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The variation or “scaling” of the quantum capacitances is explored for 45 diatomic molecules as a function of
their dimensions. Scaling trends in the capacitances of these diatomic molecules dictate an “atoms-in-molecules”
view of their valence energetics. That is, experimentally derived quantum capacitances for both homonuclear and
heteronuclear diatomic molecules scale linearly with the average of the mean radii for the outermost orbitals of
their component atoms. This is in accord with Maxwell’s law for classical capacitors formed from two conducting
atom-sized spheres in tangential contact. However, the scaling behavior for the molecules has some nonclassical
features. Notably, the quantum capacitances extrapolate to nonzero values at zero dimensions. Radius-capacitance
points of the homonuclear diatomics lie primarily along five scaling lines, with each determined by points for
molecules composed of atoms with the same atomic symmetry (i.e., atoms from the same column in the periodic
table). Five scaling lines for heteronuclear diatomics each are determined by points for molecules of the same
or similar molecular symmetries. The molecules’ quantum capacitances are calculated from their ionization
potentials (IPs) and electron affinities (EAs). Thus, equations or laws for the scaling lines impose mutual
consistency conditions among these electron detachment energies for different diatomics of similar symmetries.
By taking advantage of this, the linear quantum capacitance scaling laws and ab initio atomic mean radii are used
to predict IPs for two diatomics with known EAs (Ga2 and SeO), but for which there is no standard value of the
IP. Similarly, the laws are used to predict EAs that were unknown or uncertain for several diatomics (Li2, LiF,
CSe, PN, BF, BCl, SiO, GeO, NCl, CaO, SrO, and BaO) with known IPs.
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I. INTRODUCTION

This paper establishes a fundamental scaling equation for
the quantum capacitances of diatomic molecules. Then, that
equation or law is applied to calculate ionization potentials
(IPs) or electron affinities (EAs) for diatomics in several cases
[1] where these electron detachment energies have not been
determined definitively.

For reasons that have been reviewed elsewhere [2], IPs and
EAs can be difficult to measure or calculate theoretically by
conventional approaches, even for the simplest of molecules,
diatomics. Recently, however, a simple, alternative approach
has been developed to estimate or predict EAs and IPs [3,4].
It enforces capacitance-based mutual consistency conditions
between the IP and EA of a single atom or molecule, as well
as among all the detachment energies for a series of atoms or
molecules with similar shapes and symmetry types. In that
prior work it was shown that quantum capacitances [5,6]
vary or “scale” linearly with the dimensions of molecules
in a sequence with similar structures. Further, it was shown
that the associated simple, linear scaling relation permits the
calculation of an unknown EA for a molecule in the sequence,
given its dimensions and its IP, which usually are much easier
to determine than the EA. Similarly, an unknown IP can be
calculated if a molecule’s EA is known.

Here, we demonstrate first that linear scaling principles or
laws of quantum physics also apply to diatomic molecules.
Specifically, in Sec. II, we show that the quantum capac-
itances of diatomic molecules scale linearly according to
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a quantum analog of Maxwell’s [7,8] classical scaling law
for two atom-sized spheres in tangential contact. This law
shows a previously unappreciated, physics-based correlation
among accepted diatomic electron detachment energies [1]
determined by a number of prior investigators. Then, in
Sec. III, we use that quantum capacitance scaling law to predict
unknown or uncertain diatomic IPs and EAs.

II. DIATOMIC CAPACITANCE SCALING

We begin by reporting on an investigation of the scaling
of the quantum capacitances for 45 diatomic molecules
as a function of their atomic and molecular dimensions in
cases where both the molecular IP and EA are known from
experiment. As in prior work [3,4], we calculate the quantum
capacitance Cσ for a neutral, many-electron quantum system
σ , such as an atom X or diatomic molecule XY , using a
formula due to Perdew [5] and to Iafrate et al. [6]:

Cσ = 1/(Iσ − Aσ ). (1)

