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Energy transfer and Förster’s dipole coupling approximation investigated
in a real-time Kohn-Sham scheme
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We present a scheme to investigate energy transfer by real-time propagation of the Kohn-Sham equations.
The scheme’s purpose is to check and go beyond the dipole coupling approximation underlying a Förster-type
energy transfer, and to obtain information about the coupling on the grounds of the density-functional theory. We
observe deviations from the dipole coupling approximation for small molecules.
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I. ENERGY TRANSFER AND TIME-DEPENDENT
DENSITY FUNCTIONAL THEORY

Energy transfer is one of the most fundamental processes on
the molecular scale, governing light-harvesting in biological
systems [1,2] and energy conversion in electronic devices such
as organic solar cells [3–5] or light-emitting diodes [6]. The
design principles of natural light-harvesting complexes [7–9]
have found considerable interest, as hopes are high that the
principles realized in nature can be mimicked in the design of
artificial organic devices [3,10,11].

One standard method to interpret experimental data of
excitation energy transfer between a donor (D) and an acceptor
(A) molecule separated by the distance R is the so-called
Förster resonance energy transfer (FRET) theory [9–21].
Förster theory describes the nonradiative energy transfer
mediated by a (quantum-mechanical) coupling between the
transition dipoles of the donor and acceptor molecules [13–15].
One of the central assumptions in FRET is that the coupling
between D and A can be described by a (point)-dipole-dipole
interaction, falling as 1/R3. Furthermore, FRET theory is
formulated for the weak coupling regime (i.e., the isolated D
and A excited states do not change significantly on coupling).
Based on these assumptions Förster derived an expression for
the energy transfer rate showing a characteristic R−6 distance
dependence, with the nuclear vibrations being subsumed into
a spectral overlap factor between donor emission and acceptor
absorption spectra. The resulting, rather simple expression for
the energy transfer rate, see Sec. II for details, allows for
determining the intermolecular distance R by spectroscopy of
the coupled D-A system, and D as well as A individually.

Thus, FRET has gained tremendous importance as it
establishes a spectroscopic ruler on the nanoscale [22,23].
Typically it is applied in a range of distances from about 10
to 100 Å [24,25]. However, in recent years the applicability
of the dipole coupling approximation underlying FRET has
been questioned in many applications [25–33] as frequently
the intermolecular distance R is comparable to the molecules’
extension, or the D and A molecules are connected by bridging
units.

Theoretical insight into the validity of the dipole coupling
approximation is, therefore, of great importance. As the
molecules of practical relevance often contain many elec-
trons, (time-dependent) density functional theory (TD)DFT
appears as a natural choice to study the problem on a
first-principles scale at bearable computational cost. Recently,

TDDFT has been applied to Förster-type excitation energy
transfer questions [34–41] in the Casida-type linear response
formalism [42]. As a complementary approach to the Casida
formalism, real-time implementations [43–52] of TDDFT are
finding increasing attention due to their accuracy and favorable
scaling, which allows one to apply them to large systems
[53–55]. In addition, they do not require computation of the
exchange-correlation kernel, which can be advantageous when
advanced functionals that explicitly employ the orbitals are
used [47,49,56–58].

In the following we present a real-time TDDFT scheme
for investigating energy transfer and the dipole coupling
approximation. After shortly reviewing the pertinent concepts
of FRET theory in Sec. II, we discuss in Sec. III how the dipole
coupling can be incorporated into the real-time methodology.
This leads to a very general scheme for qualitatively checking
the validity of the dipole coupling approximation, as demon-
strated in Sec. IV. Under certain conditions that are explained
in Sec. V one can also determine the coupling matrix element
quantitatively. We stress that in all instances we deliberately
do not use the Kohn-Sham Slater determinant as an approx-
imation to the true wave function, staying truly on TDDFT
grounds.

