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Ab initio calculation of H + He+ charge-transfer cross sections for plasma physics
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The charge-transfer in low-energy (0.25 to 150 eV/amu) H(nl) + He+(1s) collisions is investigated using a
quasimolecular approach for the n = 2,3 as well as the first two n = 4 singlet states. The diabatic potential energy
curves of the HeH+ molecular ion are obtained from the adiabatic potential energy curves and the nonadiabatic
radial coupling matrix elements using a two-by-two diabatization method, and a time-dependent wave-packet
approach is used to calculate the state-to-state cross sections. We find a strong dependence of the charge-transfer
cross section on the principal and orbital quantum numbers n and l of the initial or final state. We estimate the
effect of the nonadiabatic rotational couplings, which is found to be important even at energies below 1 eV/amu.
However, the effect is small on the total cross sections at energies below 10 eV/amu. We observe that to calculate
charge-transfer cross sections in an n manifold, it is only necessary to include states with n′ � n, and we discuss
the limitations of our approach as the number of states increases.
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I. INTRODUCTION

Starting with the historical work of Massey and Smith
in 1933 [1], and due to the apparent simplicity of this
two-electron system, the asymmetrical charge-transfer pro-
cess He(1s2 1S) + H+ → H + He+ was quickly considered a
prototype for semiclassical methods to treat collisions [2–6].
This process is dominated by the capture into the H(1s)
state, but later the charge-transfer excitation and the direct
excitation processes were studied in detail both theoretically
and experimentally [7–15]. All these reactions require an
intermediate collision energy, for which a semiclassical de-
scription is perfectly suited. This is also true for the charge-
transfer mechanism which involves an H− ion as projectile,
He2+ + H− → H + He

+
(nl) [16,17].

At a much lower collisional energy, charge-transfer can
populate excited states of He(1snl 1,3L) from the correspond-
ing excited states nl of H. Although there is no measurement
for those processes, they have been studied theoretically
using a semiclassical approach with a linear trajectory for
the nuclei, taking into account the coupling between the
initial Stark splitting H states and the final He states at
large internuclear distances (R � 20 a.u.) and neglecting
electron translational factors and rotational couplings [18,19].
These works provide data for an energy range between 2.5
and 10 keV/amu.

Recently, it has appeared that those low-energy charge-
transfer processes involving excited hydrogen states could be
of major importance for the monitoring of warm plasmas
[20]. Indeed, spectroscopic methods are among the most
effective approaches for determining particle transport in
magnetically confined fusion plasmas. From this point of
view, the simulation of excited He emissions resolved in
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space and time has been proposed as a tool independent of
the theoretical plasma model. Atomic physics simulations
can be compared to experimental data, and the diffusion and
convective velocity parameters can be determined. However,
the He+ ions will interact with the H-D background via
a charge-transfer mechanism which modifies the population
of the He excited states and, therefore, the intensity of the
emission lines. A self-consistent approach to the description of
the coupling of the radiating He with the plasma background
via charge-transfer has shown that these processes are very
important at low collisional energies (typically of the order
of 0.1 to 100 eV) and that, therefore, an accurate knowledge
of charge-transfer cross sections in this energy range is
essential [20].

In this work, we have adopted a quasimolecular approach to
the ion-atom collision based on the use of quantum chemistry
ab initio methods to obtain the potential energy curves (PECs)
as well as the radial and rotational coupling matrix elements
of the quasimolecule HeH+. A wave-packet method is used
to treat the curve-crossing dynamics resulting from the failure
of the Born-Oppenheimer approximation [21,22]. A Gaussian
wave packet is prepared in the entrance channel and propagated
on the coupled ro-electronic channels. The collision matrix
elements are computed from an analysis of the flux in the
asymptotic region by using properties of absorbing potentials,
giving access to the charge-transfer cross sections for the
processes

He+(1s) + H(nl) → He(1sn′l′ 1,3L) + H+, (1)

where n,n′ = 2–3. The cross sections for the inverse process,
He(1sn′l′ 1,3L) + H+ → He+(1s) + H(nl), can be obtained
by a detailed balance analysis of reaction (1).

Finally, we estimate the influence of the rotational couplings
on the cross sections.
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II. THEORY

A. Molecular data

The Hamiltonian is given as the sum of an electronic part
and a nuclear kinetic part:

H = T N + H el. (2)

The electronic Hamiltonian includes a kinetic term for the
electrons and all the potential energy terms.