Quantity Iσ is the valence ionization potential of a neutral
system σ in its ground state and Aσ is its electron affinity (i.e.,
the ionization potential of its negative ion). If Iσ and Aσ are
expressed in the customary units of electron volts, then Eq. (1)
yields quantum capacitances in the atomic and molecular-scale
units of fundamental units of positive charge per volt, which we
symbolize as “+e/V.” For homonuclear diatomic molecules
(σ = XX), heteronuclear diatomic molecules (σ = XY ), and
atoms (σ = X or Y ), Eq. (1) is evaluated here using experimen-
tal ionization potentials and electron affinities from the online
NIST Chemistry WebBook [1], except as noted in the tables.
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FIG. 1. Homonuclear diatomic capacitance scaling versus the
mean radii of the molecules’ component atoms. Quantum capac-
itances CXX in fundamental positive charges per volt (+e/V) for
homonuclear diatomic molecules are plotted versus 〈r〉X, the mean
radii in picometers of the highest energy occupied orbitals on their
component atoms. Values plotted are from Table I. In the graph,
strongly linear scaling is seen for the capacitances as a function of
the average of the mean atomic radii. As expressed by Eqs. (3), these
trends may be interpreted in terms of a quasiclassical capacitance
model in which the molecules have the structure of two conducting
spheres in tangential contact. See Fig. 3(a). Collinear sets of points
correspond to homonuclear diatomic molecules composed of atoms
from the same column or group (Gp.) in the periodic table. Lines in
the graph are determined from regression analyses, parameters for
which are given in Table IIIA.

A. Scaling law

For both homonuclear and heteronuclear diatomic
molecules, it is discovered that the resulting experimentally
derived quantum capacitances scale in a strongly linear manner
with

rXY = 1
2 (〈r〉X + 〈r〉Y ). (2)

This scaling variable is the average of the mean radii [3,9,10],
〈r〉X and 〈r〉Y , for the highest occupied orbitals on a diatomic’s
component atoms. Of course, for homonuclear diatomics this
variable reduces simply to 〈r〉X. The linear scaling with rXY

is seen in the graphs in Figs. 1 and 2, which plot data from
Tables I and II, respectively.

In each of the graphs, quantum capacitances CXY for
diatomic molecules XY that are characterized by a particular
symmetry type or group λ scale along a regression line with
the equation

CXY = BλrXY + C
(0)
λ (3a)

= 8πε0κλ ln 2rXY + C
(0)
λ . (3b)

In Eq. (3a), the constant scaling parameters that characterize
the line are Bλ, its slope, and C

(0)
λ , its nonzero capacitance

intercept at zero dimensions. The latter is a quantum parameter

FIG. 2. Heteronuclear diatomic capacitance scaling versus the
average of the mean radii of the molecules’ component atoms.
Quantum capacitances CXY in fundamental positive charges per volt
(+e/V) for heteronuclear diatomic molecules are plotted versus rXY ,
the average of the mean radii of their component atoms in picometers.
Values plotted are from Table II. Strongly linear scaling of CXY with
rXY is seen in the graph, consistent with Eqs. (3) and supporting
the two-spheres-in-contact model depicted in Fig. 3(a). Points for
heteronuclear diatomics with similar molecular symmetries or term
symbols λ fall on the same scaling line. Lines are determined via
regression analyses, with parameters given in Table IIIB. The bold
line in the graph is fit to points (black diamonds) for 1�+

g homonuclear
molecules from groups I and VII of the periodic table. This reference
line indicates positions of heteronuclear scaling lines here relative to
homonuclear scaling lines in Fig. 1.

without a classical analog for an isolated capacitor [3].
Values for these scaling parameters are determined via linear
regression analysis and displayed in Table III.

In Eq. (3b), the quantity κλ = Bλ/8πε0 ln 2 is an analog of
a classical dielectric constant, but for an individual molecule
XY along the scaling line λ. Values for this parameter also are
given in part A of Table III.

Equation (3b) reexpresses the quantum scaling relation in
a form that emphasizes its similarity to the classical scaling
relation C = 8πε0κ ln 2r, which governs the capacitance for
two macroscopic conducting spheres of radius r in tangential
contact [7,8]. See Fig. 3(a). The quantum scaling relation,
Eq. (3b), models two atomic spheres, both having the same
radius rXY , the average of the mean radii of the two atoms.

With the exception of a few anomalous points (see
Sec. II C), Eqs. (3) fit the quantum capacitance data for all
the diatomics to a very high degree of confidence. This is
seen in Table III, as well as in Figs. 1 and 2. In fact, as
discussed in Sec. II D, this model that depends on dimensional
parameters for two unbonded atoms fits the data better than
other, intuitively favored diatomic capacitance models in
Fig. 3 that depend upon molecular dimensional parameters
describing the bound atoms.
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TABLE III. Regression parameters and dielectric constants.
Parameters determined by linear regression from fits of diatomic
quantum capacitances to rXY via Eqs. (3). Parameters in part A
describe homonuclear capacitances from Table I that scale along
five different regression lines, according to the column or group
(Gp.) in the periodic table of the molecules’ atoms. Part B describes
heteronuclear capacitances from Table II that scale along four
different lines, according to the symmetry of the molecules’ ground
neutral states. See Figs. 1 and 2, as well as Secs. II A and II B.