II. THE DIPOLE COUPLING APPROXIMATION

In the following we briefly review the aspects of Förster
theory that are crucial for the further considerations. Starting
with Fermi’s Golden Rule, the energy transfer rate kET can be
written as [15]

kET = 2π |V |2
∫ ∞

0
dε J (ε), (1)

where J (ε) is the spectral overlap between the normalized
donor emission and acceptor absorption spectra. Hartree
atomic units are used throughout. V is the electronic coupling
matrix element

V = 〈DA∗|V̂ C|D∗A〉, (2)

where the Coulomb interaction V̂ C mediates between the
initial and final wave functions. Förster theory is based on
the assumption that the wave function of the total system can
be separated into D and A parts due to negligible electronic
coupling between D and A. Initially, the acceptor is in its
ground state denoted by |A〉 and the donor is in an excited
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state |D∗〉. The final wave function corresponds to the inverse
situation. Thus, the states in Eq. (2) are written as

〈DA∗| = 1√
2

(〈D̃A∗| − 〈Ã∗D|),
(3)

|D∗A〉 = 1√
2

(|D̃∗A〉 − |ÃD∗〉),

where |D̃A∗〉 abbreviates the product state |D〉|A∗〉, respec-
tively. Accordingly, the coupling matrix element splits into
the Coulomb contribution (i.e., D and D∗ having the same
coordinates)

V C = 〈D̃A∗|V̂ C|D̃∗A〉 (4)

and the so-called exchange contribution

V x = 〈Ã∗D|V̂ C|D̃∗A〉 (5)

(i.e., A∗ and D∗ having the same coordinates) [14,59,60]. As
the overlap between states falls exponentially with increasing
R, V x is neglected in FRET and only the Coulomb term
contributes to the Förster rate-of-excitation energy transfer.
(The exchange contribution gives the so-called Dexter-type
energy transfer [59].)

Under the assumption that the extension of the D and
A molecules is small compared to R

|rA|
|R| � 1 and

|rD|
|R| � 1, (6)

(see Fig. 1 for the notation), the Coulomb interaction between
the electrons of D and A is expanded in a multipole series.
Expanding up to powers R−3, the interaction is written as∑

j,k

1∣∣R + (
rA
k − rD

j

)∣∣
=

∑
j,k

{
1

|R| −
(
rA
k − rD

j

)
R

|R|3 + 3

2

[(
rA
k − rD

j

)
R

]2

|R|5

−
(
rA
k − rD

j

)2

2|R|3 + · · ·
}

, (7)

where the k sum runs over all electrons of the acceptor, and
the j sum runs over all electrons in the donor. Introducing the
orientation factor

κDA = êDêA − 3(êDR)(êAR), (8)

with the vectors êi = ri

|ri | , the transition dipole moments

µD = 〈D|
∑

j

rD
j |D∗〉

(9)
µA = 〈A|

∑
k

rA
k |A∗〉,

and assuming orthogonality of D and A states, one finds the
coupling matrix element of FRET theory

V FRET = κDA |µA||µD|
|R|3 . (10)

V FRET features the characteristic R−3 dependence of Förster
theory. Together with Eq. (1) this yields the rate of the Förster-
type excitation energy transfer.

III. A DIPOLE COUPLING SCHEME IN THE
TDDFT CONTEXT

The previously presented concept relies on using the states
|A〉 and |D〉. For the typical molecules of interest involving
tens to hundreds of electrons, the computational cost of
calculating these many-particle states with ab initio wave
function methods is prohibitive. (TD)DFT allows one to
determine the electronic structure of systems of that size, yet
again, the many-particle states are not accessible: Even if the
ultimate exchange-correlation functional were known, there
is no reason to believe that generally the Kohn-Sham Slater
determinant will be close to the true correlated wave function.
Therefore, a TDDFT scheme that is intended to investigate
the dipole coupling approximation that is inherent to Förster
theory must be based solely on the variable that is reliable in
(TD)DFT, namely the density. One way of how this can be
achieved is presented in the following.

The real-time formalism of TDDFT that we want to apply
is based on the time-dependent Kohn-Sham (KS) equations
[43,45,48,50]

i
∂

∂t
ϕj (r,t) = hKS(r,t)ϕj (r,t), (11)

where hKS is the time-dependent KS Hamiltonian given by

hKS(r,t) = −∇2

2
+ vH(r,t) + vxc(r,t) + vext(r,t). (12)

The potential vext(r,t) represents all external contributions
(e.g., nuclei and a laser field). The electron interaction is taken
into account via the Hartree potential

vH[n](r,t) =
∫

n(r′,t)
|r − r′| d3r ′ (13)

and the exchange-correlation (xc) potential vxc(r,t). Whereas
vH[n](r,t) is known explicitly as the functional derivative of
the classical Hartree energy

EH[n] = 1

2

∫
n(r,t)n(r′,t)

|r − r′| d3rd3r ′, (14)

the xc potential has to be approximated as its exact form is
unknown.