The PECs Um� and the adiabatic electronic functions ζm�

solve the equation for the electronic motion:

H elζm�(r; R) = Um�(R)ζm�(r; R), (3)

where r stands for the electron coordinates and R is the radial
coordinate for the nuclei. m is used to number the states for a
given value of �, the quantum number associated with Lz.
Lz is the projection of the total electronic orbital angular
momentum L onto the molecular z axis, chosen along the
radial nuclear coordinate R. Molecular electronic states are
classified according to the value of |�|: � states correspond
to � = 0, � states to |�| = 1, and � states to |�| = 2. We
therefore see that states with |�| �= 0 are doubly degenerate
for singlet states. In the atomic limit (R → ∞), � becomes
mL, the magnetic quantum number.

In contrast, T N can be written in atomic units as the sum of
a radial part,

H rad = − 1

2µ
∂2
R, (4)

where µ is the reduced mass of the system, and a rotational
part, given by

H rot = 1

2µR2
N2

= 1

2µR2
(K2 + L2 − 2KzLz − K+L− − K−L+), (5)

where N is the nuclear angular momentum. In this work, we
focus on singlet states and we do not consider any spin-
dependent interactions, so that the total angular momentum
is K = N + L. Since T N = H rad + H rot, the nuclear wave
function is the product of a radial part and an angular part:
ψm�(R) = ψm�(R) |K�M〉, where M is the eigenvalue of
LZ , the projection of L onto the laboratory Z axis. The angular
functions are eigenfunctions of K2 and Kz with eigenvalues
K(K + 1) and �, respectively (the eigenvalues of Lz and
Kz are identical, as N is perpendicular to the z axis). The
action of the ladder operators K± = Kx ± iKy is given by
K±|K�M〉 = [K(K + 1) − �(� ∓ 1)]1/2|K� ∓ 1M〉.

In the basis of these electronic-rotational functions, the
matrix elements of H rot are given by

H rot
m�K,m′�′K ′ = 1

2µR2
{[K(K + 1) − �2]δmm′δ��′ − (L−)mm′

× [K(K + 1)−�(� − 1)]1/2δ�,�′−1 − (L+)mm′

× [K(K + 1)−�(� + 1)]1/2δ�,�′+1}δKK ′ ,

(6)

where the contribution from (L2
x + L2

y)mm′δ��′ has been
neglected. We see that states with �� = ±1 will interact
through the rotational Hamiltonian.

To treat the effects of the rotational Hamiltonian, it is more
convenient to work with parity adapted functions [23]. These
functions are defined by

|mK�Mε〉 = 1√
2 + 2δ�0

[|K�M〉ζm�

+ (−1)Kε|K − �M〉ζm−�], (7)

where ε = 1 and ε = −1 correspond to e and f states,
respectively. Using (6) and (7), it can be shown that H rot only
connects states of the same parity. As 1�+ states can have e or
f symmetry, only half the � states must be taken into account
in the calculations.

We consider here the n = 1–3 1�+, 1�, and 1� states as
well as the first two n = 4 1�+ states. We could not include
more n = 4 states in the calculations, as we were not able
to calculate the radial nonadiabatic couplings between these
states by ab initio methods. The dissociative atomic states and
the asymptotic energies of the molecular states are reported
in Table I. We have also considered the n = 2 3�+ and 3�

states to allow comparison with [18] and [19] (see Sec. III F).
The adiabatic PECs for these states have been calculated
using the ab initio quantum chemistry package MOLPRO,
version 2006.1 [24]. An adapted basis set consisting of the
aug-cc-pv5Z basis set [25] supplemented by one contracted
Gaussian function per orbital per atom up to n = 4 has
been used. Details of the calculations are given in [26]. In
Tables 1–6 of [26], the dissociative wave functions of the

TABLE I. CASSCF energies at R = 50 a.u. and dissociative
products of the singlet states included in the calculations.

Energy (hartree)
2S+1� n m at R = 50 a.u. Atomic products

1�+ 1 1 −2.8980 He(1s2 1S) + H+

2 −2.4999 He+(1s) + H(1s)
2 3 −2.1448 He(1s2s 1S) + H+

4 −2.1262 He+(1s) + H(2p)
5 −2.1238 He+(1s) + H(2s)
6 −2.1226 He(1s2p 1P o) + H+

3 7 −2.0623 He(1s3s 1S) + H+

8 −2.0600 He+(1s) + H(3d)
9 −2.0568 He(1s3d 1D) + H+

10 −2.0552 He+(1s) + H(3p)
11 −2.0528 He(1s3p 1P o) + H+

12 −2.0523 He+(1s) + H(3s)
4 13 −2.0421 He(1s4s 1S) + H+

14 −2.0330 He+(1s) + H(4p)
1� 2 1 −2.1249 He+(1s) + H(2p)

