-induced state (LIS) [17,18]. The Floquet method has
successfully been applied also to the phenomena typical of the
low-freqeuncy regime, such as tunneling ionization [19,20]
and high-harmonic generation [21].

The stabilization is one of the typical phenomenon caused
by nonperturbative effects of atom-laser interactions. Gavrila
named the stabilization phenomenon observed in the Floquet
formalism as “quasistationary (adiabatic) stabilization” (QS)
[2]. Several researchers have proposed different mechanisms
of the stabilization phenomenon independently. According to
the conventional understanding, the stabilization occurs when
the ponderomotive radius, α, exceeds the spread of the initial
unperturbed electronic wave function, aat. At this strength
of the laser field, the KH potential comes to have a shape
of a double well, and thus the KH eigenfunctions begins
to exhibit dichotomy [22,23]. Druten et al. experimentally
observed the stabilization of a Ne atom in a circular Rydberg
state (5g4 state) [24]. Piraux and Potvliege have shown that
the experimental results can be reproduced by the calculation
based on the Floquet formalism and concluded that it is none
other than the QS [25], although the experimental condition
α < aat contradicts with the usual understanding based on
the dichotomy. The mechanism of QS for circular Rydberg
states should thus be ascribed to a physical picture other than
the dichotomy of the wave function. Tikhonova and Popov
proposed a different mechanism by considering continuum-
continuum transition on the basis of the perturbation theory
[26]. The understanding of the mechanism of QS working in
realistic atoms has not yet been established.
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In the present article, the mechanisms of tunneling ion-
ization and stabilization working in atomic hydrogen are
discussed on the basis of the method of the analysis developed
in Paper I. A synopsis of the previous study is briefly
summarized as follows: An electron is trapped in a 2D potential
well interacting with a circularly polarized laser field. The
potential function is set to be a Gaussian function. Based on
the Floquet formalism, the electron dynamics is described
by the multichannel scattering, and the ionization is related
with a decay of a resonance state. By numerically solving
the close-coupling equations under the Siegert boundary
condition, the pole positions of the scattering matrix (S
matrix) on the complex quasienergy Riemann surface are
calculated. The S-matrix pole trajectories, i.e., the intensity
dependence of the pole position, exhibits the behaviors typical
of the tunneling ionization in the low-frequency regime and
the stabilization in the high-frequency regime. The adiabatic
and diabatic potential curves for the radial motion of the
electron are found to be useful in elucidating the mechanism
of ionization in each frequency regime. In the low-frequency
regime, a barrier is formed in the lowest adiabatic curve. The
tunneling ionization is interpreted as the electron tunneling
through that barrier. It should be noted that the formation
of a barrier is not self-evident in the framework of the
Floquet formalism which deals with an oscillating field. On
the other hand, the stabilization in the high-frequency regime
is explicable by the change in the nonadiabatic coupling.
With increasing laser intensity, the electron dynamics is more
governed by diabatic curves, and the electron is trapped in
the diabatic potential well corresponding to the KH potential
well.

In the present study, the analysis is carried out on atomic
hydrogen (in three dimensional space) interacting with circu-
larly and linearly polarized intense laser fields. The S-matrix
pole trajectories are calculated for several laser frequencies
covering both the low- and high-frequency regimes. The
ionization mechanisms are discussed on the basis of the
adiabatic and diabatic potential curves for the radial motion of
the electron.

It is found that the picture obtained in Paper I can
directly be applied to atomic hydrogen in the high-frequency
regime for both the cases of circular and linear polarization.
The stabilization is unequivocally explicable by the electron
trapping in the KH potential. In the low-frequency regime,
however, the type of laser polarization causes a difference
in the behaviors of resonance states. The difference is due
to the different space-time symmetry. The analysis of the
potential curves, however, shows that the picture of tunneling
holds valid for both the types of polarization in spite of
the significant differences in the structures of the potential
curves.

This article is organized as follows. The methods of
calculating the S-matrix pole trajectories are described in
Sec. II. The space-time symmetry of the resonance states is
described in Sec. III. The results of the calculation are shown in
Sec. IV. The ionization mechanisms are discussed on the basis
of the adiabatic potentials in Sec. V. In Sec. VI, the mechanism
of the stabilization is discussed for circular Rydberg states
as well as the low-lying states. Section VII concludes this
article.

II. FORMULATION

An H atom interacting with circularly or linearly polarized
laser fields is considered. The vector potential A(t) is defined
in the case of circular polarization as

Acir(t) = − A√
2

(x̂ sin ωt + ŷ cos ωt), (1)

while in the case of linear polarization it is defined as

Alin(t) = −A ẑ sin ωt. (2)

Here, x̂, ŷ, and ẑ are the unit vectors along the x,y, and z axes,
respectively. The polarization vector is set perpendicular to
the z axis for circular polarization and parallel to the z axis
for linear polarization. In the above definitions of the vector
potentials, the laser intensity, i.e., the energy flux density of
the laser field, are the same for both the polarizations when the
magnitudes of A are the same.

A. Complex scaling method in the velocity gauge

The time-dependent Schrödinger equation (TDSE) in the
velocity gauge is expressed as

i
∂

∂t
�V (r,t) =

(
−1

2
∇2 − 1

r
− i A(t) · ∇

)
�V (r,t), (3)

where �V (r,t) is the wave function in the velocity gauge and
A(t) is the vector potential defined in Eqs. (1) and (2). The
atomic units are used throughout this article. According to the
Floquet theorem, the time-dependent wave function can be
written as

�V (r,t) = e−iEt�V (r,t), (4)

where E is the quasienergy, and the new wave function �V (r,t)
has time periodicity with the period 2π/ω. Substituting Eq. (4)
into Eq. (3), one obtains the eigenvalue equation as

HF�
V (r,t) ≡

(
−1

2
∇2 − 1

r
− i A(t) · ∇ − i

∂

∂t

)
�V (r,t)

= E�V (r,t), (5)

where Floquet Hamiltonian, HF, is defined in the first line.
According to the prescription of Potvliege [12], the wave

function �V (r,t) is expanded by the Floquet components,
the partial waves in the spherical coordinates (r,θ,φ) and the
Sturmian basis functions as

�V (r,t) =
∑
Nnlm

cNnlm

1

r
S

(κ)
nl (r)Ylm(θ,φ)eiNωt , (6)

where N is the index of the Floquet component, l and m are
the angular-momentum quantum number and the magnetic
quantum number, respectively, and S

(κ)
nl (r) represents the

Sturmian function defined by

S
(κ)
nl (r) =

√
κ(n − 1)!

(n + l)(n + 2l)!
(−2κr)l+1e−κrL2l+1

n−1 (2κr). (7)

Here, L2l+1
n−1 (·) is the associated Laguerre polynomial [27] and

κ is a real parameter which scales the coordinate r . By using
the expansion in Eq. (6), the eigenvalue equation [Eq. (5)] is
reduced to the generalized eigenvalue problem as

HFc = ESc, (8)
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where S is the overlap matrix due to the nonorthogonality of
the Sturmian function. The complex scaling is carried out by
scaling the radial coordinate as r → eiθrr , where θr can vary
in the range of 0 � θr < π/4.

B. Close-coupling equations in the acceleration gauge

As discussed in Paper I, the adiabatic and diabatic potential
curves in the acceleration gauge are useful in elucidating the
ionization mechanisms. In particular, the mechanism of the
stabilization in the high-frequency regime can be explained by
considering only two channels in the close-coupling equations
in the acceleration gauge. The derivation and the explicit form
of the close-coupling equations in the acceleration gauge have
been reported by several researchers [28,30–32]. However,
for the convenience of the discussion in Secs. V and VI, the
formulation is briefly summarized as follows.

The TDSE in the acceleration gauge is expressed as

i
∂

∂t
�A(r,t) =

(
−1

2
∇2 − 1

|r + α(t)|
)

�A(r,t), (9)

where �A(r,t) is the wave function in the acceleration gauge.
The vector α(t) is related to the vector potential A(t) and is
defined in the case of circular polarization as

αcir(t) = α√
2

(x̂ cos ωt − ŷ sin ωt), (10)

while in the case of linear polarization it is defined as

αlin(t) = α ẑ cos ωt. (11)

Here, the ponderomotive radius is defined as α = A/ω in both
the cases of polarization. By the use of the Floquet theorem
and the partial wave expansion in the spherical coordinates,
the solutions of the TDSE [Eq. (9)] can be expressed as

�A(r,t) = e−iEt

∞∑
N=−∞

∞∑
l=0

l∑
m=−l

1

r
f lm

N (r)Ylm(θ,φ)eiNωt ,

(12)

where E is the quasienergy. On the other hand, the time-
dependent potential function in the TDSE [Eq. (9)] can be
expanded in the Fourier series as

− 1

|r + α(t)| =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞∑
N=−∞

∞∑
l=|N |

Cl
N (r; α)YlN (θ,φ)eiNωt (circular polarization)

∞∑
N=−∞

∞∑
l=0

C̃l
N (r; α)Yl0(θ,φ)eiNωt (linear polarization),

(13)

where definitions of Cl
N (r; α) and C̃l

N (r; α) are given in
Appendix A (see also Ref. [31] where similar quantities are
defined). By substituting Eqs. (12) and (13) into the TDSE
[Eq. (9)], one obtains the close-coupling equations in the
acceleration gauge. In the case of circular polarization, the
explicit form of the close-coupling equations is written as(

−1

2

d2

dr2
+ l(l + 1)

2r2
+ Nω

)
g

lµ

N (r)

+
∞∑

N ′=−∞

∞∑
l′=|µ+N ′|

V
ll′,µ
NN ′ (r; α)gl′µ

N ′ (r) = Eg
lµ

N (r), (14)

where a new quantum number µ = m − N is introduced, and
a new radial wave function is defined as g

lµ

N (r) ≡ f
l,µ+N

N (r).