The real-time KS equations lend themselves very naturally
to a general and straightforward scheme for checking the
dipole coupling approximation that is at the heart of FRET:
One can explicitly implement the multipole expansion of
Förster into the TDDFT equations and compare the orbital
propagation with the multipole expansion to another one
without (i.e., with the usual full KS Hamiltonian). The details
of this strategy are explained in the following.

In accordance with the assumption of an appreciable spatial
separation of the D and A systems that is underlying FRET
theory, we divide the full density into a D and an A part. For
the sake of being as explicit in our notation as possible, we
assume in all of the following that the D and A densities
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FIG. 1. Donor and acceptor are separated by the distance R = |R|
and can thus be localized in the half-spaces with negative and positive
x coordinate, for the sake of an explicit notation. Each system
is characterized by its multipole moments Ni , di and Qi

jk , where
i = {D,A} labels the system, respectively. Distances with respect to
the center of D and A, respectively, are denoted by rD and rA.

are localized in the half spaces of negative and positive
x coordinates, respectively, as shown in Fig. 1

nD(r) = �(−x)n(r),
(15)

nA(r) = �(x)n(r),

where �(x) is the Heaviside step function.
As reviewed previously, Förster’s concept is based on using

the exact states for the separate molecules, but only taking the
classical (Hartree) interaction between the transition dipoles
of D and A into account for the intermolecular coupling.
Consequently, a TDDFT analog of Förster’s approach should
take all electron interaction effects into account [i.e., use
vH and the (unknown) exact vxc] within each molecule, but
use only the Hartree potential for the coupling between D
and A, and the latter only to low order in a multipole
expansion.

In the following we describe how this expansion can be
incorporated into a TDDFT scheme in practice, and we start
by noting that there are two possible paths to implement the
dipole coupling approximation for the Hartree coupling. The
first is to start with the Hartree energy of Eq. (14), perform
the multipole expansion, and then take the functional derivative
to obtain the potential. The second is to start from the Hartree
potential itself and perform the dipole approximation on the
level of Eq. (13).

Following the first route, the Hartree energy splits into three
components

EH[n] = EH[nD] + EH[nA] +
∫

nA(r)nD(r′)
|r − r′| d3rd3r ′, (16)

where the first two contributions separate in D and A, whereas
the third term contains the interaction between the D and
A systems. The expansion (7) is used in the third term on
the right-hand side (rhs) of Eq. (16) to obtain the Hartree
energy Edd

H in the dipole coupling approximation. Calculating
the functional derivative of Eq. (16) we use the functional

chain rule to take the separation in D and A densities into
account

vH[n](r) =
∑

i=D,A

∫
δEdd

H [nD,nA]

δni(r′)
δni(r′)
δn(r)

d3r ′. (17)

Consequently, the potential in the dipole coupling approx-
imation (superscript dd) as derived from the energy (thus
superscript index E) can be written as

v
ddE
H [nD,nA] = (

vH[nD] + v
ddE,D
H [nA]

)
�(−x)

+ (
vH[nA] + v

ddE,A
H [nD]

)
�(x), (18)

where vH[nD(A)] is the Hartree potential of D(A) and
v

ddE,D(A)
H [nA(D)] is the potential resulting from the third term of

Eq. (16) in the D(A) half-space. With the help of the multipole
moments of the D(A) density,

Ni =
∫

ni(ri) d3ri, di =
∫

rini(ri) d3ri,

(19)
Qi

jk =
∫

ni(ri)
(
3ri

j r
i
k − ri 2δjk

)
d3ri,

where i = D,A, the Förster potential that the donor density
generates in the half space of A (cf. Fig. 1) is

v
ddE,A
H [nD](rA) = ND

|R| − (NDrA − dD)R
|R|3 + rAdD

|R|3

+ ND

2

3∑
j,k=1

(
3rA

j rA
k − rA 2

δjk

)RjRk

|R|5

+
3∑

j,k=1

QD
jkRjRk

2|R|5 − 3(RrA)(RdD)

|R|5 . (20)

The corresponding potential v
ddE,D
H [nA](rD) is obtained from

Eq. (20) by interchanging the D and A superscripts and
replacing R by −R.

As an alternative to this derivation we can take the second
route. To this end we start directly at the level of the potential
and write the Hartree potential on the A side as

vA
H[nD,nA] =

∫
nA(r′)

|rA − r′| d3r ′ +
∫

nD(rD)

|rA + R − rD| d3rD.