2 −2.1235 He(1s2p 1P o) + H+

3 3 −2.0571 He+(1s) + H(3d)
4 −2.0567 He(1s3d 1D) + H+

5 −2.0536 He+(1s) + H(3p)
6 −2.0532 He(1s3p 1P o) + H+

1� 3 1 −2.0554 He+(1s) + H(3d)
2 −2.0554 He(1s3d 1D) + H+
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FIG. 1. Adiabatic (left) and diabatic (right) PECs of the n = 2,3 states of HeH+. Solid lines, 1�+ states; dotted lines, 1� states; dashed
lines, 1� states. n = 1 1�+ states have been excluded from the diabatization procedure.

hydrogen states are expressed as a linear combination of the
atomic states. This results from the electric field produced
by He+(1s), which induces a Stark mixing of the hydrogen
states. However, these Stark states adiabatically become pure
atomic states as R → ∞ so that we know with certainty
the atomic configuration corresponding to a molecular state,
as indicated in Table I. For example, the fourth and fifth
states in the 1�+ symmetry dissociate into H(2p) and H(2s),
respectively.

The PECs have been calculated at the state-averaged
complete active space self-consistent field (CASSCF) level
and are shown in Fig. 1 for the n = 2–3 states. This approach
allows us to compute the radial nonadiabatic coupling matrix
elements Fm�,m′� = 〈ζm�|∂R|ζm′�〉, which are used to build
the diabatic representation [27]. The adiabatic-to-diabatic
transformation matrix D is the solution to the differential
matrix equation ∂RD + F · D = 0 and the diabatic PECs are
the diagonal elements of the matrix Ud = D−1 · U · D, where
U is the matrix of H el in the adiabatic representation. We have
used an approximate F matrix by keeping only the couplings
between adjacent states, that is, the elements Fm,m+1. The
main reason is that this approach simplifies the diabatization
procedure considerably [26]. It has been shown to give results
similar to those obtained when the complete F matrix is
taken into account in dynamical calculations [28], something
we have also observed in the low-energy calculation of the
charge-transfer cross sections for the n = 2 1�+ states (see
the following). These PECs and nonadiabatic couplings were
also used to estimate the photodissociation cross section
of HeH+ [29].

The nonadiabatic rotational coupling matrix elements
〈ζm�|L±|ζm′�′ 〉 appearing in Eq. (6) have also been computed
at the CASSCF level using MOLPRO, with the origin of
coordinates at the nuclear center of mass. As pointed out in [26]

[30], and [31], some of these couplings behave asymptotically
as R, a phenomenon that cannot be avoided by changing the
origin of electronic coordinates. Due to the factor 1/R2 in
Eq. (6), these couplings will thus decrease as 1/R, much
more slowly than the radial couplings, which decrease to 0
extremely rapidly outside the interaction region. This causes a
problem in the calculation of the cross sections, as it implies the
use of very large numerical grids that increase the calculation
time tremendously. To solve this problem, we modified the
problematic rotational couplings outside the interaction region,
where we required that they decrease to 0 (i.e., their atomic
values). We have tried various switching functions to find a
set of parameters that had no effect on the cross sections. This
approximation is also justified in our case by the fact that the
linear rotational couplings usually connect two states in the
same atomic configuration, so that the modification will not
influence the charge-transfer cross sections.

There are also cases where the atomic value of
〈ζm�|L±|ζm′�′ 〉 is a constant but not 0. The rotational Hamil-
tonian then decreases as 1/R2, which still implies the use of
large numerical grids. However, this can only happen again for
transitions between two states in the same atomic configuration
(electron excitation), a process we do not consider here.

In the atomic limit, when the nonadiabatic rotational
couplings are neglected, our method implies conservation
of the magnetic quantum number mL as the Hamiltonian is
diagonal in �. When they are included in the calculations, we
have interaction between states with �mL = 0,±1.

B. Cross-section calculation

The cross section corresponding to the transfer of an
electron from an initial state m,� to a final state m′,�′ is
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given by [32]

σm′�′,m�(E) = π

k2
m�(E)

∑
K

(2K + 1)

× ∣∣SK
m′�′,m�(E) − δm′mδ�′�

∣∣2
, (8)

where km� is the wave number in the entrance channel, km� =√
2µ(E − Um�). As the Hamiltonian is diagonal in K [see

Eq. (6)], the cross section must be calculated for each value of
K until convergence in Eq. (8).

We use the coupled-channel formalism in the rotational-
electronic diabatic representation. In the time-dependent for-
malism, we start by defining a Gaussian initial wave packet
which is propagated in time using the split-operator algorithm
[33]. The coupled equations give access to the wave packets
on all the rotational-electronic states. For each value of K , the
scattering matrix elements |SK

m′�′,m�(E)|2 are then extracted
using the flux operator formalism with a complex absorbing
potential [34,35].