The interaction potential V
ll′,µ
NN ′ (r; α) is given by

V
ll′,µ
NN ′ (r; α)

=
l+l′∑
l′′=s

(−1)N+µCl′′
N−N ′ (r; α)

×
√

(2l′′ + 1)(2l′ + 1)(2l + 1)

4π

×
(

l′′ l′ l

0 0 0

)(
l′′ l′ l

N − N ′ µ + N ′ −µ − N

)
, (15)

where s = max{|N − N ′|,|l − l′|} and (· · ·) indicates the
Wigner 3j symbol. Although the close-coupling equations

for circular polarization have been explicitly derived in Refs.
[28,31], the quantum number µ was not employed. On the
other hand, for linear polarization, the explicit form of the
close-coupling equations is expressed as

(
−1

2

d2

dr2
+ l(l + 1)

2r2
+ Nω

)
f lm

N (r)

+
∞∑

N ′=−∞

∞∑
l′=0

Ṽ
ll′,m
N−N ′ (r; α)f l′m

N ′ (r) = Ef lm
N (r), (16)

where the interaction potential Ṽ
ll′,m
N−N ′ (r; α) is expressed as

Ṽ
ll′,m
N−N ′ (r; α)

=
l+l′∑
l′′=0

(−1)mC̃l′′
N−N ′ (r; α)

√
(2l′′ + 1)(2l′ + 1)(2l + 1)

4π

×
(

l′′ l′ l

0 0 0

) (
l′′ l′ l

0 m −m

)
. (17)

In Secs. V and VI, the ionization mechanisms are discussed
based on the model in which two selected channels in the
acceleration gauge are taken into account. In the analysis of the
two-channel model, the S-matrix pole position is calculated on
the basis of the R-matrix propagation method as follows: The
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wave function of the resonance satisfies the Siegert boundary
condition

g
lµ

N (r), f lm
N (r)

r→∞� const. × H
(+)
l (η,kNr), (18)

where H
(+)
l (η,kNr) represents the Coulomb function in the

form of outgoing spherical wave, kN = ±√
2(E − Nω) is the

asymptotic momentum of the N th Floquet channel, and η =
−1/kN . It should be noted that the Coulomb function is the
multivalued function for the complex variable. On the other
hand, the boundary condition at the origin is given by the usual
form

g
lµ

N (r), f lm
N (r)

r→0� const. × rl+1. (19)

The R-matrix propagation is started at a point in a close vicinity
of the origin. At a point r = rb in the asymptotic region,
the Siegert boundary condition, Eq. (18), is imposed on the
R-matrix R(b). It leads to the secular equation

det

[
H (+)(η,krb) − R(b)

(
d

dr
H (+)(η,kr)

)
r=rb

]
= 0, (20)

from which the complex quasienergy can be deter-
mined. The numerical procedures are described briefly in
Appendix B.

The R-matrix Floquet method in the velocity gauge has
been employed by several researchers [14–16]. Dörr et al.
mentioned that the same method in the acceleration gauge
is numerically unstable [33]. Such a difficulty was not
encountered in the calculation of the two-channel model in
the present study.

III. SPACE-TIME SYMMETRY PROPERTY

Pont et al. discussed the space symmetry property of
the KH bound states of atomic hydrogen in circularly and
linearly polarized laser fields [7–9]. However, the space-time
symmetry property has not sufficiently been studied for the
time-periodic system in the framework of the Floquet theory.
The TDSE [Eq. (9)] is invariant under the following symmetry
operation in the space-time; the space inversion accompanied
by the time translation δt = π/ω, for laser fileds with any
polarization. With respect to this generalized parity P defined
in the space-time, the eigenstate can be classified into two
symmetry species, G (symmetric) and U (antisymmetric).
In the case of the linearly polarized laser fields, the TDSE
[Eq. (9)] is also invariant under the rotation about the z

axis. The magnetic quantum number m thus remains as a
good quantum number. It is convenient to employ the symbol
� = ,�,�, . . . to specify the value of |m| and classify the
manifolds of electronic states as in the spectroscopic notation
of diatomic molecules. In the case of circularly polarized laser
fields, however, m is not a good quantum number. In this case,
the TDSE [Eq. (9)] is invariant under the rotation of angle
δφ about the z axis accompanied by the time translation δt =
δφ/ω. The good quantum number µ = m − N introduced in
Eq. (14) is associated with this symmetry. The manifolds of
electronic states can thus be classified by this quantum number
as µ = 0,±1,±2, . . . . In the KH approximation, i.e., in the
limit ω → ∞, the generalized parity P is reduced to the usual
parity with respect to the space inversion, and the system has

rotational symmetry about the z axis for both the cases of
polarization. The manifolds µ = 0, ±1, ±2, . . . are reduced
to ,�,�, . . . , respectively. These definitions are consistent
with those used by Pont et al. for the classification of the KH
bound states [7–9].

The coupling scheme of the close-coupling equations
[Eqs. (14) and (16)] within each symmetry manifold is
analyzed as follows: In the case of circular polarization,
the selection rule of the coupling is given by |�l| = 1 and
�m = �N = ±1 for the polarization vector lying in the xy

plane. For instance, the channel (lm,N ) = (s,0) is coupled
with (p1,1) and (p−1,−1). From the latter two channels,
chains of coupling further grow involving the channels
(d2,2),(d0,0),(d−2,−2), . . . , and form a tree-diagram in which
(s,0) is placed at the apex as shown in Fig. 1(a). This
set of channels forms 0G manifold. On the other hand, the
set of channels stemming from (lm,N ) = (s, − 1) forms 1U

manifold. It should be noted that 0G and 1U manifolds have the
same physical contents because the both are composed of the
same coupling tree, s ↔ {p1,p−1} ↔ {d2,d0,d−2} ↔ . . . . This
is a manifestation of the periodic symmetry of quasienergy
spectra in the Floquet formalism. The close-coupling equations
[Eq. (14)] are invariant under the replacement (µ,N,E) →
(µ ± 1,N ∓ 1,E ∓ ω). Due to the periodicity of the Flo-
quet representation, the replacement (N,E) → (N ± 1,E ±
ω) merely shifts the origin of energy without changing the
physical contents of the wave function. Consequently,
the replacement (µ,N,E) → (µ ± 1,N,E) dose not change
the physical contents. In other words, the quasienergy
spectrum of µG manifold is the same as that of (µ + 1)U

with the origin of energy shifted by ω. The periodicity of the
quasienergy spectrum is achieved by superposing the sequence
of {. . . ,(−1)U,0G,1U, . . .}. The independent manifold other
than 0G is only 0U which consists of the coupling tree p0 ↔
{d1,d−1} ↔ {f2,f0,f−2} ↔ · · · [see Fig. 1(c)]. In conclusion,
it suffices to solve the close-coupling equations only for two
manifolds 0G and 0U in the numerical study.

In the case of linear polarization, the selection rule is given
by |�l| = 1, �m = 0 and |�N | = 1 for the polarization vector
lying parallel to the z axis. The channel (lm,N ) = (s,0) is
coupled with (p0,1) and (p0,−1). From the latter two channels,
a network of coupling further grows as shown Fig. 1(b).
Accordingly, the channels satisfying (l,N ) = (even,even) or
(odd,odd) with fixed m are all coupled to form �G manifold.
On the other hand, the channels satisfying (l,N ) = (even,odd)
or (odd,even) forms �U manifold. By the Floquet energy shift
(N,E) → (N ∓ 1,E ± ω), the �G manifold is transformed to
the �U manifold. This indicates that the quasienergy spectrum
of �G manifold is obtained by simply shifting that of the
�U manifold by E → E ± ω. In conclusion, a sequence of
G manifold, G,�G,�G, . . . , should be calculated in the
numerical study.

IV. S-MATRIX POLE TRAJECTORIES

The S-matrix pole trajectories are obtained by gradually
changing the value of α with fixed ω. The pole trajectories
of the 0G(circular polarization) and G(linear polarization)
manifolds are shown in Figs. 2 and 3, respectively, for the
cases of ω = 0.2,0.3,0.4, and 0.6. These manifolds contain
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FIG. 1. (Color online) The coupling
scheme among the electronic states of
atomic hydrogen in circularly and linearly
polarized laser fields. The cases of four
different symmetry manifolds are shown:
(a) 0G(cir.), (b) G(lin.), (c) 0U(cir.), and
(d) �G(lin.). In each panel, the vertical
axis represents the index of the Floquet
block, N , and the horizontal axis indicates
the angular-momentum quantum number,
l. The sequence of (red) symbols in (b)
represents the set of channels used to
calculate the adiabatic potential curve as
discussed in subsection V A2.

the 1s state in the zero field limit. Except for the case of
ω = 0.6, the ionization from the 1s state requires multiphoton
absorption. The value of ω = 0.6 is used as a representative
value for the high-frequency regime, while ω = 0.2 is chosen
as that for the low-frequency regime with respect to the
1s state. The others, ω = 0.3 and 0.4, are referred to as
the intermediate-frequency regime. Detailed description of
the behavior of the observed pole trajectories is given in
subsections IV A–IV C.

For the case of circular polarization, the whole quasienergy
spectrum can be constructed from the 0G and 0U manifolds, as
mentioned in Sec. III. The pole trajectories of the 0U(cir.) man-
ifold is shown in Fig. 4. In the limit of zero field, the lowest state
in this manifold is 2p0. The one-photon ionization threshold of
2p0 corresponds to ω = 0.125. The value of ω = 0.2 is used
as a representative value for the high-frequency regime, while
ω = 0.045 is chosen as that for the low-frequency regime. In
the case of linear polarization, the manifold related with 2p±1

is the �G manifold. The pole trajectories of the �G manifold
is shown in Fig. 5. The selection of values of ω is the same as
0U(cir.).