Group or Slope, Intercept, Dielectric Goodness
symmetry, Bλ C

(0)
λ constant,a of fit,

λ [+e/(V pm)] (+e/V) κλ R2

A. Homonuclear scaling parameters

I and VII (1�+
g ) 9.12 × 10−4 0.0247 0.947b 0.998

III (3�−
g ) 1.46 × 10−3 0.0124 1.520b 1

IV (1�+
g &3�−

g ) 9.12 × 10−4 0.0392 0.947b 0.998
V (1�+

g ) 9.00 × 10−4 −0.0108 0.935b 0.999
VI (1�+

g ) 1.03 × 10−3 0.0182 1.066b 0.999

B. Heteronuclear scaling parameters
1�+ (a.h.)c 4.47 × 10−4 0.0443 0.464b 0.996
1�+ (ox.)d 1.05 × 10−3 −0.0155 1.091b 0.967
3�− and 2�− 2.78 × 10−3 −0.135 2.888b 1.000
2� 1.12 × 10−3 0.0267 1.163b 0.971

aAssumes value ε0 = 5.526 349 × 10−5 +e/(V pm) for permittivity
of free space.
bFor two-spheres-in-contact model, κλ = Bλ/8πε0 ln 2.
ca.h. = 1�+ diatomics that scale like alkali-metal halides, per
Sec. II B.
dox. = 1�+ diatomics that scale like metal oxides, per Sec. II B.

B. Key features of scaling behavior

In Fig. 1, radius-capacitance points for homonuclear di-
atomics are seen to segregate themselves primarily into five
collinear sets. Each of these sets contains points that represent
molecules composed of atoms with the same atomic angular
momentum symmetry [i.e., atoms from the same “group” (Gp.)
or column λ in the periodic table]. Homonuclear diatomics
composed of atoms from one group have points that fall on a
different line than homonuclear diatomics composed of atoms
from another group in the periodic table (except that points
for groups I and VII fall on the same line). Lines in the
figure are determined via linear regression analyses that were
performed separately on each of these five sets of points. The
resulting regression parameters for the homonuclear diatomics
are presented in part A of Table III.

In contrast to the homonuclear case, in Fig. 2 points for the
heteronuclear diatomics are seen to segregate themselves into
collinear sets according to the angular momentum symmetries
or term symbols λ for the ground neutral states of the
molecules. There are four such sets for the heteronuclear
diatomics shown in the graph in Fig. 2, with the corresponding
lines in the graph determined via linear regression and the
regression parameters reported in part B of Table III.

It is primarily the case that each different heteronuclear
diatomic capacitance scaling line is associated with a different
symmetry type and vice versa. An exception is that the
heteronuclear diatomics of 1�+ symmetry have points that

FIG. 3. Four classical capacitance models for diatomic molecular
capacitors. These are (a) two spheres in tangential contact, (b) an
isoperimetric sphere, (c) an ellipsoid of revolution, and (d) a truncated
cylinder. Computational experiments in this work show that model
(a) best fits the diatomic molecule quantum capacitance scaling data
from prior experiments and ab initio calculations. See Figs. 1 and 2,
Sec. II D, and Table III. However, classical models (a), (b), and
(d) all account reasonably well for the quantum data. Model (b)
approximates model (c), because the capacitance of an isoperimetric
sphere [4] is predicted [11,12] and also found by direct calculation to
be a tight lower bound to that of an ellipsoid of revolution with the
dimensions of the diatomic molecules. Another model discussed in
the text, scaling simply with molecular length L, is not depicted here.

are segregated into at least two different collinear groups.
In Fig. 2, one group of points (+ symbols) for the 1�+
diatomics includes those for most of the alkali-metal halide
(a.h.) molecules, as well as CS and HN; the other group
includes points (� symbols) for the metal oxides PbO and
SnO (ox.), as well as for CS and LiH.