We start by defining the functions

�
±,K
m�,E =

√
µ

2πkm�

h±
K (km�R)ζ d

m�, (9)

where h±
K (km�R) are the Riccati-Hankel functions [36] and

ζ d
m� are the electronic wave functions in the diabatic represen-

tation.
We then introduce the time-independent energy normalized

wave functions |
+,K
m�,E〉, solutions of(

− 1

2µ
∂2
R + 1

2µR2
[K(K + 1) − �2] + H el

) ∣∣
+,K
m�,E

〉

= Um�

∣∣
+,K
m�,E

〉
(10)

and satisfying the asymptotic condition
∣∣
+,K

m�,E

〉 R→∞−→ ∣∣�−,K
m�,E

〉 − ∑
m′,�′

SK
m′�′,m�(E)

∣∣�+,K
m′�′,E

〉
. (11)

These stationary eigenfunctions can be constructed as the
Fourier transform of a time-dependent wave packet �(t):

∣∣
+,K
m�,E

〉 = 1

2π�K
m�(E)

∫ +∞

−∞
|�m�(t)〉 exp (iEt) dt. (12)

The vector |�(t)〉 is constructed by propagating an initial wave
packet |�(0)〉 in time using the Hamiltonian matrix in the
rotational-electronic diabatic representation:

|�(t)〉 = exp(−iHdt)|�(0)〉. (13)

The initial wave packet is 0 except in the diabatic channel m�,
where it is represented by a Gaussian function g(R) of width
σ and centered around R0:

g(R) = 1√
σ
√

2/π
exp

(
ik0R − (R − R0)2

σ 2

)
. (14)

�K
�m is the amplitude of the initial wave packet on the stationary

states:

�K
m� = 〈



+,K
m�,E

∣∣�0
〉 =

√
µ

2πkm�

∫ ∞

0
h+

K (km�R)g(R) dR.

(15)

The flux operator is defined by [34]

F = − i

2µ

(
∂

∂R
δ(R − Rc) + δ(R − Rc)

∂

∂R

)
, (16)

where Rc is a point in the asymptotic region (i.e., such that
there is no interaction for R � Rc) located behind R0.

Using Eqs. (9), (11), and (16), one arrives at

〈



+,K
m�,E

∣∣F ∣∣
+,K
m�,E

〉 = 1

2π

∑
m′,�′

∣∣SK
m′�′,m�(E)

∣∣2
. (17)

The sum can be removed using the projector onto the electronic
state m′�′, Pm′�′ = |ζ d

m′�′ 〉〈ζ d
m′�′ |, to obtain

〈



+,K
m�,E

∣∣Pm′�′FPm′�′
∣∣
+,K

m�,E

〉 = 1

2π

∣∣SK
m′�′,m�(E)

∣∣2
. (18)

A complex absorbing potential (CAP) −iW is then added
to the Hamiltonian, which becomes H ′ = H − iW . The left-
hand side of Eq. (18) is then calculated using Eqs. (12) and (13)
with H ′ instead of H . This is allowed if the CAP is “switched
on” in the asymptotic region: in the interaction region, the CAP
vanishes and the values of �(t) propagated with H or H ′ will
be identical. Combining Eqs. (12) and (18), we find that the
state-to-state cross section is given by

∣∣SK
m′�′,m�(E)

∣∣2 = 1

2π
∣∣�K

m�(E)
∣∣2

∫ ∞

0
dt

∫ ∞

0
dt ′〈�(t)|Pm′�′

×WPm′�′ |�(t ′)〉 exp [iE(t ′ − t)]. (19)

Equation (19) is used to obtain the matrix elements of S.
In our calculations, we used a CAP given by

W (R) = ηc

(R − Rc)2

R∞ − Rc

, (20)

where ηc is the strength of the CAP and R∞ is the last point
of the grid.

III. CHARGE-TRANSFER CROSS SECTIONS

A. Computational details

The calculations presented in this work were performed on
the HP-XC 4000 cluster at the VUB/ULB computing center.

1. Parameters for dynamics

The parameters are chosen so as to ensure convergence of
the sum in Eq. (8) while keeping the norm of the S matrix
close to unity. For calculations involving the n = 2 states, a
typical set of parameters consists of 212 points for a grid of
60 a.u., an initial wave packet located around R0 = 40 a.u.
of width σ = 0.2, and a CAP starting at Rc = 45 a.u. of
strength ηc = 0.01. The time needed for the wave packet
to return to the asymptotic region obviously depends on the
collision energy. For the preceding set of parameters, it is
approximately contained between 2 × 103 and 3 × 104 a.u.
for energies between 100 and 0.2 eV/amu. The computational
time is approximately independent of the energy and is of the
order of 1 h on 16 processors.