Potvliege and his coworkers have reported numerical
studies on the pole trajectories of atomic hydrogen [13].
However, their calculations are restricted to the 0G(cir.) and
G(lin.) manifolds. Pole trajectories for the 0U(cir.) and
�G(lin.) manifolds have not been reported yet. It is emphasized
again that the whole quasienergy spectrum for the case
of circular polarization can be constructed from the two
symmetry manifolds, 0G(cir.) and 0U(cir.), both of which are
calculated in the present study.

The complex energy plane of mutichannel scattering is
composed of Riemannn sheets. It is necessary to specify a
Riemann sheet when one describes behaviors of the S-matrix

pole trajectories. In the present article, the notation introduced
in Paper I is employed. Its definition is briefly summarized
below: The asymptotic form of the wave function specifies the
Riemann sheet on which the corresponding pole is located.
The asymptotic momentum, kN = ±√

2(E − Nω), of the N th
Floquet channel, is positive (negative) on the physical (unphys-
ical) sheet with respective to the nth channel. A set of signs of
kn specifies the Riemann sheet uniquely. According to Paper
I, the symbol  = (. . . ,σN−1,σN,σN+1, . . .) is introduced,
where σN represents the sign of kN . A pole located in the
region Nω < ReE < (N + 1)ω is a dominant pole when the
combination of sign is given by

 = (. . . ,σN−1,σN,σN+1,σN+2, . . .)

= (. . . , − , − , + , + , . . .) ≡ N. (21)

Otherwise, the pole is a shadow pole. Here, the symbol N is
defined for the Riemann sheet for the dominant poles in the
region Nω < ReE < (N + 1)ω. The dominant pole is related
with the wave function of resonance. On the other hand,
shadow pole leads to the wave function with an unphysical
boundary condition.

The pole trajectories shown in Figs. 2–5 were calculated
by using the complex scaling method (CSM) described
in subsection II A. In the expansion of the wave func-
tion [Eq. (6)], the Sturmian basis functions up to n = 40
were employed. The Floquet channels, N = −20, . . . ,20,
were taken into account, and 15 angular-momentum
states were included in each Floquet channel. The setting of
the parameter κ is indicated in each figure caption in the form
of ESt = −κ2/2.
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FIG. 2. (Color online) The S-matrix pole trajectories of the 0G manifold for circular polarization. The cases of four different laser angular
frequencies are shown: (a) ω = 0.2, (b) ω = 0.3, (c) ω = 0.4, and (d) ω = 0.6. The pole trajectories are indicated by solid curves when the
poles are dominant poles and by dotted curves when they are shadow poles. The vertical lines represent the cuts originating from the branch
points at the channel thresholds. The numerical values near the circles indicate the values of α at these points. The symbol, 1s,2s, etc., near
the real axis represents the state to which the pole correlates in the zero field limit. The insets in (b) and (d) are magnifications of a part of each
figure. The dot-dashed (red) trajectories in (d) are the results of the two-channel model, in which the close-coupling equations [Eq. (14)] are
solved by including only two channels, (lm,N ) = (s,0) and (p−1,−1), in the acceleration gauge. The other trajectories were calculated by using
the CSM in the velocity gauge with ESt = −0.3.

A. Low-frequency regime

1. 0G(cir.) manifold

The pole trajectories of the 0G manifold for circular
polarization in the low-frequency regime (ω = 0.2) are shown
in Fig. 2(a). The pole of the 1s state becomes the (red)
dominant pole on the −3 sheet and moves left-downward with
increasing laser intensity. That (red) pole crosses the channel
threshold ReE = −0.6 at α = 2.8 and, consequently, becomes
a shadow pole. At the same α = 2.8, the (blue) pole on the
−4 sheet crosses the same channel threshold at approximately
the same point on the complex energy plane and becomes
a dominant pole. It seems that the role of dominant pole is
exchanged between these two poles. The (blue) pole on the
−4 sheet travels left-downward with increasing laser intensity
and eventually crosses the channel threshold ReE = −0.8.
Similarly, the exchange of the role between the (blue) pole
on the −4 sheet and the (orange) pole on the −5 sheet
occurs. The sequence of these dominant pole trajectories forms
one almost continuous trajectory representing the adiabatic
change of the dressed 1s state, which is broaden and shifted
downward with increasing α. Almost the same behavior has
been reported by Shakeshaft et al. for circularly polarized
laser fields of wavelength λ = 616 nm (ω = 0.074) [19] and

has also been observed in the 2D potential model in Paper I.
The line of connected trajectory represents the ponderomotive
energy shift, which is known to be typically observed in the
tunneling ionization or barrier suppression ionization (BSI).

The behavior of shadow poles is investigated by the
R-matrix propagation method in the acceleration gauge (see
subsection II B). The (blue) pole on the −4 sheet is found
to originate from one of the shadow poles of 1s, while the
(orange) pole on the −5 sheet originates from one of the
shadow poles of 4f−3. The origins of the (green) pole on
the −6 sheet and the (pink) pole on the −7 sheet have not
been assigned. The member poles of the connected trajectory
do not necessarily originate from the shadow poles of the 1s

state.
The dominant pole originating from the 2s state on the

−1 sheet exhibits totally different behavior. The pole moves
downward in the interval 0 < α < 2.7. At α = 2.7, the pole
turns around and begins to move upward. The upward motion
indicates that the ionization rate decreases with increasing
laser intensity. This is the stabilization phenomenon. The laser
frequency ω = 0.2 corresponds to the high-frequency regime
for the 2s state, which is bound more weakly than the 1s state.
Other excited states, 2p−1,3s,3p−1,3d−2, are also found to
exhibit the stabilization phenomenon.
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FIG. 3. (Color online) The same as Fig. 2 except that the trajectories in the G manifold for linear polarization are shown. The dashed line
in (a) indicates the ponderomotive energy shift. The dot-dashed (red) trajectories in (d) are the results of the two-channel model including only
two channels, (lm,N ) = (s,0) and (p0,−1), in the acceleration gauge. The other trajectories were calculated by using the CSM in the velocity
gauge with ESt = −0.3.

In Fig. 2(a), one can see a pole which does not originate
from the bound state in the zero field limit. It comes from
the region ImE < −0.20 and moves upward with increasing
laser intensity. This pole corresponds to an LIS and is named
1s ′(cir.) in this article because of the reason which will be
discussed in subsection V B. The 1s ′(cir.) state belongs to the
LIS of type II in the classification scheme of Potvliege [18].
In this article, LIS’s of type II are hereafter indicated by using
the symbol of related bound state with a prime. The 1s ′(cir.)
state seems to correlate to the 1s ′ state reported by Dörr and

Potvliege [17] in the condition of ω < 0.5 for circular and
linear polarization.

2. �G(lin.) manifold

The pole trajectories of the G manifold for linear polar-
ization in the low-frequency regime ω = 0.2 are shown in
Fig. 3(a). The dominant pole originating from the 1s state
moves left-downward on the −3 sheet and collides with the
dominant pole originating from the 2s state at α = 1.3–1.5.
After the collision, the pole of the dressed 1s state moves
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FIG. 4. (Color online) The S-matrix pole trajectories of the 0U manifold for circular polarization. The cases of two different laser angular
frequencies are shown: (a) ω = 0.045 and (b) ω = 0.2. The dot-dashed (red) trajectories in (b) are the results of the two-channel model in
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FIG. 5. (Color online) The same as in Fig. 4 except that the trajectories of the �G manifold for linear polarization are shown. The dot-dashed
(red) trajectories in (b) are the results of the two-channel model in the acceleration gauge including only (lm,N ) = (p±1,0) and (d±1,−1). The
other trajectories were calculated by using the CSM in the velocity gauge with ESt = −0.005 for (a) and −0.05 for (b).

right-downward and exhibits the stabilization when α � 2.6,
while the pole of the dressed 2s state moves leftward and
becomes a shadow pole by passing the threshold ReE = −0.6
at α = 2.9. The characters of these two poles seem to be
exchanged by the collision just like an avoided crossing. If
trajectories are traced “diabatically,” i.e., the trajectory of the
1s pole for α = 0.0–1.5 is connected with that of the 2s pole
for α = 1.3–2.9, the resultant trajectory can be regarded as
exhibiting the ponderomotive energy shift. Although there is
a gap, this ponderomotive energy shift is succeeded by the
(blue) dominant poles on the −4 sheet: When the precursor
(red) dominant pole of the dressed 2s state becomes a shadow
pole, the (blue) dominant pole of the dressed 4p0–4f0 state
seems to succeed the line of the ponderomotive energy shift.
The 4p0–4f0 pole soon collides with the dominant pole of
the dressed 3p0 state, and the ponderomotive energy shift is
succeeded between them by the avoided crossing. A similar
succession further occurs from the 3p0 pole to the 2p0 pole.
In contrast to the case of the circular polarization shown in
Fig. 2(a), plural number of dominant poles exist on each sheet,
and they collide with each other. Despite the interruption at
each collision, a line of the ponderomotive energy shift is
formed as indicated by the dashed arrow in Fig. 3(a). The
energy position, ReE, of each resonance is plotted as a function
of α in Fig. 6, where the ponderomotive energy shift can clearly
be identified by tracing the curves “diabatically.” Similar
behavior of pole trajectories was reported by Shakeshaft
et al. [19]. In summary, the pole trajectories of the G(lin.)
manifold exhibit the ponderomotive energy shift, implying
the tunneling ionization or BSI. In contrast to the case of
the 0G(cir.) manifold, however, the avoided crossings caused
by collisions among the poles destroy the smooth adiabatic
change. These collisions are the essential feature of the case
of linear polarization. In the case of circular polarization,
the pole trajectory of the dressed 1s state runs without any
collision due to the existence of the quantum number µ.
The case of linear polarization has “lower” symmetry as
discussed in Sec. III. The difference in the space-time sym-
metry causes the dissimilarity between two different cases of
polarization.