Additionally, as noted in Table IV and Sec. III D, the
alkaline earth metal monoxides BeO and MgO may constitute
yet a third uniquely scaling group of 1�+ heteronuclear
diatomics with a fifth heteronuclear scaling line. The radius-
capacitance points for these molecules are not displayed
in the graph in Fig. 2, though, because their capacitance
coordinates are known with less confidence. They are based
on EAs from theory that are not listed in the NIST Chemistry
WebBook [1].
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Observe in Fig. 2 that the point for the CS molecule is
taken to be a member of both the alkali-metal halide and the
metal oxide 1�+ groups; the CS point lies at the intersection
of the lines defined by each. Similarly, the HN point at the
intersection of the alkali-metal halide 1�+ scaling line and
the scaling line for 3�− and 2�+ molecules is taken to
be a member of both groups. (Those intersection points are
represented on the graph by both a cross and a square or circle
that overlaps it.)

More generally, in both Fig. 1 and Fig. 2 it is seen that
there is a radius-capacitance point at or near almost every
intersection of two scaling lines. For example, in Fig. 1 the
O2 point is at the intersection of three lines (the Gp. III,
Gp. VI, and the Gp. I and VII lines), while the C2 point is
at the intersection of the Gp. III and Gp. IV lines. In Fig. 2,
beyond the intersections visible in the graph that occur at or
near heteronuclear radius-capacitance points, the metal oxide
1�+ line intersects the 1�+

g homonuclear scaling line at a
point off the graph to the right that nearly coincides with the
radius-capacitance point for the molecule K2 on the bold black
reference line.

It is notable in Fig. 2, as well, that this reference
homonuclear scaling line has very nearly the same nonzero
intercept with the vertical axis as the line for 2� heteronuclear
molecules. Further, we see in Fig. 1 that three of the
capacitance scaling lines for the homonuclear diatomics are
nearly parallel. These are the lines associated with atoms
in groups I and VII, Gp. IV, and Gp. V. Such coincident
intersections, intercepts, and slopes in the plots of CXY versus
rXY suggest a discreteness in the values of the quantum
capacitances and atomic radii.

This discreteness and most of the other qualitative features
described in this section for diatomic capacitance scaling with
respect to rXY also persist when scaling is considered relative
to other dimensional scaling variables for diatomics. See Fig. 3
and Sec. II D.

C. Scaling anomalies

Despite very strong linear fits of C to rXY for most of
the diatomic molecules, as just summarized, there are some
notable exceptions. The large IP, negative EA, and consequent
small capacitance for H2 places its point (×) below all the
homonuclear scaling lines in Fig. 1. Physically, this probably
is because of the H2 molecule’s small number of electrons
and the similarity of its electron configuration to that of the
He atom. This makes the H2 electron distribution resistant
to polarization and limits its ability to store positive charge
relative to its size.

However, the opposite tendency is observed in the radius-
capacitance points for two larger sets of exceptions to linear
capacitance scaling with rXY . These exceptions have anoma-
lously large capacitances for their size and are represented
by the large asterisks (∗ symbols) in Figs. 1 and 2. In both
the homonuclear plot and heteronuclear plot, these anomalous
points represent a few heavier diatomics that (a) have total
nuclear masses greater than 100 amu and (b) also have the same
symmetry type as lighter molecules that fall along the scaling
line with the lowest overall capacitances. In the homonuclear
case this corresponds to the heavier Gp. V diatomic molecules

and in the heteronuclear case it corresponds to the heavier
alkali-metal halide diatomics. These anomalies persist when
the capacitances are plotted versus other diatomic dimensional
variables, such as are described in Fig. 3 and in Sec. II D.

Empirically, these anomalies arise because of unusually
small IPs and large EAs for the heavy molecules, leading to
unusually large capacitances relative to the molecules’ sizes
or the radii of their component atoms. In the case of the
Gp. V homonuclear diatomic molecules, the source of anoma-
lies in Fig. 1 for Sb2 and Bi2 appears to be that component
atoms, Sb and Bi, also have anomalously large capacitances.
Mean radius-capacitance points for those heavy atoms likewise
lie above a scaling line for lighter Gp. V atoms [17].

A similar explanation does not seem to account for
anomalies in Fig. 2 in the case of the alkali-metal halides,
however. Atomic capacitances of Br and I would scale right
on a mean radius-capacitance line determined by lighter atoms
F and Cl. Also, capacitances for Li, Na, and K scale on a
line [3]. We have not yet found a satisfactory explanation for
the anomalies in the heteronuclear case.

D. Comparisons with alternative capacitance models

As indicated in Sec. II A, for the preponderance of
nonanomalous diatomic quantum capacitance points it was
found that the two-spheres-in-contact model of Eqs. (3) and
Fig. 3(a) provided the best fit to the diatomic quantum
capacitances as a function of atomic or molecular dimensions.
This was determined by comparing the goodness of fit for
Eq. (3a) with fits for regression equations associated with
several other quasiclassical capacitance models.