For calculations of cross sections involving n = 3 states,
we had to use grids up to R = 100 a.u. This is due to the fact
that the number of avoided crossings increases strongly with
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n, so that the positions of the radial nonadiabatic couplings
are shifted to larger internuclear distances [26]. The time
needed for the wave packet to return to the asymptotic region
is therefore increased and can be as high as 5 × 104 a.u. for
low energies. The computational time depends on the number
of states considered (see Sec. III B) and is of the order of 15 h
on 16 processors.

When the rotational couplings are included in the cal-
culations, the convergence of the partial cross sections is
considerably slower as a function of K . It is therefore necessary
to use much larger grids, and as a consequence, the time
of propagation is increased tremendously. In addition, the
number of points of the grid must also be increased to keep
a constant step dR, again extending the computational time.
To reduce the calculation time, we used grids of variable size,
ranging from 150 a.u. for small K to 600 a.u. for values of
K around 2500. When treating the n = 3 states, we could
not perform calculations of partial cross sections for energies
higher than 10 eV/amu, as even these large grids did not ensure
convergence. The width of the wave packet was also increased
up to σ = 1.5 for these large grids, as wave packets with a
larger width stay more compact. In this case, the computational
time can reach several days on 16 processors.

2. Nonadiabatic radial couplings

The first result that needs to be established is the validity of
our approximation which consists in retaining only the nona-
diabatic radial couplings Fm,m+1 instead of the complete F
matrix. We show in Fig. 2 a comparison between the two meth-
ods in the calculation of cross sections for the process H(2s) +
He+(1s) → H+ + He(1s2l1L). We conclude that this approx-
imation is perfectly valid at low energies but that small devia-
tions are observed at higher energies, E ∼ 100 eV/amu. The
same conclusion is reached for the cross section for the process
H(2p) + He+(1s) → H+ + He(1s2l1L).

Another issue is the fact that due to the Stark effect on
hydrogen, some PECs undergo avoided crossings at large
internuclear distances. However, as pointed out in [26], the
high amplitude and the narrowness of the nonadiabatic radial
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FIG. 2. Comparison of the two-by-two diabatization with the use
of the complete F matrix in the calculation of charge-transfer cross
sections with He+(1s) + H(2s) in the 1�+ symmetry as the initial
state. Solid line and plus signs: charge-transfer onto He(1s2p 1P o) +
H+ with a two-by-two or complete F matrix, respectively. Dashed
line and crosses: charge-transfer onto He(1s2s 1S) + H+ with a two-
by-two or complete F matrix, respectively.

couplings at those points indicate that a full diagonal diabatic
representation at the crossing is perfectly justified, so that these
crossings will not affect the cross sections.

Finally, as pointed out in [26], the effect of the electron
translation factors was found to be negligible in the range of
energy considered in this work.

B. General observations

From a practical viewpoint, the calculation time of a cross
section goes roughly as e0.3m, where m is the number of states
included in the calculations, so that the computing time doubles
every time two additional states are considered. This again
extends the computational time when rotational interactions
are taken into account, as � and � states must be considered
in the same calculation. It is therefore important to take the
fewest states possible, and we will see that states with different
values of n can be considered independently.

A few things seem to come out from our cross-section
calculations, which are presented here. The first is that, to a
good degree of precision, the charge-transfer cross sections in
a given n manifold are not modified by the inclusion of states
with a principal quantum number n′ �= n, a fact illustrated in
Fig. 3 for the n = 2 1�+ states. It was anticipated that the
n = 1 states did not play any role in the n > 1 cross sections
since they are much lower in energy, but the possibility of
treating the n = 2 and n = 3 states separately was much less
obvious. Indeed, the shape of the diabatic PEC is strongly
influenced by the inclusion of states with different principal
quantum numbers, and the density of states increases with
n [26]. We reached the same conclusion for the influence of
the first two n = 4 states on the n = 3 manifold and in the 1�

symmetry.
However, while the cross section from the n = 2 onto the

n = 1 states is always negligible, this is not the case in general,
as the states interact through nonadiabatic radial couplings.
For example, the cross sections from the n = 3 onto the n = 2
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FIG. 3. Illustration of the possibility of treating states in different
n manifolds independently in the calculation of charge-transfer cross
sections with He+(1s) + H(2s) in the 1�+ symmetry as the initial
state. Solid line: charge-transfer onto He(1s2p 1P o) + H+ using the
four n = 2 states. Plus signs: the same, but with the two n = 1
states included. Squares: the same, but with the six n = 3 states
included. Dashed line: charge-transfer onto He(1s2s 1S) + H+ using
the four n = 2 states. Crosses: the same, but with the two n = 1 states
included. Circles: the same, but with the six n = 3 states included.
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states is not negligible, although the cross sections inside the
n = 3 manifold are not modified by the inclusion of the n = 2
states. This means that the cross sections onto the n = 2 states
result from a decrease in the elastic cross section.