On the other hand, an LIS appears on the −3 sheet by
crossing rightward the channel threshold ReE = −0.6. This

LIS is named 1s ′(lin.) state. Another LIS (indicated as LIS1)
appears on the −4 sheet by crossing leftward the threshold
ReE = −0.6 at α = 4.6.

3. 0U(cir.) manifold

The pole trajectories of the 0U manifold for circular
polarization in the low-frequency regime ω = 0.045 are shown
in Fig. 4(a). The (red) dominant pole of the dressed 2p0 state
moves left-downward and becomes a shadow pole by passing
leftward the threshold ReE = −0.135. At this threshold, no
dominant pole appears as a successor. On the other hand,
the (blue) dominant pole of 4g−3 on the −4 sheet travels
left-downward. When this (blue) dominant pole becomes a
shadow pole by passing leftward the threshold ReE = −0.180,
an (orange) pole appears on the −5 sheet. Although the
connection is not smooth, a line of the ponderomotive energy
shift is formed as in the case of the 0G(cir.) manifold. On
the other hand, there exist two LIS’s; a (light blue) pole
[indicated as 2p′

0(cir.)] appears on the −1 sheet at large
intensity by crossing rightward the threshold ReE = −0.045;
and a (purple) pole (indicated as LIS4) appears on the −1
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FIG. 6. (Color online) The α dependence of the real parts of
quasienergies of the G manifold for linear polarization in the case
of ω = 0.2. The colors of curves correspond to that of the pole
trajectories in Fig. 3(a). The dashed line indicates the ponderomotive
energy shift.
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sheet by crossing rightward the threshold ReE = −0.090 at
α = 4.0.

4. �G(lin.) manifold

The pole trajectories of the �G manifold for linear po-
larization in the low-frequency regime ω = 0.045 are shown
in Fig. 5(a). The pole trajectories can be viewed in a fashion
similar to the case of the G(lin.) manifold. The dominant pole
of the dressed 2p1 state travels left-downward and becomes a
shadow pole by passing leftward the threshold ReE = −0.135.
No successor appears at this threshold. However, the dominant
pole originating from the 5d1–5g1 states takes the role of
the leftward travel. The leftward motions of these poles can
be interpreted as the ponderomotive energy shift. On the
other hand, there exist three LIS’s; a (red) pole [indicated as
2p′

1(lin.)] appears on the −3 sheet by crossing the threshold
ReE = −0.135 at α = 5.4; a (blue) pole (indicated as LIS5)
appears on the −4 sheet by crossing the threshold ReE =
−0.180 at α = 4.5; and (red and orange) poles (indicated as
LIS6) appear on the −3 and −5 sheets by crossing leftward
each threshold at α = 8.7. The LIS5 soon becomes a shadow
pole again by recrossing the threshold at α = 8.8, but the role
of the LIS5 seems to be succeeded by the LIS6.

B. Intermediate-frequency regime

1. 0G(cir.) manifold

The pole trajectories of the 0G(cir.) manifold in the
intermediate-frequency regime (ω = 0.3) are shown in
Fig. 2(b). Unlike the case of ω = 0.2, the continuous ex-
changes of dominant and shadow poles are not seen. The (red)
dominant pole of the dressed 1s state moves left-downward
on the −2 sheet and becomes a shadow pole by passing
the threshold ReE = −0.6. There appears no pole to take the
role of the ponderomotive energy shift. On the other hand, the
(blue) dominant pole of the dressed 3d−2 state on the −3 sheet
travels left-downward and becomes a shadow pole by passing
the threshold ReE = −0.9. This (blue) pole can be interpreted
as a successor of the (red) pole of 1s although the connection
between them is not continuous. At the threshold ReE = −0.9,
the role of the (blue) pole in the −3 sheet is taken by an
(orange) pole on the −4 sheet. Therefore, it is only when
α is sufficiently large that the ponderomotive energy shift is
observed and that the picture of the tunneling ionization holds.
This is consistent with the fact that the Keldysh parameter
satisfies the tunneling condition (γ < 1) for α > 3.33 in the
present case. The other dominant poles on the −2,−1, and
0 sheets exhibit the stabilization. The LIS 1s ′(cir.) appears
on the −1 sheet as in the case of ω = 0.2. It is emphasized
that both the maximum ionization rate of the 2s state and
the corresponding ponderomotive radius, which is called the
critical radius, αcir(c), in this article, are smaller than those in
the case of ω = 0.2. The reason is discussed in subsection VI A
based on an intuitive physical picture.

The case of ω = 0.4 are shown in Fig. 2(c). The pondero-
motive energy shift is not seen at all. The frequency being set
to ω = 0.4; the lowest eigenstate on the −2 sheet is 2p−1

in the limit of zero field. It is the (red) pole of the dressed
2p−1 state that moves left-downward at first. This can be
interpreted as an irregular behavior peculiar to the value of

ω = 0.4. Due to the interaction between 1s and 2p−1, their
roles are exchanged, and the pole originating from 1s exhibits
stabilization as 2p−1 in the case of ω = 0.2 and 0.3. The
pole originating from 2p−1 makes a counterclockwise turn,
shows the stabilization, and eventually becomes a shadow pole
by passing rightward the threshold ReE = −0.4 at α = 2.7.
Other dominant poles stemming from the original excited
states also exhibit stabilization. Both the maximum ionization
rate and the critical radius, αcir(c), of the dressed 2s state
become smaller than those in the case of ω = 0.3. The LIS
1s ′(cir.) state appears on the −1 sheet. This LIS seems to be
a successor of the (red) pole of 2p−1.

2. �G(lin.) manifold

The pole trajectories of the G manifold for linear polar-
ization in the case of ω = 0.3 are shown in Fig. 3(b). On
the −2 sheet, the (red) dominant pole of the dressed 1s

state moves left-downward and becomes a shadow pole by
crossing the threshold ReE = −0.6 at α = 1.9. On the other
hand, the (blue) dominant pole of the dressed 2s state moves
right-downward on the −3 sheet but changes its direction at
α 
 2.5. The pole seems to take the role of the ponderomotive
energy shift. Afterward, the pole of 2s exhibits the stabilization
when it collides with the (blue) poles [indicated as 1s ′(lin.)]
coming upward. The pole of 1s ′(lin.) moves left-downward
for α � 3.3 and seems to take the role of the ponderomotive
energy shift. The pole of 1s ′(lin.) on the −3 sheet crosses the
threshold ReE = −0.9 at α = 4.0. Due to the 2ω periodicity
of the quasienergy spectrum of the G(lin.) manifold, the pole
of 1s ′(lin.) can be seem also in the region −0.3 < ReE < 0.
The pole of 1s ′(lin.) seems to transfer its role to the (red) pole
on the −2 sheet indicated by LIS2.

The case of ω = 0.4 is shown in Fig. 3(c). On the −2

sheet, the (red) pole originating from the 2p0 state, which
is the lowest eigenstate on this sheet, moves so as to make
a counterclockwise turn and eventually becomes a shadow
pole by crossing the threshold ReE = −0.4 at α = 2.9.
The LIS 1s ′(lin.) appears on the −1 sheet by crossing the
threshold ReE = −0.4 at α = 1.4. The behaviors of these two
trajectories resemble those of the dressed 2p0 and 1s ′(cir.) in
the 0G(cir.) manifold in Fig. 2(c). Another LIS (indicated as
LIS3) appears by crossing leftward the threshold ReE = 0.0.
This LIS travels leftward and becomes a shadow pole again, by
passing leftward the threshold ReE = −0.4. The LIS3 shows
no stabilization in the limit α → ∞ and can be interpreted as
a transient state which does not correlate with the KH bound
state.

C. High-frequency regime

The pole trajectories of the 0G(cir.) and G(lin.) manifolds
for the high-frequency regime ω = 0.6 are shown in Figs. 2(d)
and 3(d), respectively. In both the manifolds, the (red)
dominant poles of the dressed 1s state behaves in almost the
same manner: The pole moves right-downward and eventually
exhibits the stabilization. It should be noted that the stabilizing
part of the dressed 1s trajectory has resemblance to the
trajectories of the LIS’s 1s ′(cir.) and 1s ′(lin.), which appear in
the low- and intermediate-frequency regimes [Figs. 2(a)–2(c)
and Figs. 3(a)–3(c)]. The dominant poles originating from the
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excited ns (n = 2,3, . . .) states on the −1 sheet also exhibit
the stabilization in the same manner as 1s for either cases of
polarization. The stabilization of excited states takes place in
the range of α = 1.4–1.8.

The pole trajectories of the 0U(cir.) and �G(lin.) manifolds
for the high-frequency regime ω = 0.2 are shown in Figs. 4(b)
and 5(b), respectively. The pole trajectories of these two
manifolds resemble each other and also look similar to those
of the 0G(cir.) and G(lin.) manifolds. All the dominant poles
move in a similar way and show stabilization at α = 2.8–3.3.
The insensitivity of the phenomena to the type of polarization
can be regarded as common to all the manifolds in the
high-frequency regime.