(21)

This expression leads to another natural way of translating
Förster’s Hartree dipole coupling concept into a TDDFT
scheme: The contribution from the A density to the Hartree
potential in A’s own half space is taken into account fully,
whereas the contribution from the D density to the Hartree
potential in A’s half space [the second term on the rhs of
Eq. (21)] is expanded in analogy to Eq. (7). The latter leads to
the potential

v
ddv,A
H [nD] = ND

|rA + R| + dD(rA + R)

|rA + R|3 +
3∑

j,k=1

QD
jkRjRk

2|rA + R|5 ,

(22)
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FIG. 2. (Color online) Comparison of the usual Hartree potential
vH[n] (black solid line) with the Hartree potentials v

ddv

H [nD,nA] (red
dotted line) and v

ddE
H [nD,nA] (blue dashed line). The potentials are

plotted along the axis that runs through the centers of the two sodium
dimers, while the position of the molecules is −10 and +10 bohr.

on the A side (where the superscript index v indicates that
we approximated the potential directly, not the energy as in
route 1). The corresponding potential on the D side is

v
ddv,D
H [nA] = NA

|rD − R| + dA(rD − R)

|rD − R|3 +
3∑

j,k=1

QA
jkRjRk

2|rD − R|5 .

(23)

Using these expressions instead of v
ddE,A
H and v

ddE,D
H in

Eq. (18) defines the potential v
ddv

H .
Let us pause for a moment to compare the two routes. The

first one, starting from the energy, appears more natural if one
has in mind Förster’s original work, which was based on the
energy. However, the second one, directly using the potential,
seems to be more natural in the context of KS (TD)DFT in
which the potential is readily available. However, both are
valid translations of Förster’s concept into a real-time TDDFT
context, and it is thus not clear a priori which one should
be preferred. To get a better understanding of the differences
between v

ddE
H and v

ddv

H we plot them in Fig. 2 for a transparent
example, a system of two sodium dimers [61] aligned in
parallel and separated by R = 20 a.u..

While v
ddv

H is rather similar to the full Hartree potential,
the potential v

ddE
H is considerably too low in the central

region between the dimers and rises unphysically far away
from the dimers. This behavior can be traced back to the
fact that, in calculating v

ddE
H , we always divide by powers

of the fixed R [see denominators of Eq. (20)] while the
numerators rise with growing distance r to the corresponding
molecule. In contrast, in potential v

ddv

H the distance r enters
in the denominator. Therefore, v

ddv

H decays with the growing
distance to the corresponding dimer. As this is the behavior
one naturally expects from a potential, we used v

ddv

H in our
calculations [62].

IV. REAL-TIME INVESTIGATION OF THE DIPOLE
COUPLING APPROXIMATION

Our focus so far was on the conceptual work of translating
Förster’s dipole coupling idea into the (TD)DFT context. For
using the scheme in practical calculations, we have to address
the question of which influences the approximation that is used
for the description of the xc effects will have.

The excitation spectrum of two identical molecules at a
separation large enough for the individual molecular densities
to not overlap can qualitatively be described as being similar to
the spectrum of a single molecule, but with possibly an ener-
getic splitting of the monomer excitations (Davydov splitting,
see Sec. V), and with additional charge-transfer excitations
from one monomer to the other that carry practically zero
oscillator strength.

It is a well known problem of many commonly used density
functionals, in particular (semi)local ones, that they seriously
underestimate the energy of charge-transfer excitations. In the
KS framework, this failure is closely related to the absence
of step-like structures in the xc potential that result from
discontinuities [63] in TDDFT, see Ref. [64] for a detailed
discussion. It has been shown that xc approximations using
a large fraction of exact exchange [39], or range-separated
hybrid functionals [65], or self-interaction corrections [66]
can describe charge transfer well. Using a functional that
accurately describes charge transfer is mandatory for an
accurate description of two monomers at close distance [67].

In the propagation setup the movement of charge is recorded
in real-time and this can be used to directly monitor for charge
transfer from one molecule to the other. This built-in warning
allows one to check against leaving the “large separation”
situation which was described in Sec. II and which is the focus
of interest here [68]. At large separation, the energy transfer
is completely dominated by the Hartree coupling. It remains
mandatory in any case that the xc functional approximation one
uses describes the excitation spectrum of the single molecules
with reasonable accuracy, as otherwise the time-dependent
density and transition dipoles will be incorrect.