The second observation is that there is a dependence of
the cross section on n. This dependence was expected since
the cross section scales classically as n4 for Rydberg states.
Finally, we also observed that, in an n manifold, the cross
section always increases with the orbital quantum number l of
the initial state.

C. n = 2 states

Cross sections with H(2p) and H(2s) in the � symmetry
as well as H(2p) in the � symmetry as initial states are
presented in Fig. 4. The behavior of the cross section for the
process H(2p) + He+(1s) → He(1s2p) + H+ is completely
different in the � [Fig. 4(b)] and � [Fig. 4(c)] symmetry:
the total cross section from H(2p) will be governed by the
� states at low energy and by the � states at high energy
(E � 100 eV/amu). Another difference is the behavior of the
cross section when the rotational couplings are included in
the calculations: they have no effect for the transition with
H(2p) + He+(1s) in the � symmetry as the initial state but
strongly modify the cross section for the corresponding �

state. The cross section between the two � states is decreased,
while the cross section from � to � states is increased so that
the total cross section with H(2p) + He+(1s) as the initial
state is roughly the same as when the rotational couplings
were neglected.

The transition H(2s) + He+(1s) → He(1s2p) + H+ is also
affected by the inclusion of the rotational couplings at energies
E � 10 eV/amu [Fig. 4(a)]. However, in this case the cross
section between � states and from � to � states are both
increased. This simply means that for this state, the elastic
cross section is decreased by the inclusion of rotational
couplings.

D. n = 3 states

There are 12 n = 3 states. The cross section between the
six 1�+ states, presented in Figs. 5, 6, and 7, have been
calculated including the n = 2 states since the cross section
from the n = 3 to the n = 2 states is not negligible, as shown
in the figures. There are also four n = 3 1� states and two
1� states. The charge-transfer cross sections between these
states are not presented here but are available as supplementary
material [37], along with all the cross sections presented
throughout this article. From these figures, it is clear that
there is a dependence of the cross section on the principal and
orbital quantum numbers, n and l, of the initial H(nl) state:
the charge-transfer cross section is much larger for n = 3 than
for n = 2 and, also, increases with the value of l. The other
difference between the n = 2 and the n = 3 manifolds is the
influence of rotational couplings. While in the n = 2 states they
were not influential at energies E � 10 eV/amu, this is not the
case for the n = 3 states, where they play an important part
even at energies below 1 eV/amu. We observe the intuitive fact
that the cross sections between � states are smaller when the
rotational interactions are taken into account, corresponding
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FIG. 4. Charge-transfer cross sections between the n = 2 states.
(a) With He+(1s) + H(2s), 1�+, as the initial state. Solid line:
charge-transfer onto He(1s2s 1S) + H+, 1�+. Plus signs: the same,
but with rotational couplings. Dashed line: charge-transfer onto
He(1s2p 1P o) + H+, 1�+. Crosses: the same, but with rotational
couplings. Squares: charge-transfer onto He(1s2p 1P o), 1�. (b) The
same as (a), but with He+(1s) + H(2p), 1�+, as the initial state.
(c) With He+(1s) + H(2p), 1�, as the initial state. Solid line: charge-
transfer onto He(1s2p 1P o) + H+, 1�. Plus signs: the same, but with
rotational couplings. Squares: charge-transfer onto He(1s2s 1S) +
H+, 1�+. Circles: charge-transfer onto He(1s2p 1P o) + H+, 1�+.

to the fact that a part of the cross section is transferred onto
the � states.