V. ANALYSIS OF THE IONIZATION MECHANISM ON
THE BASIS OF THE POTENTIAL CURVES

As discussed in the preceding section, the pole trajectories
in the low-frequency regime can be interpreted as exhibiting
the ponderomotive energy shift. In the case of circular polar-
ization, particularly, the dominant pole trajectories are almost
continuously connected to form the line of the ponderomotive
energy shift. Such a smooth ponderomotive energy shift
implies that the mechanism of tunneling ionization or BSI
is working. In the case of linear polarization, however, the
connection between trajectories is less smooth. The line of the
ponderomotive energy shift is apt to broken by the collision
among the pole trajectories. The validity range of the tunneling
mechanism thus seems to depend on the type of laser polar-
ization. On the other hand, the behavior of pole trajectories
in the high-frequency regime is found to be dominated by
the stabilization for both the types of polarization. In order to
explain these observations and to clarify the mechanisms of
tunneling ionization and stabilization, the attention is focused
on the potential matrix in the close-coupling equations in the
acceleration gauge [Eqs. (14) and (16)]. The effective potential
matrix is here defined as the interaction potential added by the
centrifugal potential. Its explicit form is given by

(V cir
µP

(r; α))NlN ′l′ =
[
l(l + 1)

2r2
+ Nω

]
δNN ′δll′ + V

ll′,µP

NN ′ (r; α),

(22)

for circular polarization and

(V lin
�P

(r; α))NlN ′l′ =
[
l(l + 1)

2r2
+ Nω

]
δNN ′δll′ + Ṽ

ll′,�P

N−N ′ (r; α)

(23)

for linear polarization. The adiabatic potential curves for the
radial motion of the electron are obtained by the eigenvalues
of the effective potential matrix plotted as a function of r ,
while the diabatic potential curves can be directly obtained
by plotting the diagonal elements. The KH potential curves
can be obtained by diagonalizing the block of N = N ′ =
0, (V cir

µP
(r; α))N=N ′=0 or (V lin

�P
(r; α))N=N ′=0. The diabatic

potential curves in each Floquet block do not cross each other.
Consequently, The KH potential curves exhibit no avoided
crossing and thus resemble the diabatic potential curve of
N = 0 block.

In the following subsections, the adiabatic and KH potential
curves were calculated by using relatively small number of
channels to make the potential diagram more sparse and clear.
The Floquet channels taken into account were as follows: N =
−15, . . . ,5 in the low-frequency regime (subsection V A), and
N = −5, . . . ,5 in the high-frequency regime (subsection V B).
For both the frequency regimes, five angular-momentum states
were included in each Floquet block.

A. Low-frequency regime

1. Case of circular polarization

Figure 7 shows the adiabatic, diabatic, and KH poten-
tial curves of the 0G(cir.) manifold in the low-frequency
regime ω = 0.2. When α = 0, the adiabatic, diabatic, and
KH potential curves coincide with each other by definition.
When α increases, the adiabatic potential curves begin to
exhibit avoided crossings with each other. When α = 2.0,
the lowest adiabatic curve comes to have a barrier, through
which the tunneling ionization can take place. At the same
time, the effects of the avoided crossings create a new
cuspidal potential well separated from the bunch of repulsive
potential curves due to the following reason. The lowest
diabatic potential, (V cir

0G
(r; α))00,00, is a constant in the inner

region 0 � r � α/
√

2 [see Eqs. (15) and (A1)], and its
derivative is discontinuous at the boundary point r = α/

√
2.

The interaction among channels becomes maximum at the
boundary point r = α/

√
2 and decreases exponentially with

either increasing and decreasing r . Due to the repulsion among
the diabatic curves, the lowest adiabatic curve forms a cuspidal
well at the boundary point r = α/

√
2. The original 1s state

becomes a resonance state held on this potential well when the
laser field is switched on. As α increases, the maximum of the
interaction shifts toward larger r , and the cuspidal well also
shifts along the envelop of the repulsive curves. As a result, the
ponderomotive energy shift takes place. When 0 < α < 4, the
resonance state locates inside the potential well. The electron
bounded in the cuspidal well tunnels through the potential
barrier. When α � 4, the energy of the resonance state exceeds
the top of the barrier, and the BSI takes place.

In order to verify this intuitive picture, the calculation of
the single-channel scattering for the lowest adiabatic potential
is carried out by using the complex absorbing potential
(CAP) method. The detail of the calculation is described in
Appendix C. The resultant complex energy eigenvalues are
shown in Fig. 8 together with the lowest adiabatic potential
curves used for the CAP calculation. Slight difference between
the lowest adiabatic potential curves in Figs. 7 and 8 is due
to the difference in the number of channels considered in the
calculation. The adiabatic curves in Fig. 7 are generated by less
number of channels in order to make the graph more sparse and
clear. It should be noted that the complex energy eigenvalues
shown in Fig. 7 were not calculated by using the potential
curves shown together but obtained by the accurate calculation
based on the CSM. The complex energy eigenvalues shown in
Fig. 8 agree with exact ones in Fig. 7. The tunneling ionization
and the BSI can be interpreted as decay of the shape resonance
formed on the lowest adiabatic potential as in the case of 2D
Gaussian potential model (see subsection IVA of Paper I).
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FIG. 7. (Color online) Potential curves for the radial motion of
electron of the 0G manifold for circular polarization in the case of
the low-frequency regime ω = 0.2. (Black solid curves) Adiabatic
potential, (pink dashed curves) diabatic potential, and (purple dashed
curves) KH potential. The values of the ponderomotive radius α are
shown in each figure. The horizontal bands indicate the positions and
widths of several selected resonances corresponding to the dominant
poles of the same color in Fig. 2(a).

On the other hand, the behaviors of the dressed 2s state
and the LIS 1s ′(cir.) are explicable by the KH potential. As
α increases, these states seem to become a resonance state
formed on the KH potential. The behavior of this kind is the
so-called KH stabilization typical to the high-frequency regime
[4]. Its mechanism will be discussed in subsection V B.

The potential curves of the 0U(cir.) manifold is shown in
Fig. 9. The ionization mechanism can be explained in a way
quite similarly to the case of the 0G(cir.) manifold. When the
laser field is switched on, the potential for the np0 state is
deformed to the lowest adiabatic curve with a barrier due to
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FIG. 8. (Color online) The position and width of the resonance
formed in the single-channel scattering on the lowest adiabatic
potential of the 0G manifold for circular polarization in the case
of the low-frequency regime ω = 0.2. The black solid curve is the
lowest adiabatic potential obtained from the calculation. The (brown)
horizontal bands indicate the positions and widths of the resonances.
In the case of α = 0.0, the horizontal line indicates the position of
the 1s state. The detail of the calculation is described in Appendix C.

avoided crossings with the other curves. As α increases, the
potential well becomes shallower, and the barrier becomes
lower. Such a change of the lowest adiabatic curve indicates
the ponderomotive energy shift of the dressed 2p0 state. The
ionization mechanism of the 2p0 state is quite similar to that of
1s of the 0G(cir.) manifold: Tunneling ionization for 0 < α � 3
and BSI for α > 3.

In summary, the adiabatic potential curves generated from
the effective potential matrix clearly show that the ionization
mechanism is explicable by the tunneling of electrons. The
ponderomotive energy shift is explained by the change in the
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FIG. 9. (Color online) The potential curves of the 0U manifold
for circular polarization in the low-frequency regime (ω = 0.045).
The horizontal bands correspond to several selected dominant poles
of the same color in Fig. 4(a). See the caption of Fig. 7 for the legend
about the curves.

lowest adiabatic curve with increasing laser intensity. It is
noteworthy that the electron motion in the ionization process
can be understood by the single-channel potential problem. In
this respect, there is complete parallelism with the 2D Gaussian
potential model in Paper I.

2. Case of linear polarization

The potential curves of the G(lin.) manifold is shown in
Fig. 10. The structure of the potential curves differs totally
from the case of circular polarization due to the difference in
the space-time symmetry property as discussed in Sec. III. In
the case of G(lin.) manifold, the Floquet block of even N

contains all the diabatic channels of even l and that of odd N

contains all those of odd l. The potential diagram thus becomes
2ω periodic with respect to the quasienergy. In consequence,
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FIG. 10. (Color online) The same as Fig. 7 except that the
potential curves of the G manifold for linear polarization are shown.

all the adiabatic curves have to experience many avoided
crossings. However, some of the avoided crossings exhibit very
small energy gaps. In the case of α = 1.0, potential barriers
can be seen in every other Floquet interval as indicated in
Fig. 10. The existence of such a barrier supports the picture of
tunneling ionization. As α increases, the barriers are pushed
down, the ponderomotive energy shift being suggested. As
α increases further, however, the barriers are destroyed by
avoided crossings with large energy gaps. Up to α = 3.0,
the barriers can be recognized in the potential diagram. In
accordance with it, the ponderomotive energy shift of the pole
trajectory can almost continuously be traced in Figs. 3(a) and 6
up to α = 2.9. In the case of α = 4.0, the potential barrier is
completely destroyed. In this respect, the situation differs from
the case of circular polarization.