Starting from two molecules at a large separation R and
decreasing the distance, our aim is to check when the dipole
coupling approximation breaks down. Our calculations are
performed with our real-time TDDFT extension [51,52] of
the real-space code PARSEC [69]. The two molecules are
placed in two different half-spaces of the real-space grid. All
investigations are performed in the so-called supermolecular
approach [70], where we consider D and A as a combined
system. To distinguish between a coupling of excited states
that fulfills the assumptions leading to expansion (7) and a
coupling that does not, we compare the time-dependent dipole
moments of D and A obtained by a DFT plus TDDFT run with
the full Hartree potential, to the ones obtained in a second run
using the potential v

ddv

H . The dipole moments are calculated
using the D and A centers of density in the DFT ground state
as reference points.

Our proceeding is as follows: (1) determine the spectrum
of one single molecule, (2) choose the excitation of interest,
(3) perform a real-time TDDFT calculation using the full
Hartree potential with a short laser pulse as the initial
excitation, (4) repeat step (3) with v

ddv

H , (5) compare the
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time-dependent dipole moments obtained in steps (3) and (4).
The laser pulse is added as an external potential during the first
steps of the real-time propagation only within the half-space
of D. The frequency, length, and shape of the pulse are tuned
to excite the system only in a narrow frequency band around
the excitation chosen in step (2). (See Appendix A for details.)

In the following we demonstrate the use of this approach
in calculations for dimers of Na2 and C7H6O, respectively.
These systems are transparent enough to allow for a clear
explanation and demonstration of our concept and they are
established reference systems [36,71]. We employ the time-
dependent local density approximation (TDLDA) as it well
describes the excitations of Na2 and C7H6O [72,73] that are of
interest in our study. The possible underestimation of charge-
transfer excitations that was discussed at the beginning of this
section is not of concern here as we are specifically interested in
the major excitations carrying dipole oscillator strength. These
are described well by TDLDA for the systems that we study.

We first investigate the coupling between two sodium
dimers with parallel alignment of the two Na2 axes as a
function of the distance R between the two Na2 molecules.
As the excitation of interest we choose the one that is at
2.1 eV in the Na2 spectrum [71,72]. A typical time evolution of
the acceptor dipole moment is shown in Fig. 3. At the chosen
distance, R = 15 bohr, there are obvious deviations between
the time-dependent dipole moment that is obtained using the
full Hartree potential and the one that is obtained using v

ddv

H .
The deviations are a manifestation of the breakdown of

the dipole coupling approximation at 15 bohr. A systematic
analysis of the deviations in the dipole moment at a range of
distances from 45 to 15 bohr is depicted in Fig. 4. Qualitatively,
we see in Fig. 4 three regimes: For very large distances (45
and 35 bohr) the differences vanish and one is clearly in the
dipole regime. At smaller distances (around 25 bohr in the

FIG. 3. (Color online) Acceptor dipole moment along the
Na2 molecular axis, recorded as a function of time, for a system
of two Na2 with a separation of R = 15 bohr. The time evolution was
calculated using the full Hartree potential (solid, red) and the potential
v

ddv

H (dotted, black). The coupling between D and A manifests itself
in the beat frequency ωbeat of an oscillation between D and A
(cf. Sec. V). This beat frequency can be extracted from the A dipole
moment via ωbeat = 2π/Tbeat.
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FIG. 4. (Color online) Difference between the acceptor dipole
moments obtained in a calculation using the full Hartree potential
and another one using v

ddv

H for an Na2 dimer, for different values of
R: 15 bohr (dot dashed, red), 25 bohr (dashed, blue), 35 bohr (dotted,
green) and 45 bohr (solid, black).

present example) one starts to observe deviations, and for yet
smaller distances (15 bohr) the dipole moments differ very
significantly during their time evolution—although the density
overlap is still small. Here the dipole approximation clearly
fails and higher multipoles are relevant.

The same effects are seen in the second example in which
we examine the coupling between two C7H6O molecules that
are aligned in parallel as depicted in Fig. 5. We again focus on
the lowest excitation with appreciable oscillator strength. The
dipole moment time evolution was calculated for a range of
distances from R = 40 bohr to R = 12 bohr, again using the
two different potentials as discussed previously. Characteristic
results (distances of 24 to 12 bohr) are shown in Fig. 6. The
differences at R = 12 bohr and R = 16 bohr significantly
exceed the differences at the larger separations. Therefore,
one can argue qualitatively that up to 16 bohr separation
one cannot speak of a Förster-type coupling. From 20 bohr
on, the differences in the dipole moment time evolution are
notably smaller and the Förster-type dipole approximation can
be considered valid [74].