We also observe that the cross sections onto the
He(1s2p1P o) + H+ state in the � symmetry is smaller when
the initial state is higher in energy. The cross section to the
other n = 2 states, He(1s2s 1S) + H+ in the � symmetry and
He(1s2p 1P o) + H+ in the � symmetry, are negligible and
therefore not shown. Interestingly, the charge-transfer cross
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FIG. 5. Charge-transfer cross sections with He+(1s) + H(3d),
1�+, as the initial state. Solid line: charge-transfer onto He(1s3s 1S) +
H+, 1�+. Plus signs: the same, but with rotational couplings. Dashed
line: charge-transfer onto He(1s3d 1D) + H+, 1�+. Crosses: the
same, but with rotational couplings. Light dashed line: charge-transfer
onto He(1s3p 1P o) + H+, 1�+. Squares: the same, but with rotational
couplings. Dotted line: charge-transfer onto He(1s2p 1P o) + H+,
1�+. Circles: the same, but with rotational couplings. Triangles:
charge-transfer onto He(1s3d 1D) + H+, 1�. Inverted triangles:
charge-transfer onto He(1s3p 1P o) + H+, 1�.

sections from the n = 2 states onto the n = 3 states are all
negligible.

E. n = 4 states

We have included the first two n = 4 singlet states in the
� symmetry. We could not consider more than the first two
n = 4 states in the diabatization since we were not able to
calculate the radial nonadiabatic couplings for the higher-lying
states. We calculated the cross section starting from the second
n = 4 state, H(4p) + He+(1s). It confirms, once again, the
dependence of the cross section in the quantum number n for
a given value of l. We also observe that the cross sections from
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FIG. 6. Charge-transfer cross sections with He+(1s) + H(3p),
1�+, as the initial state. Solid line: charge-transfer onto He(1s3s 1S) +
H+, 1�+. Plus signs: the same, but with rotational couplings. Dashed
line: charge-transfer onto He(1s3d 1D) + H+, 1�+. Crosses: the
same, but with rotational couplings. Light dashed line: charge-transfer
onto He(1s3p 1P o) + H+, 1�+. Squares: the same, but with rotational
couplings. Dotted line: charge-transfer onto He(1s2p 1P o) + H+,
1�+. Circles: the same, but with rotational couplings. Triangles:
charge-transfer onto He(1s3d 1D) + H+, 1�. Inverted triangles:
charge-transfer onto He(1s3p 1P o) + H+, 1�.
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FIG. 7. Charge-transfer cross sections with He+(1s) + H(3s),
1�+, as the initial state. Solid line: charge-transfer onto He(1s3s 1S) +
H+, 1�+. Plus signs: the same, but with rotational couplings. Dashed
line: charge-transfer onto He(1s3d 1D) + H+, 1�+. Crosses: the
same, but with rotational couplings. Light dashed line: charge-transfer
onto He(1s3p 1P o) + H+, 1�+. Squares: the same, but with rotational
couplings. Dotted line: charge-transfer onto He(1s2p 1P o) + H+,
1�+. Circles: the same, but with rotational couplings. Triangles:
charge-transfer onto He(1s3d 1D) + H+, 1�. Inverted triangles:
charge-transfer onto He(1s3p 1P o) + H+, 1�.

this n = 4 state onto the n = 3 states are not negligible, as
shown in Fig. 8.

Moreover, it is observed (not shown) that despite the
fact that the n = 3 and n = 4 states are close in energy
and interact through radial nonadiabatic couplings, the cross
sections in the n = 3 manifold are not influenced by these
two n = 4 states, with the exception of the cross section with
H(3s) + He+(1s) as the initial state, which is slightly modified
at energies higher than 10 eV/amu. In addition, the cross
section from H(3s) into the first n = 4 state, He(1s4s) + H+,
is negligible. We thus reach the same conclusion as in the
case of the n = 3 states: the cross sections from the n = 3
states onto the n = 2 states are not negligible, although
they do not influence the cross section within the n = 2
manifold.
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FIG. 8. Charge-transfer cross sections with He+(1s) + H(4p),
1�+, as the initial state. Solid line: charge-transfer onto He(1s4s 1S) +
H+, 1�+. Dashed line: charge-transfer onto He(1s3p 1P o) + H+,
1�+. Light dashed line: charge-transfer onto He(1s3d 1D) + H+,
1�+. Dotted line: charge-transfer onto He(1s3s 1S) + H+, 1�+.
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FIG. 9. Total charge-transfer cross sections
starting from H(nl) + He+(1s). Plus signs,
H(2s); crosses, H(2p); solid line, H(n = 2);
filled squares H(n = 2) with rotational cou-
plings. Circles, H(3s); triangles, H(3p); dia-
monds, H(3d); dashed line, H(n = 3); filled
triangles, H(n = 3) with rotational couplings.

In conclusion, it thus seems that the calculations of the
charge-transfer cross sections within a given n manifold
require to take into account only the states with n′ � n.