In order to verify the tunneling picture, the calculation of
the single-channel scattering is carried out. In this case, a
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FIG. 11. (Color online) The model potential for the G(lin.)
manifold in the case of the low-frequency regime ω = 0.2. The black
solid curve is the lowest adiabatic potential constructed by the selected
channels (s,0),(p0,−1),(d0,−2), . . . . The (brown) horizontal bands
indicate the positions and widths of the resonances formed on the
potential curves. In the case of α = 0.0, the horizontal line indicates
the position of the 1s state. The detail of the calculation is indicated
in Appendix C.

certain modeling is required in order to define a potential
curve which will dominate the tunneling. The potential barrier
seen in Fig. 10 is constructed by a choice of channels as
follows: The channel (lm,N ) = (s,0) is coupled with (p0,−1)
and (p0,1) [see Fig. 1(b)]. The pair of (s,0) and (p0,−1)
makes a curve crossing, while that of (s,0) and (p0,1) does
not. The channel (p0,−1) is coupled with (s,0),(d0,0),(s,−2),
and (d0,−2). Among them only (s,0) and (d0,−2) make curve
crossing with (p0,−1). A selection based on the curve crossing
defines a sequence of channels, (s,0),(p0,−1),(d0,−2), . . . , as
indicated by (red) symbols in Fig. 1(b). The effective potential
matrix constructed by this sequence of channels leads to an
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FIG. 12. (Color online) The same as in Fig. 9 except that these
are potential curves of the �G manifold for linear polarization.

adiabatic potential curve as shown in Fig. 11. It roughly
reproduces the potential barrier seen in Fig. 10. The complex
energy eigenvalue of the resonance formed on the potential
curve is calculated and indicated in Fig. 11. The detail of
the calculation is described in Appendix C. The complex
energy eigenvalues in Fig. 11 do not reproduce the line of
ponderomotive energy shift shown in Fig. 3(a). In spite of the
existence of the barrier, the decay of the resonance cannot be
understood as a single-channel problem due to large avoided
crossings in the inner region r < α.

The potential curves of the �G(lin.) manifold are shown
in Fig. 12. The potential barriers are more clearly seen. The
avoided crossings in the inner region are smaller than the case
of the G(lin.) manifold. The barriers are pushed down with
increasing α and, eventually, destroyed by avoided crossings.
For α < 4.0, the potential with a well and a barrier can be
recognized. In accordance with it, the corresponding pole
trajectory in Fig. 5(a) exhibits a smooth ponderomotive energy
shift up to α = 3.7.

In conclusion, the tunneling mechanism accompanied with
the ponderomotive energy shift can be recognized in the case
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FIG. 13. (Color online) The left and right columns show the potential curves of the 0G(cir.) and G(lin.) manifolds, respectively, in the case
of high-frequency regime ω = 0.6. See the caption of Fig. 7 for the legend about the curves.

of the linear polarization. However, the decay of the resonance
state cannot simply be understood on the basis of the single-
channel potential problem due to the avoided crossings in the
inner region. The tunneling picture itself becomes inadequate
with increasing laser intensity. This situation contrasts with
the case of circular polarization, in which the tunneling
ionization can be explicable by the single-channel problem of
the lowest adiabatic potential. The dissimilarity is ascribable
to the difference in the space-time symmetry.

B. High-frequency regime

The potential curves of the 0G(cir.) manifold in the high-
frequency regime ω = 0.6 are shown in the left column of

Fig. 13. When α = 1.0, the cuspidal potential well is shallower
than the case of ω = 0.2 shown in Fig. 7. In the high-frequency
regime, the larger channel interval makes the envelope of the
diabatic curves steeper, and this situation makes the cuspidal
well shallower. For α � 1, therefore, no resonance state is
formed on the cuspidal well. In the present case, the dressed 1s

state shifts upward with increasing α and becomes a resonance
state trapped in the well of the potential curve in which the
avoided crossing with small gaps are connected diabatically.
The resonance state decays due to the avoided crossings. When
α = 1.0–2.0, the diabatic trapping potential experiences the
avoided crossings with large energy gaps, and, consequently,
the resonance has a large width. When α � 3, however, the
energy gaps decrease, and the stabilization of resonance state
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FIG. 14. (Color online) The results of the two-channel model. The left column is the case of circular polarization calculated by considering
the two channels, (lm,N ) = (s,0) and (p−1,−1). On the other hand, the right column is the case of linear polarization calculated by considering
(s,0) and (p0,−1). The meaning of the black solid and pink dashed curves are the same as Fig. 7.

takes place. The trapping potential coincides with the KH
potential. This is none other than the KH stabilization. The
reduction of the energy gap originates from a discrepancy
between the crossing point and the maximum of the coupling
matrix element as a function of r . This is the same scenario
as in the case of 2D model discussed in Paper I. An analysis
on the α dependence of the energy gap will be presented in
subsection VI A.

The potential curves of the G(lin.) manifold shown in
the right column of Fig. 13 have the structure similar to the
0G(cir.) manifold except that the cuspidal potential well is
not seen. The dressed 1s state shifts upward and becomes
a resonance state trapped in the well of the potential curve

traced diabatically. When α = 1.0–2.0, the trapping potential
is destroyed by the avoided crossings with large energy gaps.
When α � 3.0, the KH potential is recovered by decreasing
energy gaps, and the stabilization occurs. The scenario of
the KH stabilization is thus common to both the circular
and linear polarizations. The stabilization of the resonance
originating from the ns (n = 0,1,2, . . .) state can qualitatively
be explained, for either the case of the 0G(cir.) and G(lin.)
manifolds, by the two-channel model in which only two
channels are taken into account; (lm,N ) = (s,0) and (p−1,−1)
for 0G(cir.); (lm,N ) = (s,0) and (p0,−1) for G(lin.). The
resonance positions and widths obtained by the two-channel
model are shown in Fig. 14 together with the potential curves.
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FIG. 15. (Color online) The left and right columns show the potential curves of the 0U(cir.) and �G(lin.) manifolds, respectively, in the
case of high-frequency regime ω = 0.2. See the caption of Fig. 7 for the legend about the curves.

The same data are also shown in the form of pole trajectory
in Figs. 2(d) and 3(d). The resonance can be interpreted as
the Feshbach resonance, in which the scattering wave in the
open channel (p−1,−1) or (p0,−1) is trapped in the closed
channel (s,0). The stabilization of the resonance state is
reproduced in the model calculation. The critical intensities,
αcir(c) and αlin(c), approximately agree with the exact values,
although the maximum resonance widths are much smaller
than the exact ones. The latter discrepancy is apparently
ascribable to the neglect of the avoided crossings other
than that considered in the two-channel model. Nevertheless,
the model accurately predicts the onset of the decrease of the
main energy gap, and thus the values of αcir(c) and αlin(c). The

reason is because the other energy gaps to be considered have
the α-dependence similar to the main energy gap.

The potential curves of the 0U(cir.) and �G(lin.) manifolds
in the high-frequency regime ω = 0.2 are shown Fig. 15.
The scenario of the stabilization for the 0U(cir.) and �G(lin.)
manifolds is the same as the 0G(lin.) and G(cir.) manifolds.

The 2s state of the 0G(cir.) manifold in the cases of ω =
0.2–0.6 also exhibits the stabilization as shown in Fig. 2. Since
these values of ω all exceed the binding energy of the original
2s state, 0.125 a.u., these cases belong to the high-frequency
regime. In the corresponding potential diagram for ω = 0.2
(Fig. 7), a diabatic trapping potential can be seen when α =
8.0. The trapping potential coincides with the KH potential.
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The stabilization of the dressed 2s state can thus be interpreted
as the KH stabilization. The pole trajectory of 2s for the cases
of ω = 0.3, 0.4, and 0.6 exhibits the shape typical to the KH
stabilization as can be seen in the case of 1s for ω = 0.6.

The diabatic trapping potential of the 0G(cir.) manifold
(Fig. 13) is found to give rise to a plural number of resonances.
Since the long-range part of the KH potential is Coulombic,
a Rydberg series of resonances is supposed to be formed.
The pole trajectories of 2s, 3s-3d0, and 4s-4d0 in the case
of ω = 0.4 and 0.6 [Figs. 2(c) and 2(d)] are the members of
such a Rydberg series. In the case of ω = 0.4, the ground
(quasibound) state of the KH potential is found to be the LIS
1s ′(cir.) when α > 1.5. This is a reason why this LIS is named
as 1s ′(cir.). On the basis of the scenario of the KH stabilization,
the behavior of the 1s,2s, and 3s-3d0 states of the 0G(cir.)
manifold can be interpreted as follows: In the case of ω = 0.6
[Fig. 2(d)], all the members belong to the high-frequency
regime, and all exhibit the KH stabilization. When ω = 0.4
[Fig. 2(c)], the 1s state belongs to the intermediate-frequency
regime and its behavior is not simple. However, the dressed
2s and 3s-3d0 states still behave in accordance with the
scenario of the high-frequency regime and exhibit the KH
stabilization. In addition, the LIS 1s ′(cir.) appears and exhibits
the KH stabilization as if it stands proxy for 1s. The pole
trajectories for ω = 0.3 [Fig. 2(c)] can be interpreted in the
same fashion. When ω = 0.2, however, irregular behavior
is seen [Fig. 2(a)]. The energy position of the dressed
1s ′(cir.) state locates between those of the dressed 2s and
3s states. This irregularity can be ascribed to the collision
between the pole trajectories of the dressed 2s and 1s ′(cir.)
states.

As regards the case of linear polarization of ω = 0.2, any
diabatic trapping potential cannot be seen in the potential
diagram (Fig. 10). Although some of the pole trajectories of
the original excited states exhibit the stabilization [Fig. 3(a)],
the mechanism cannot be explained by the trapping to the KH
potential.

VI. DISCUSSION

A. Stabilization of the low-lying states

From the behavior of the dressed 2s state of the 0G(cir.)
manifold in Figs. 2(a), 2(b), 2(c), and 2(d), one can derive
following rules concerning the KH stabilization: (1) The
critical radius, αcir(c), decreases with increasing ω and (2) the
maximum ionization rate, �max, decreases with increasing ω.
These two rules can also be recognized in the cases of other
excited states, e.g., the dressed 2p−1 state in Figs. 2(c) and
2(d). For the G(lin.) manifold, the behavior of the dressed
2s state in Figs. 3(c) and 3(d) is consistent with the above
two rules. More two rules can be recognized when attention
is focused on the behavior of the trajectories of the dressed
1s and 2s states in Figs. 2(d) and 3(d): Rule (3) αcir(c) dose
not depend on n, and (4) �max decreases with increasing n for
fixed l,m, and ω. Rules (3) and (4) have been well known in
the theoretical studies of the atomic ionization based on the
Floquet formalism [17]. In this section, the above rules (1),
(2), (3), and (4) are analyzed on the basis of the two-channel
model.