As our analysis has so far focused on the total dipole
moments, it is rather general and the concept can

FIG. 5. (Color online) System of two C7H6O molecules, where
the distance R is varied from 40 to 12 bohr.
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FIG. 6. (Color online) Difference of acceptor dipole moment in
a system of two C7H6O between a calculation using the full Hartree
potential and another one with the potential v

ddv

H . The molecules
are separated by 12 bohr (dot dashed, red), 16 bohr (dashed, blue),
20 bohr (dotted, green), and 24 bohr (solid, black).

straightforwardly be extended, e.g. to unequal dimers. Com-
paring characteristic features of the dipole moment evolution
obtained with full coupling and with dipole coupling, one can
assess the trust range of the dipole approximation.

If the excitations of interest have the special feature of
being rather well separated from all other excitations so that
one can think about the coupling as a coupling in a two-
level system, then one can also determine the coupling matrix
element quantitatively from the TDDFT calculation—despite
the fact that one does not explicitly know the states in TDDFT.
This is the topic of the next section.

V. EXTRACTING THE COUPLING MATRIX ELEMENT
FROM A REAL-TIME PROPAGATION

A coupling matrix element of type (2) enters the energy
transfer rate (1), and it is a close-lying question whether and
how it can be evaluated. In principle, one could calculate the
initial and final states and evaluate Eq. (2) directly. However,
as discussed previously, the states are hard to compute from
first principles and there is no rigorous reason to identify the
KS Slater determinant with the true wave function. Therefore,
if one wants to stay on the safe formal grounds of (TD)DFT
by not using the KS Slater determinant as an approximation to
the true wave function, one has to think about alternative ways
to determine the coupling matrix element.

The Davydov splitting [75–77] is such an alternative
[34–39,41]. In the case of two equal molecules, the Davy-
dov splitting 	
 equals the energy splitting 	E of the
(nearly) degenerate excitation energies of the monomers in the
supermolecule [34,36,37,39]. In the discussed situation 	
 is
proportional to the coupling matrix element (2)

V = 	


2
. (24)

This observation can be exploited in TDDFT by calculating
the spectrum [50,78–80] and deducing the coupling matrix

element from the energy splitting. In the real-time approach
to TDDFT spectra are usually determined by initially exciting
the system with a momentum boost [45,81], propagating the
time-dependent KS equations [82] using the dipole moment
as observable, and calculating the dipole spectrum via a
Fourier transformation [81]. As the energy splitting is typically
much smaller than the excitation energies themselves, high
resolution and thus comparably long propagation times are
needed to resolve the splitting.

Therefore, we consider an alternative way of extracting the
relevant information by observing the D and A dipole moments
separately. It considerably reduces the computational load. We
note that the Davydov splitting 	
 and consequently also the
coupling matrix element V manifests itself as a frequency
ωbeat in the time-dependent D (and A) dipole moment. This
frequency can be extracted as a beat frequency ωbeat of an
oscillation between D and A. (See Appendix B for details.)
From it one obtains

V = ωbeat. (25)

Apart from the beat the dipole moment of the system oscillates
only at frequencies close to the laser frequency that was used
for the excitation. Hence the beat frequency can be determined
easily from the D and A dipole moments (see Fig. 3). The
essential observation now is that for doing so, the dipole
moment time evolution only has to be recorded long enough
to capture one half cycle of the beat. This is a much shorter
time than the time needed to obtain an accurate spectrum from
the Fourier transformation. Thus, the coupling strength can be
determined with moderate simulation times.

We used this approach to determine the coupling of the
lowest excitation of the two sodium dimers. Figure 7 shows
the thus obtained distance dependence of the coupling matrix
element. One observes significant differences from the dipole
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FIG. 7. (Color online) Coupling matrix element between the
excited states at 2.1 eV of two Na2 versus the dimer separation.
Red crosses show the results from our real-time and real-space
implementation. As a guide to the eye we plotted a dotted line
with slope −3 which corresponds to a Förster-type coupling. As
a confirmation of our implementation we also report results that we
obtained using linear response TDDFT from a commercial program
package [83–85] (black crosses).
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coupling behavior for distances below 20 bohr. Above 25 bohr
the coupling falls with the expected 1/R−3 dependence.