These other models included linear scaling with the
molecules’ isoperimetric equivalent radii [4,11,12]

req = [(rXY )2L/2]1/3, (4)

as depicted schematically in Fig. 3(b). For this model, we
also verified numerically that the quantity 4πε0req is a close
lower bound [11] to the capacitances of ellipsoids [4] that
have the dimensions of the molecules. [See Fig. 3(c).] Thus,
exploration of the scaling with req also served to explore how
well a proposed [18] ellipsoidal capacitor model represents the
behavior of the quantum capacitances of the diatomics.

Another model that was tried represented the diatomic
capacitors as truncated cylinders [8], as in Fig. 3(d). Finally,
the alternative models included one in which the capacitances
scale simply with the approximate molecular lengths,

L = R + 〈r〉X + 〈r〉Y
= R + 2rXY , (5)

where R is the equilibrium bond length.
All the regression models produced graphs similar in

general appearance to Figs. 1 and 2. For example, all yielded
five homonuclear and four heteronuclear scaling lines, as well
as other of the key qualitative features discussed in Secs. II B
and II C.

However, compared with these others, the two-spheres-in-
contact model gives the highest overall values of the correlation
coefficients (R2) for the fits to the five homonuclear and four
heteronuclear scaling lines. Especially, as seen in Table III,
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this preferred model did not have any values of R2 that are
much lower than approximately 0.97, as all the others did.

For example, consider the best of the alternative models,
the isoperimetric sphere or the nearly equivalent ellipsoid
of revolution capacitance model. For fits to capacitances
arising from all five groups of homonuclear diatomics, as
well as from three of the groups of heteronuclear diatomics,
the regression formula for the isoperimetric model yielded
nearly the same high R2 values as listed in Table III for the
two-spheres-in-contact model. However, in the case of the
2� heteronuclear diatomics, the isoperimetric sphere model
was appreciably worse, giving a correlation coefficient of only
0.934. The other alternative capacitance models also worked
well for the homonuclear data, but they did not work well in
the case of one or more of the groups of heteronuclear systems.

A similar limitation is exhibited by a variant of the
two-spheres-in-contact model that uses as the dimensional
variable another isoperimetric [11,12] measure, the square
root of the sum of the surface areas of the two atomic
spheres. This explicitly represents the effect of unequal
mean radii of atoms in heteronuclear diatomics. As with the
other alternative models, this model works well for all the
homonuclear molecules, plus two groups of heteronuclear
systems. However, it does not fit the 2� capacitances quite as
well as a fit to rXY and it breaks down for the molecules with
atoms most disparate in radius, the alkali-metal halide 1�+
molecules, giving a fit with only R2 = 0.944. [See Sec. II E
for a rationale why Eqs. (3) continue to work well for the
alkali-metal halides.]

So that the reader easily can verify these comparisons,
values of the alternative dimensional scaling variables are
given in Tables I and II. Based on such comparisons, the
two-spheres-in-contact model of Eqs. (3) is judged to be the
best physical representation of the diatomic capacitors.

This quasiclassical capacitance model is a kind of “atoms-
in-molecules” model in that it expresses the molecular quan-
tum capacitances solely in terms of the mean dimensions of
the component atoms. These have been rigorously determined
to high accuracy in ab initio quantum calculations [9,10,13].
This is a significant advantage in that it eliminates any need to
know the dimensions of the entire molecule, which are much
more difficult to define or determine in a rigorous manner.

E. Rationale for the two-spheres-in-contact model

An after-the-fact rationale for the success of the two-
spheres-in-contact model can be derived via a visual compar-
ison of homonuclear diatomic capacitances CXX with values
for capacitances CX of their component atoms. (See columns 9
and 10 of Table I.) This comparison reveals that for most
of the homonuclear diatomics CXX ≈ CX. Linear regression
analysis of (CX,CXX) points, excluding outliers for H2 and
Al2, confirms this observation: CXX = 1.101CX + 0.002, with
a correlation coefficient of R2 = 0.963. Based on these
observations, one might say that it is no surprise that CXX

should scale linearly with 〈r〉X in the homonuclear case,
because we have shown previously [3] that CX does. By
this a posteriori reasoning, one might see the strong linear
correlation of CXY with rXY in the heteronuclear case simply as
a consequence of the fact that this dimensional parameter cre-

ates an underlying homonuclear-type two-spheres-in-contact
capacitance model for the heteronuclear species, involving
two model pseudoatoms of equal radius rXY .