An approximate formula of the critical radius is derived as
follows: As shown in Figs. 2(d) and 3(d), the critical radius is
reproduced by the two-channel model, in which only (lm,N ) =
(s,0) and (p0,−1) are considered. The critical radius can be
estimated as the value of α that maximizes the energy gap of
the avoided crossing between two channels. In general, the
crossing point rc between two diabatic potential curves in the
channels (N,l) and (N − 1,l + 1) can be obtained by solving
the equation

l(l + 1)

2r2
c

+ V
l,l,µP

N,N (rc; α) + Nω

= (l + 1)(l + 2)

2r2
c

+ V
l+1,l+1,µP

N−1,N−1 (rc; α) + (N − 1)ω (24)

for circular polarization. If the case of linear polarization
is considerd, V

l,l,µP

N,N (r; α) and V
l+1,l+1,µP

N−1,N−1 (r; α) should be

replaced by Ṽ
l,l,�P

0 (r; α) and Ṽ
l+1,l+1,�P

0 (r; α), respectively.
As can be seen from Fig. 14, the position of the crossing point is
largely governed by the difference in the centrifugal repulsion
between the two channels. In order to obtain a rough estimation
of rc, the approximation V

l,l,µP

N,N (r; α) 
 V
l+1,l+1,µP

N−1,N−1 (r; α) [or

Ṽ
l,l,�P

0 (r; α) 
 Ṽ
l+1,l+1,�P

0 (r; α)] is adopted. It leads to the
solution, rc = √

(l + 1)/ω. On the other hand, the maximum
of the off-diagonal element, which causes the avoided crossing,
occurs approximately at r = α/

√
2 for the circular polarization

and at r = α for the linear polarization. In consequence, the
energy gap of the avoided crossing reaches the maximum when
α = √

2rc (or α = rc). The critical radius is thus given by

α
cir(c)
0 =

√
2(l + 1)/ω (25)

and

α
lin(c)
0 =

√
(l + 1)/ω. (26)

For the ns state of the 0G(cir.) and G(lin.) manifolds,
substitution of l = 0 and ω = 0.6 into Eqs. (25) and (26) leads
to α

cir(c)
0 = 1.83 and α

lin(c)
0 = 1.29, which roughly coincide

with the exact values [see Figs. 2(d) and 3(d)]. The formulas
[Eqs. (25) and (26)] are consistent with rule (1), i.e., the critical
radius decreases with increasing ω. Rule (2) can qualitatively
explained as follows: As ω increases, the crossing point shifts
toward small r , and potential energy at the crossing point
is lowered. As a consequence, the velocity of the electron
at the crossing point increases, and the probability of the
nonadiabatic transition increases according to the Landau-
Zener formula. As a result, the electron tends to be bound in
the diabatic (KH) potential, and the ionization rate decreases.
Rules (3) and (4) can be explained similarly: The electrons of
the 1s and 2s dressed states are trapped in the same potential.
Hence, the critical radius of these states is the same. However,
the velocity of the electron of the 2s state is larger than that
of the 1s state at the crossing point. As a result, the maximum
ionization rate of the 2s state is smaller than that of the 1s state.
The above argument is applicable to any dressed states in the
high-frequency regime. In the next subsection, the stabilization
of the circular Rydberg states is discussed in more detail by
using the two-channel model.
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B. Stabilization of the circular Rydberg states

As shown in subsection IV C, all the bound states exhibit
the stabilization phenomenon in the high-frequency regime.
However, the experimental observation of the stabilization
phenomenon of the 1s state is quite difficult for the laser tech-
nology of today, because a superintense vacuum-ultraviolet
laser pulse is needed. Vos and Gavrila pointed out that for
highly excited Rydberg states it should be possible to detect the
stabilization phenomenon by the existing experimental means
[34]. For excited states with sufficiently small binding energy,
the high-frequency condition can be satisfied even by infrared
lasers. Moreover, in the case of linear polarization, a circular
state with |m| = l = n − 1 is the ground state of the manifold,
and its stabilization is restricted to “quasistationary (adiabatic)
stabilization” (QS) since it is free from the interference
stabilization [4]. Potvliege and Smith found an empirical
law to predict the critical intensity at which the stabilization
phenomenon starts in the case of linear polarization [35]. The
empirical law can be expressed in atomic units as

Isc = ω3m(l + 1 − m)! (27)

According to Ref. [35], the above formula is verified for
0.04 � ω � 0.1 with m = 4, 5, and 6, l = m,m + 1, and
m + 2, and the principal quantum number n = l + 1,l + 2,
and l + 3. Following these theoretical studies, Druten et al.
experimentally observed the stabilization phenomenon of Ne
atom in the 5g4 Rydberg state [24]. Piraux and Potvliege
analyzed the result and concluded that it was none other
than QS [25]. However, the stabilization was observed in the
condition α < aat, where aat is the spread of the electron wave
function. This fact contradicts the conventional picture that
the stabilization occurs due to the dichotomy of the KH wave
function which is formed when α � aat [22,23]. The radial
distribution function of the circular state has the maximum at
r = n2, and it leads to aat = n2 = 25 for the 5g4 state.

In order to study the stabilization of the circular Rydberg
state, the S-matrix pole trajectory originating from the 5g4

state is calculated for the linearly polarized laser field with ω =
2 eV (=0.0735 a.u.). The result is shown in Fig. 16. The onset
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FIG. 16. (Color online) The S-matrix pole trajectories of the
�G(lin.) manifold in the case of ω = 2 eV (=0.0735 a.u.). These
trajectories originate from the circular state 5g4. The solid curve is
the result obtained from the CSM with ESt = −0.005. The dashed
curves is the result of the two-channel model in the acceleration gauge
including only (lm,N ) = (g4,0) and (h5,−1).

of the stabilization is found to be α = 7.3, and the behavior
of the trajectory is similar to that of the dressed 1s state in
Fig. 2(d). The present result agrees with the previous numerical
studies [25,26,35], and does not support the theory based on
the dichotomy of the wave function. The result of the two-
channel model in the acceleration gauge including (lm,N ) =
(g4,0) and (h5,−1) is also shown in Fig. 16. The adiabatic and
diabatic potential curves of the two-channel model are shown
in Fig. 17. In accord with the discussion in subsection V B, the
resonance state can be interpreted as a Feshbach resonance,
in which the quasibound state on the KH potential of the
upper channel (lm,N ) = (g4,0) decays into the lower channel
(h5,−1). It should be noted that the potential crossing exists
at the classically forbidden region.

The critical radius can be calculated by Eq. (26). By
substituting l = 4 and ω = 2 eV (=0.0735 a.u.) into Eq. (26),

−0.1

−0.05

0

0.05

0.1

−0.1

−0.05

0

0.05

0.1

−0.1

−0.05

0

0.05

0.1

−0.1

−0.05

0

0.05

0.1

−0.1

−0.05

0

0.05

0.1

r (a.u.)

E
ne

rg
y 

(a
.u

.)
E

ne
rg

y 
(a

.u
.)

E
ne

rg
y 

(a
.u

.)
E

ne
rg

y 
(a

.u
.)

E
ne

rg
y 

(a
.u

.)

α=16.0 a.u.

ω=2 eV

α=12.0 a.u.

α=8.0 a.u.

α=0.0 a.u.

α=4.0 a.u.

5 10 20 50 100 200

ΓG(lin.)

FIG. 17. (Color online) The results of the two-channel model in
the acceleration gauge including (lm,N ) = (g4,0) and (h5,−1). The
meaning of the solid and dashed curves are the same as in Fig. 7. In
this figure, the widths of the bands are magnified by 1000 times.
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the critical radius is predicted as α
lin(c)
0 = 8.2, which is roughly

in accordance with the exact value α
lin(c)
0 = 7.3. The critical

radius is transformed to the critical laser intensity as

I lin(c) = ω4(αlin(c))2 = ω3(l + 1). (28)

On the other hand, the empirical law of Potvliege and Smith
[Eq. (27)] is written for the circular state, m = l, as

Isc = ω3l, (29)

which agrees with the result of the two-channel model
[Eq. (28)] for sufficiently large l. In short, the stabilization
of the circular Rydberg state can be explained by the potential
crossing of the two-channel model.

VII. CONCLUSION

In the present article, the ionization mechanisms of atomic
hydrogen in circularly and linearly polarized laser fields are
discussed within the framework of the Floquet formalism.
The S-matrix pole trajectories on the complex quasienergy
Riemann surface are calculated for a wide range of laser
frequency based on the CSM in the velocity gauge.

In the case of circularly polarized laser field of the low-
frequency regime, the pole trajectory originating from the 1s

state exhibits a smooth ponderomotive energy shift implying
the tunneling mechanism. In the case of linear polarization,
however, the ponderomotive energy shift is interrupted by
many avoided crossings among the pole trajectories. In
the high-frequency regime, the pole trajectories exhibit the
stabilization phenomenon. The shape of trajectory is found to
be insensitive to the type of laser polarization.