As a test of our real-time and real-space implementation
we followed Ref. [39] and computed linear response TDDFT
spectra for a couple of dimer distances with the TURBOMOLE

package [83–85] using the local density approximation and
Fully Optimized Contracted Gaussian Basis Sets of Triple
Zeta Valence Quality (def2-TZVP) [86]. The coupling matrix
elements (see Fig. 7) are calculated according to Eq. (24)
exploiting the Davydov splitting. The agreement between the
two methods is very good and the observed small differences
can be attributed to technical differences such as the use of
pseudopotentials and basis sets versus real space.

For putting our findings into perspective one should
compare the distance of 25 bohr to the bond length of the
sodium dimer, which is 5.78 bohr. The ratio of the extension of
the molecular systems to their separation indicates that one has
to be careful in relying on the dipole coupling approximation
for extended systems that are not very far apart.

VI. CONCLUSION

We have presented a qualitative and a quantitative scheme
for investigating the coupling behavior of two molecules
within the real-time approach to TDDFT. The approach allows
one to distinguish between a Förster-type dipole coupling and
a non-dipole coupling on very general grounds. If the coupled
excitations that are of interest can be considered as a two-level
system (i.e., large energetic separation from other excitations),
then the coupling matrix element can be determined efficiently
in the real-time scheme by evaluating the Davydov splitting
from a beat frequency.

Already the small molecules investigated in this manuscript
show notable deviations from the Förster-type dipole coupling
at moderate distances. For larger molecules such as typically
used for spectroscopic labeling or in molecular electronics,
the question at which distances FRET can be relied on is
thus of great significance. Theoretical tools such as the one
discussed here can play an important role, as they enable us to
check whether the FRET dipole coupling approximation can
be applied or not.
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APPENDIX A: EXCITATION WITH A LASER PULSE

Here we briefly explain how we excite the system by a
laser pulse in the real-time investigation of the dipole coupling

approximation in Sec. IV. The laser acts as a time-dependent
external potential in dipole approximation

EL(t) = Eenv(t) sin(ωLt), (A1)

where Eenv(t) is the pulse envelope. The frequency ωL of
the pulse was chosen to equal the excitation energy we were
interested in. We used the envelope Eenv(t) = Emax sin2( πt

TL
)

as this form leads to a Fourier spectrum in which the side
maxima are much lower than the main peak (typically the
height of the first side maximum is less than 3% of the
height of the main peak). The length TL of the pulse is
tuned by comparing the Fourier spectrum of the pulse with
the excitation spectrum of the molecule: TL was chosen such
that the first side maximum of the pulse’s spectrum lay
closer to the pulse’s main frequency than the neighboring
peak in the molecule’s excitation spectrum. In all cases we
investigated, the excitations of the single molecules were
sufficiently separated from each other to dominantly excite
just one excited state of the system. This could be verified
from the time-dependent dipole signal.

APPENDIX B: BEAT OSCILLATION IN THE
TIME-DEPENDENT ACCEPTOR DIPOLE MOMENT

In this Appendix we briefly explain why ωbeat can be
extracted from the dipole moment. We start by noting that
Eq. (24) is derived in a two-state model [35,36], where
|D̃∗A〉 and |D̃A∗〉 are a pair of resonant states. The time
evolution

|�(t)〉 = a1(t)|D̃∗A〉 + a2(t)|D̃A∗〉, (B1)

of the two-state system with initial state |�(0)〉 = |D̃∗A〉 is
given by the coefficients a1(t) and a2(t) [87]

|a1(t)|2 = cos2(V t),
(B2)

|a2(t)|2 = sin2(V t).

The coefficients oscillate with the beat frequency ωbeat, see
Eq. (25). The corresponding time-dependent dipole moment
dA(t) = 〈�(t)|rA|�(t)〉 on the A side can be calculated as

dA(t) = |a1(t)|2〈A|rA|A〉 + |a2(t)|2〈A∗|rA|A∗〉, (B3)

where we exploited the orthogonality of |D〉 and |D∗〉. If the
static dipole moment 〈A|rA|A〉 of A vanishes, (B3) simplifies
to

dA(t) = |a2(t)|2〈A∗|rA|A∗〉. (B4)

Therefore, the resonance oscillation of the coefficients can
be observed in the time evolution of the dipole moment dA(t).
Both Eqs. (B3) and (B4) can be used to determine the coupling
matrix element V via the beat frequency (25).
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Commun. 30, 1203 (2009).
[21] D. Beljonne, C. Curutchet, G. D. Scholes, and R. J. Silbey,