The initial hypothesis of this work was, however, that the
molecular capacitance scaling would depend most strongly
on molecular dimensions. Much investment of effort was
made in testing models with that feature. The now-preferred
two-spheres-in-contact model was tested as a last option. The
author still sees as remarkable the consequence of this model
having proven so accurate in representing the capacitances of
diatomic molecules in terms of their atoms’ mean radii. The
consequence is that such fundamentally molecular properties
of diatomics as their electron detachment energies also appear
to be dependent on purely atomic dimensional parameters.
This consequence is applied in the next section.

III. PREDICTIONS

In this section, it is demonstrated that the quantum
capacitance scaling trends observed in Sec. II for diatomic
molecules with known electron detachment energies can be
applied to predict or estimate unknown or uncertain diatomic
electron detachment energies with reasonable accuracy. It also
is shown that these trends can be used to assess the consistency
of individual IP or EA values with other detachment energies
determined for the same or related diatomic species.

Predictions of previously unknown or uncertain diatomic
IPs and EAs are given in Table IV. The equations and steps for
making these predictions are detailed in the next two sections.
A critical analysis of these predictions is given in Sec. III C.

A. Diatomic ionization potentials

For the diatomics Ga2 and SeO, the NIST Chemistry
WebBook [1] does not list an IP. In each case we are able to use
the capacitance scaling laws to predict the IP via the following
approach. Equation (1), with σ = XY , may be solved for IXY

in terms of AXY and CXY . Then, the strong linear fit of CXY to
rXY for the homonuclear and heteronuclear diatomics permits
us to eliminate CXY in favor of the right-hand side of the
regression equation (3a), as follows:

IXY = AXY + 1

CXY

(6a)

= AXY + 1

BλrXY + C
(0)
λ

. (6b)

By using Eq. (6b), it becomes a simple matter to predict the
IPs of diatomic molecules, such as Ga2 and SeO, for which
the capacitance scaling parameters and the EAs are known.

For example, since Ga2 is composed of atoms from Gp. III
of the periodic table, we take the corresponding values from
Table IIIA for the scaling parameters Bλ and C

(0)
λ , along with

the NIST Chemistry WebBook value of AGaGa = 1.60 eV, which
also is reported in the second line of column 10 in Table IV.
Substituting these values in Eq. (6b), one obtains IGaGa =
5.56 eV, as listed in the second line of column 9 in Table IV.

Similarly, since the symmetry of heteronuclear SeO is λ =
3�−, one uses in Eq. (6b) the scaling parameters for the 3�−
and 2�− molecules from Table IIIB, along with the value
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of AXY listed for SeO in column 10 of Table IV. The value
obtained, as listed in column 9 of Table IV, is ISeO = 9.4 eV.

B. Diatomic electron affinities

A number of diatomics listed in the NIST Chemistry
WebBook [1] have IPs tabulated for them, but no EAs. To use
capacitance scaling to make predictions of these previously
unknown or uncertain diatomic EAs, we derive analogs of
Eqs. (6) that evaluate AXY based upon capacitance scaling:

AXY = IXY − 1

CXY

(7a)

= IXY − 1

BλrXY + C
(0)
λ

. (7b)

As in the case of Eqs. (6), these equations follow from Eqs. (1)
and (3a).

In a fashion similar to the IP calculations just described,
Eq. (7b) is evaluated to predict values of AXY , using data from
Tables III and IV. Such calculations are performed here for the
homonuclear diatomic molecule Li2 and the heteronuclear di-
atomics LiF, CSe, PN, BF, BCl, SiO, GeO, NCl, CaO, SrO, and
BaO. The predicted values of their EAs are listed in column 11
of Table IV.

However, for several of the heteronuclear diatomics of 1�+
symmetry there is ambiguity as to which of the two scaling
lines for that symmetry their capacitance scaling points should
lie upon. For this reason, we calculate and list in Table IV
the EAs that would arise from both choices. However, in the
footnotes to the table and in Sec. III C we attempt to resolve
some of these ambiguities. Also, for a few of the molecules of
interest, there is more than one plausible choice for the IP [1].
In those cases, we used Eq. (7b) to predict the EAs that would
arise for all those plausible choices. All these results for AXY

are given in column 11 of Table IV.
In cases such as BF where the capacitance-based method

predicts a negative EA, no matter which scaling line is chosen,
we believe this indicates that the extra electron on the anion is
unbound (or only very weakly bound). We have no evidence,
though, that the absolute magnitudes of our negative EA
predictions are accurate.