F. Total cross sections

The total cross sections starting from a given nl state of H
are obtained by summing all the contributions from within a
� manifold,

σ (nl�) =
∞∑

n′=1

n′−1∑
l′=0

σ (nl� → n′l′�), (21)

and then by summing the contributions from all the � [19]:

σ (nl) = 1

2l + 1

l∑
�=−l

σ (nl�). (22)

It should be noted that as the states with � �= 0 are doubly
degenerate, they contribute twice to the sum in Eq. (22).
When the rotational couplings are taken into account, the only
difference is an additional sum over �′ in Eq. (21).

The total cross sections from the H(nl) states, with
n = 2,3, are shown in Fig. 9 on a log-log scale. This figure
clearly illustrates the dependence of the charge-transfer cross
section in n and l. It also shows that while the inclusion of
rotational couplings modifies the behavior of state-to-state
cross sections at low energy, it modifies only slightly the
total charge-transfer cross section of a n manifold. At energies
higher than 10 eV/amu, the influence of rotational couplings
starts to be important and the total cross section is increased. It
would therefore be interesting to investigate the contributions
of the rotational couplings at higher energies for n = 3
states, but it is clear that our method is not adapted to such
calculations.

In the same way, we can determine the total cross section
with the He(1snl 1L) + H+ state as the final state. In helium-
based plasma diagnostics, correct estimation of the populations
of the various He(1snl 1,3L) levels, which are modified by
charge-transfer, is necessary. States such as He(1snp 1P o)
decay radiatively to the ground state, and these emission
lines can be observed. In Fig. 10 we have grouped together
the charge-transfer cross sections with He(1s2p 1,3P o) + H+
and He(1s3p 1P o) + H+ as the final states, averaged over the

initial states. Interestingly, the conclusions are similar when
we consider the sum of all cross sections into a specific final
state and when we considered a specific initial state: we again
see a dependence on n, which is now the principal quantum
number of the helium atom. We also see that the influence
of the rotational couplings is weak at low energies but that
the total charge-transfer cross section is increased at energies
�10 eV/amu.

These results can be compared with those of Chibisov
et al. [19]. To describe the charge-transfer process, these
authors used a semiclassical method with an atomic basis
where only the Stark couplings between the atomic states are
taken into account, and without rotational couplings. The cross
section with He(1s2p) as the final state ([19], Fig. 3) can be
compared in the range of energy between 2.5 and 200 eV/amu
(see Fig. 10). For the singlet states, we see not only that the
behavior at low energies is different, but also that the cross
section is several times smaller in our calculations. In the
triplet symmetry, the orders of magnitude of the cross sections
are roughly the same, but the general behavior is different. The
comparison can also be made for the n = 3 states for �, �, and
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FIG. 10. Charge-transfer cross sections with He(1s2p 1,3P o) +
H+ and He(1s3p1P o) + H+ as the final state and comparison with
[19]. Solid line: He(1s2p1P o) + H+ as the final state. Plus signs: the
same, but with rotational couplings. Dashed lines: He(1s2p3P o) +
H+ as the final state. Light dashed line: He(1s3p1P

o) + H+ as the
final state. Crosses: the same, but with rotational couplings. Circles
and diamonds: calculations from [19] for the singlet and triplet states,
respectively. Points were extracted graphically.
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� symmetries. In [18], Chibisov et al. present state-to-state
cross-section calculations, so that the comparison with our
calculations is direct. The results are again qualitatively very
different, showing the limitations of their method.

IV. CONCLUSIONS

Using a quasimolecular approach and a wave-packet
propagation method, we have computed the state-to-state cross
sections for the charge-transfer collisional process H(nl) +
He+(1s) → He(1sn′l′ 1L′) + H+ for all the n,n′ = 2,3 singlet
states (as well as the first two n = 4 states in the 1�

+

symmetry) in the energy range between 0.25 and 150 eV/amu.
We have also investigated the effect of the nonadiabatic
rotational couplings on the charge-transfer cross sections. All
the cross sections are not presented in this article, but they are
available as supplementary material [37].

We have found that our method is adapted when the
rotational couplings are neglected but is problematic at
energies higher than 10 eV/amu when the rotational couplings
are included, due to very long computational times.

We have found a strong dependence of the state-to-state
charge-transfer cross sections on the principal and orbital
quantum numbers, n and l, of the hydrogen atom. We observed

that the rotational couplings have an influence on the cross
sections even at low energies but that their effect increases with
n: for n = 2 states, we found that the effect of the couplings
starts to be important at energies higher than about 5 eV/amu,
while for the n = 3 states, they modify the cross sections even
at energies below 1 eV/amu. However, the total cross sections
are not modified by the inclusion of rotational couplings at
energies below 10 eV/amu. The effect of these couplings
should therefore be investigated at intermediate energies using
other approaches, such as an eikonal method.
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