J. Phys. Chem. B 113, 6583 (2009).
[22] L. Stryer and R. P. Haugland, Proc. Natl. Acad. Sci. USA 58,

719 (1967).
[23] L. Stryer, Annu. Rev. Biochem. 47, 819 (1978).
[24] R. Ziessel, M. A. H. Alamiry, K. J. Elliott, and A. Harriman,

Angew. Chem. Int. Ed. 48, 2772 (2009).
[25] S. E. Braslavsky et al., Photochem. Photobiol. Sci. 7, 1444

(2009).
[26] K. F. Wong, B. Bagchi, and P. J. Rossky, J. Phys. Chem. A 108,

5752 (2004).
[27] H. Singh and B. Bagchi, Curr. Sci. 89, 1710 (2005).
[28] Y. R. Khan, T. E. Dykstra, and G. D. Scholes, Chem. Phys. Lett.

461, 305 (2008).
[29] E. Dolghih et al., J. Phys. Chem. A 113, 4639 (2009).
[30] S. Saini, H. Singh, and B. Bagchi, J. Chem. Sci. 118, 23

(2006).
[31] S. Saini, S. Bhowmick, V. B. Shenoy, and B. Bagchi,

J. Photochem. Photobiol. A: Chem. 190, 335 (2007).
[32] R. Baer and E. Rabani, J. Chem. Phys. 128, 184710 (2008).
[33] H. Tamura, J.-M. Mallet, M. Oheim, and I. Burghardt, J. Phys.

Chem. C 113, 7548 (2009).
[34] C.-P. Hsu, G. R. Fleming, M. Head-Gordon, and T. Head-

Gordon, J. Chem. Phys. 114, 3065 (2000).
[35] C.-P. Hsu, J. Chin. Chem. Soc. 50, 745 (2003).
[36] J. Neugebauer, J. Chem. Phys. 126, 134116 (2007).
[37] J. Neugebauer, J. Phys. Chem. B 112, 2207 (2008).
[38] B. Fückel et al., J. Chem. Phys. 128, 074505 (2008).
[39] E. Sagvolden, F. Furche, and A. Köhn, J. Chem. Theory Comput.
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ENERGY TRANSFER AND FÖRSTER’S DIPOLE COUPLING . . . PHYSICAL REVIEW A 82, 012509 (2010)

functional (TDB3LYP)] are of the order of 0.2 eV for the
excitations of C7H6O that carry appreciable oscillator strength.
As charge-transfer excitations would be more sensitive to the
fraction of the Fock exchange this is another confirmation for
the fact that we are not looking at charge-transfer excitations.

[74] We checked up to a separation of 40 bohr that the differences in
the dipole moment decrease continuously.

[75] A. S. Davydov, Quantenmechanik (Dt. Verl. der Wiss., Berlin,
1967), p. 519.

[76] A. S. Davydov, Phys. Status Solidi 30, 357 (1968).
[77] M. Kasha, H. R. Rawls, and M. Ashraf El-Bayoumi, Pure Appl.

Chem. 11, 371 (1965).
[78] M. Petersilka, U. J. Gossmann, and E. K. U. Gross, Phys. Rev.

Lett. 76, 1212 (1996).
[79] H. Appel, E. K. U. Gross, and K. Burke, Phys. Rev. Lett. 90,

043005 (2003).
[80] P. Elliott, K. Burke, and F. Furche, arXiv:cond-mat/0703590.

[81] F. Calvayrac, P. G. Reinhard, and E. Suraud, Ann. Phys. 255,
125 (1997).

[82] A. Castro, M. A. L. Marques, and A. Rubio, J. Chem. Phys. 121,
3425 (2004).

[83] TURBOMOLE V6.0 2009, a development of the Univer-
sity of Karlsruhe and Forschungszentrum Karlsruhe GmbH,
1989–2007, TURBOMOLE GmbH, since 2007; available from
[http://www.turbomole.com].

[84] R. Ahlrichs, M. Baer, M. Haeser, H. Horn, and C. Koelmel,
Chem. Phys. Lett. 162, 165 (1989).

[85] F. Furche and D. Rappoport, in Computational Photochem-
istry, Theoretical and Computational Chemistry, edited by
M. Olivucci (Elsevier, Amsterdam, 2005), Vol. 16, Chap. III.
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