C. Comparison of predictions here with results
from other sources

For consistency and to ensure that our major results are
based upon the most widely accepted and widely available
data, we have employed in our analysis to this point electron
detachment energies obtained almost exclusively from the on-
line NIST Chemistry WebBook [1]. However, for thoroughness
and as an important cross-check, in Table V and in this section
we compare our predictions of diatomic electron detachment
energies in the upper portion of Table IV with theoretical
predictions and experimental measurements that have been
compiled in two additional authoritative, though less widely
available compendiums: (a) a 2002 review by Schaefer and
his collaborators [21] of molecular electron affinities from
experiment and theory and (b) the 1997 Diatomix Database of
IPs, EAs, and other data about diatomic molecules compiled
by Simons and his collaborators [19].

In the first three lines of Table V is seen a comparison of our
ionization potential predictions for Ga2 and SeO, as well as our
electron affinity prediction for the diatomic molecule Li2, with
values given in the two compendiums just cited. Both of our
IP predictions are seen to be in reasonably good agreement
with the experimentally derived values. Likewise, our EA
prediction for Li2 is seen to be in reasonable agreement with
the theoretical and experimental values from the alternative
sources. This agreement is particularly notable given how little
computational work is necessary to obtain our predictions,
compared with the much greater effort required to obtain the
comparable values listed in the other sources.

It also is seen in the last two lines of Table V that our
prediction of the EA of SiO using the 1�+ alkali-metal-
halide-type (a.h.) capacitance scaling parameters falls within
the range of other theoretical predictions of this quantity, which
vary considerably. In contrast, our prediction using the 1�+
metal oxide-type (ox.) scaling does not fall in the range of
those other predictions. This suggests that the quantum
capacitance of the 1�+ neutral SiO molecule scales on the
line with the alkali-metal halide diatomics, not on the scaling
line with the metal oxides. This “preferred” alkali-metal halide
scaling is indicated via note d in Table IV. It is not clear yet,
though, how one would discern this counterintuitive preferred
scaling a priori, with high confidence. Thus, our effort at
prediction for SiO itself is only partially successful.

However, the fact that SiO probably scales on the alkali-
metal halide scaling line suggests strongly that GeO does,
as well (since Ge is immediately below Si in the same
column of the periodic table). Thus, the additional theoretical
guidance in selecting the scaling line for SiO enables us
to select a preferred scaling for GeO, also, and thereby
assert, from the two GeO results in Table IV, that the
electron affinity of GeO is AGeO = 0.35 eV. This is a
quantity for which there is no prior theoretical or exper-
imental value listed in the major authoritative reference
works [1,19,21,29].

For PN, the lack of agreement with experiment seen in
Table V for our EA predictions from Table IV seems, at first,
to rule out both the alkali-metal-halide-type scaling and the
metal-oxide-type scaling. (See the first two lines listed for
PN in Table V.) However, in the third and fourth lines listed
for PN in Table V we see that predictions within the error
bounds of the experiment result for both scalings if a smaller,
adiabatic value [19,27] of IXY is used to calculate AXY via
Eq. (7b).

Finally, in the fourth line of Table V, it is troubling that
our capacitance-based prediction of 1.58 eV for the EA of
LiF is so far from agreement with a theoretical result of
0.36 eV due to Gutsev et al. [20] that is judged elsewhere [19]
to be accurate. The discrepancy of approximately 1.2 eV
with our calculation via Eq. (7b) could not be reconciled by
taking into account the small variations in the values given for
the LiF IP, as determined by different methods and listed in
different sources [1,19]. On the other hand, our prediction of
the EA for LiF is consistent with the lower bound of 1.35 eV
for the EA that appears online in the NIST WebBook [1,30].
Additionally, the scaling trend upon which we base our
prediction arises from a fit with high confidence (R2 = 0.996)
to points representing many of the lighter alkali-metal halide
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TABLE V. Comparison of electron detachment energies predicted
in this work with theoretical and experimental values compiled in
the Diatomix Database [19] and by Rienstra-Kiracofe et al. [21]. For
diatomics having alternative values listed in these compilations, those
are compared to values predicted in this work and listed in Table IV.
In other cases, no authoritative alternative values are readily available.