These observations can be elucidated by a unified picture
based on the adiabatic potentials for the radial motion of the
electron in the acceleration gauge. In the case of circular
polarization, the lowest adiabatic potential appears in the
potential diagram of a given space-time symmetry manifold.
The lowest adiabatic potential has a well and a barrier in the
low-frequency regime, and the ionization can be explained
by the electron tunneling through the barrier of the single
adiabatic potential. The smooth ponderomotive energy shift
is explicable by the gradual change in the shape of the
lowest adiabatic potential. In the case of linear polarization,
however, the potential curves of a given manifold possess a
periodic symmetry with respect to the quasienergy. Although
potential barriers can be recognized in the potential diagram
for the low-frequency regime, the ionization mechanism is
not explicable by a single potential curve due to nonadiabatic
transitions occurring in every potential curve. This explains the
reason why the ponderomotive energy shift is not smooth in
the case of linear polarization. The simple picture of electron
tunneling working in the case of circular polarization does
not apply to the case of linear polarization. This dissimilarity
originates from the difference in the space-time symmetry.

The ionization in the high-frequency regime is found
to be governed by the nonadiabatic transitions at a small
number of crossing points. The stabilization is explicable by
the reduction of the energy gaps of the avoided crossings.
In the stabilization regime, the maximum of the coupling
matrix elements as a function of r move away from the

crossing points with increasing laser intensity, and the energy
gaps become smaller. The system behaves more diabatically,
and, consequently, the electron motion is governed by the
KH potential. The resonance states can be interpreted as
originating from the bound states formed in the KH potential.
The onset of the stabilization, i.e, the critical intensity, is
shown to be predictable by the two-channel model in good
approximation. The two-channel model is also useful to predict
the critical intensity for highly excited circular Rydberg states,
which have been attracting attention of researchers due to
the possibility of experimental observation of the stabilization
phenomenon [24,25]. The empirical formula of Potvliege and
Smith [35] for the circular Rydebrg states is theoretically
rationalized by the two-channel model in the present study.

APPENDIX A: FOURIER EXPANSION OF THE
TIME-DEPENDENT POTENTIAL FUNCTIONS [EQ. (13)]

In the case of circularly polarized laser fields, the potential
function in the TDSE [Eq. (9)] can be expanded in the Fourier
series analytically as follows:

− 1

|r + αcir(t)| = −
∞∑
l=0

Fl(r,α/
√

2)Pl(cos �(t))

= −
∞∑
l=0

l∑
N=−l

4π

2l + 1
Fl(r,α/

√
2)Y ∗

lN

× (π/2, − ωt)YlN (θ,φ)

= −
∞∑
l=0

l∑
N=−l

iN+|N |
√

4π

2l + 1

(l − |N |)!
(l + |N |)!

×Fl(r,α/
√

2)P |N |
l (0)YlN (θ,φ)eiNωt

≡
∞∑

N=−∞

∞∑
l=|N |

Cl
N (r; α)YlN (θ,φ)eiNωt . (A1)

The symbols Pl(·) and P
|N |
l (·) represent the Legendre poly-

nomial and the associated Legendre polynomial, respectively,
and �(t) is the angle between two vectors, r and αcir(t). The
function Fl(·,·) is defined as

Fl(x,y) = − rl
<

rl+1
>

, (A2)

where r> = max{x,y}, r< = min{x,y}. In the fourth line of
Eq. (A1), the Fourier coefficient Cl

N (r; α) is defined, which
takes real value due to the appropriate choice of the phase of
the laser field [Eqs. (1) and (10)].

On the other hand, in the case of linearly polarized laser
fields, the Fourier transform of the potential is given by

− 1

|r + αlin(t)| =
∞∑
l=0

Fl(r,α| cos ωt |)Pl(cos �(t))

=
∞∑
l=0

√
4π

2l + 1
Fl(r,α| cos ωt |)

×Pl(cos θα(t))Yl0(θ,φ), (A3)

where θα(t) in the second line is the angle between the
vector αlin

0 (t) and z axis, and cos θα(t) = cos ωt/| cos ωt |. The
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oscillation of the vector αlin(t) makes the formula extremely
complicated especially when r < α. However, with the aid of
the numerical procedure, the potential function is expanded as
follows [29,31]:

− 1

|r + αlin(t)| ≡
∞∑

N=−∞

∞∑
l=0

C̃l
N (r; α)Yl0(θ,φ)eiNωt , (A4)

where the Fourier expansion coefficient C̃l
N (r; α) is defined as

C̃l
N (r; α) ≡ 1

π

√
4π

2l + 1

×
∫ 1

−1
Fl(r,α|s|)Pl(s/|s|) TN (s)√

1 − s2
ds. (A5)

Here, TN (s) is the Chebyshev polynomial defined as
TN (cos ωt) ≡ cos(Nωt), and the integration is carried out
numerically by using the Gauss-Chebyshev quadrature [29]
(see also Ref. [31] where more accurate method for carrying
out the integration [Eq. (A5)] is proposed).

APPENDIX B: THE R-MATRIX PROPAGATION METHOD
IN THE ACCELERATION GAUGE

In this appendix, the procedure of the R-matrix propagation
is briefly summarized. According to the method of Light and
Walker [36], the radial coordinate is divided into many sectors.
The range and the width of ith sector are denoted as [ri−1,ri]
and hi ≡ ri − ri−1 (i = 1,2, . . . ,b), respectively. In the ith
sector, the effective potential matrix in the close-coupling
equations ([Eqs. (14) and (16)]) is evaluated at r = ri−1 + hi/2
ignoring its r dependence within the sector. The effective po-
tential matrix V (ri ; α) = V cir

µP
(r; α) and V lin

�P
(r; α) for circular

and linear polarization, respectively, is diagonalized as

(T (i))T V (ri−1 + hi/2; α)T (i) = �(i), (B1)

and wave vector κ (i) is defined as

(κ (i))n =
√

2[E − (�(i))nn]. (B2)

The procedure of the R-matrix propagation in the present
study is almost the same as in Ref. [36]. In order to treat
complex energy, however, the sector R matrices, r (i)

j (j =
1,2,3,4), defined by Eq. (10) in Ref. [36] are modified as
follows: (

r (i)
1

)
nm

= (
r (i)

4

)
nm

= − 1

κ
(i)
n

cot
(
κ (i)

n hi

)
δnm, (B3)

(
r (i)

2

)
nm

= (
r (i)

3

)
nm

= − 1

κ
(i)
n

csc
(
κ (i)

n hi

)
δnm. (B4)

Here, the signs of the components of the vector κ (i) need not
be considered because they are canceled out in the calculation
of r (i)

j . The R-matrix recursion is initiated at a point near the
origin, r = r1 � 1, and the initial R matrix is set as(

R(1)
)
Nl,N ′l′ = r1

l + 1
δNN ′δll′ , (B5)

according to the boundary condition [Eq. (19)]. On the
asymptotic region, r = rb  1, the Siegert boundary condition

[Eq. (18)] is imposed. The R matrix is required to satisfy the
equation

H (+)(krb,η)C = R(b)

(
d

dr
H (+)(kr,η)

)
r=rb

C, (B6)

where C is a certain unknown column vector and H (+)(kr,η) is
the matrix representation of the Coulomb function in the form
of the outgoing spherical wave. The value of the Coulomb
function is calculated numerically by using the program code
developed by Michel [37]. The complex quasienergies E are
determined by the secular equation

det

(
H (+)(η,krb) − R(b)

(
d

dr
H (+)(η,kr)

)
r=rb

)
= 0. (B7)

The solution is obtained by the Newton-Raphson method.
Dörr et al. [14,15] and Noble et al. [16] presented similar
formulation of the R-matrix propagation on the basis of the
Floquet theory but in the velocity gauge.

In this article, the nonuniform sector grid is employed. The
grid points are generated by the mapping function

r(x) = x − D tan−1(β(x − x0)) − x0 + α̃, (B8)

where α̃ = α/
√

2 and α for circular and linear polarization,
respectively, and the constant x0 is determined by numerically
solving the equation

tan

(
x0 − α̃

D

)
= βx0. (B9)

The mapping function [Eq. (B8)] is a generalization of that for
the standard Coulomb problem [38]. The function [Eq. (B8)]
maps the uniform grid points on the x axis to the nonuniform
ones distributing more densely around r = α̃ on the r axis.
The parameters of the mapping function are set as D = 10
and β = 0.099.

APPENDIX C: THE CAP METHOD

The complex energy eigenvalues of the resonance in the
single-channel scattering are calculated by using the complex
absorbing potential (CAP) method. The numerical procedure
of the CAP method is almost the same as Appendix C of Paper
I, but the artificial Hamiltonian in the present study is defined
as

H (η) = −1

2

d2

dr2
+ Vad(r; α) − iηr6. (C1)

The mesh points of r are chosen as rj = r[�x(j − 1/2)],
where �x = 0.12 and j = 1, . . . ,400. In the case of the
0G(cir.) manifold, the numerical data of the lowest adiabatic
potential Vad(r; α) at each mesh point are prepared by diagon-
alyzing the effective potential matrix [Eq. (22)] including the
Floquet channels N = −60, . . . ,10. In each Floquet channel,
10 angular-momentum states are considered. The optimal
value of η is determined from the minimum of |η × dE(η)/dη|
[39,40]. The values of η = 1.36 × 10−8, 1.76 × 10−8, 1.87 ×
10−8, 1.88 × 10−8 are used for the cases of α = 2.0, 4.0, 6.0,
8.0, respectively. In the case of the G(lin.) manifold, the
numerical data of the lowest adiabatic potential Vad(r; α) at
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each mesh point are calculated by diagonalyzing the effective
potential matrix [Eq. (23)] constructed by the set of chan-
nels {(l0,N ) | l0 = −N = 0, . . . ,60} [see Fig. 1(b)]. As the

optimal values, η = 0.98 × 10−8, 1.46 × 10−8, 1.58 × 10−8,
2.05 × 10−8 are used for the cases of α = 1.0,2.0,3.0,4.0,
respectively.
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