Diatomic Scaling This Other
XY line work theory Experiment

Ionization potentials, IXY , in eV

Ga2 Gp. III(3�−
g ) 5.56 5.9 ± 0.2a

SeO 3�− 9.4 9.9 ± 0.3b

Electron affinities, AXY , in eV

Li2 Gp. I(1�+
g ) 0.39 0.431c 0.437 ± 0.009d

LiF 1�+(a.h) 1.58 0.36e

PN 1�+(a.h.) 0.59 0.32 ± 0.20f

1�+(ox.) 0.61
1�+(a.h.) 0.12g

1�+(ox.) 0.14g

SiO 1�+(a.h.) 0.64 0.11−0.75h

1�+(ox.) 1.20

aExperimental value from Refs. [19,22].
bExperimental value from Refs. [19,23].
cOther theory result from Refs. [19,24].
dExperimental value from Refs. [21,25].
eOther theory result from Refs. [19,20].
fExperimental value from Refs. [19,26].
gAlternative prediction uses adiabatic IP = 11.41 eV from Refs. [19,
27]; yields EA result within error bounds of experiment.
hOther theory results from Refs. [21,28].

molecules, as seen in Fig. 2. Thus, this scaling line should
provide a strong mutual consistency condition for the IPs
and EAs of all the light alkali-metal halide molecules. By
those standards, Gutsev’s value of 0.36 eV for the EA of
LiF seems to be too low. It is inconsistent with the generally
accepted values for its IP and with the electron detachment
energies of the other light alkali-metal halide diatomics. This
inconsistency suggests that further experimental or theoretical
effort to verify the EA (and, possibly, the IP) of LiF might be in
order.

D. Further predictions of electron detachment energies
based on data from other sources

By taking advantage of electron affinity values listed in the
supplemental sources described in the last section, we also
were able to determine provisionally, from only two theory
points, an additional, fifth quantum capacitance scaling line
for the heteronuclear diatomics. The line describes scaling of
the capacitances for the 1�+ alkaline earth metal monoxide
diatomics BeO, MgO, CaO, SrO, and BaO. Parameters for this
scaling line were evaluated using the known IPs and EAs of
just the two lightest molecules in this sequence, BeO and MgO.
(See the fourth and fifth lines from the bottom of Table IV.) The
BeO and MgO IPs there were taken from the NIST Chemistry

WebBook [1], but the EAs for these two species, as calculated in
earlier theoretical work [20], were obtained from the Diatomix
Database [19].

Then, we used in Eq. (7b) the scaling parameters and
the known [1] IPs for the heaviest three molecules in this
sequence, CaO, SrO, and BaO. Thereby, in the last three lines
of Table IV we predict the otherwise unknown EAs for CaO,
SrO, and BaO. Values for their EAs do not seem to be available
elsewhere in the literature [1,19,21,29].

IV. SUMMARY AND CONCLUSIONS

In this paper, we have used diatomic ionization potentials
and electron affinities from standard tables [1], along with
atomic mean radii from ab initio calculations [9,10,13], to
extend to diatomic molecules recent demonstrations that atoms
and molecules behave much like classical capacitors. As has
been shown for atoms [3] and organic molecules [4], quantum
capacitances of diatomic molecules vary linearly with the
tiny systems’ dimensions, much like the classical capacitances
of macroscopic conductors. For diatomics, this quasiclassical
behavior was shown to conform with Eqs. (3).

From Eqs. (3), diatomic molecular properties that usually
are thought to depend upon the character and dimensions of
the bonded assembly of atoms, appear to depend simply on
the dimensions of the unbonded atoms. The capacitance model
of Eqs. (3) treats the diatomic molecule as two unperturbed
atom-sized spheres in tangential contact. For 45 diatomic
molecules, this empirically dictated “atoms-in-molecules”
type model proves highly accurate and better than intuitively
favored models with more explicit dependence on molecular
dimensional parameters, such as the bond length.

The linear equations or laws of quantum capacitance
scaling associated with this model imply mutual consistency
conditions, Eqs. (6) and (7), among the ionization potentials
and electron affinities for diatomic molecules of similar
symmetries. Equations (6) have been used here to predict IPs
for two diatomics with known EAs (Ga2 and SeO) but for
which there is no standard value of the IP. Similarly, Eqs. (7)
have been used to estimate or predict EAs that are unknown or
uncertain for several diatomics with known IPs (Li2, LiF, CSe,
PN, BF, BCl, SiO, GeO, NCl, CaO, SrO, and BaO). These
predictions all are presented in Table IV.

Having thus demonstrated the utility of linear quantum
capacitance scaling laws, as well as their ubiquity, it is
important to ask why or how such fundamental simplicity
should prevail amidst the apparent complexity in most other
aspects of many-electron quantum mechanics. This question
shall be explored in future investigations.
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