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Temperature dependence of the plasmonic Casimir interaction
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We investigate the role of surface plasmons in the electromagnetic Casimir effect at finite temperature,
including situations out of global thermal equilibrium. The free energy is calculated analytically and expanded
for different regimes of distances and temperatures. Similar to the zero-temperature case, the interaction changes
from attraction to repulsion with distance. Thermal effects are shown to be negligible for small plate separations
and at room temperature but become dominant and repulsive at large values of these parameters. In configurations
out of global thermal equilibrium, we show that the selective excitation of surface plasmons can create a repulsive
Casimir force between metal plates.
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I. INTRODUCTION

The interaction between two parallel plates due to the
zero-point fluctuations of the electromagnetic field is com-
monly known as the Casimir effect. For metallic plates, it
is well known that, at short distance, the interaction can be
attributed to surface plasmon modes [1,2] that hybridize across
the vacuum between the interfaces [3,4]. Surface plasmons
have been attracting much interest in the past few years in
connection with a broad range of topics such as near-field
spectroscopy, subwavelength resolution [5,6], and extraordi-
nary optical transmission through subwavelength metallic hole
arrays [7–9]. The electromagnetic field associated with these
modes is evanescent. It therefore came as a surprise that they
also give a large contribution at large distances, and even a
repulsive one [10–12]. These papers have been restricted to
the Casimir effect at zero temperature. The present paper gen-
eralizes these results by including a nonzero temperature and
situations out of thermal equilibrium. One might expect that
the thermal excitation of surface plasmons is irrelevant, since
their typical energies are comparable to the plasma frequency
of the metal, being much larger than experimentally relevant
thermal energies. As retardation is taken into account, however,
the surface plasmon dispersion relation approaches the light
cone and drops to lower frequencies. These are comparable,
for two parallel plates, to the lowest cavity resonance ∼c/L.
We find indeed a significant thermal component to the Casimir
interaction between surface plasmon modes when the distance
L exceeds the thermal wavelength ∼h̄c/kBT . By selectively
exciting a class of plasmonic modes, we even get an overall
repulsive Casimir force.

The paper is organized as follows. We first recall the
dispersion relations for coupled surface plasmon modes on
two metallic plates [1] and obtain a general expression for the
corresponding Casimir free energy. This is expanded asymp-
totically in different regimes of distance L and temperature T

in Sec. III. Section IV discusses the plasmonic Casimir entropy.
We then compare the results to the full Casimir interaction
between metal plates (Sec. V), including all electromagnetic
modes, consider situations in which the plasmonic modes are
not at the same temperature as the rest of the system (Sec. VI),
and conclude with a short summary.

We adopt throughout this paper the following lossless
dielectric function:

ε(ω) = 1 − ω2
p

ω2
, (1)

where ωp is the plasma frequency. The Casimir energy and
force (both per unit area) are normalized to the values found
for perfectly reflecting mirrors [13],

EC = − h̄c

4πℵL3
, FC = − 3h̄c

4πℵL4
, (2)

where ℵ = 180/π3. An intrinsic physical length scale of
the system is the plasma wavelength λp = 2πc/ωp. It is
convenient to use the latter as a length scale, switching to
a dimensionless plate distance λ = L/λp. We introduce also
a reduced temperature τ = T/Tp = (2πkBT )/h̄ωp, where Tp

is the plasma temperature. This choice makes the numerical
results independent of the specific material and gives universal
scaling laws. Note that 1/τ is proportional to the ratio
between the thermal wavelength (a few microns at room
temperature) and the plasma wavelength and that the product
λτ = kBT L/(h̄c) is independent of the plasma wavelength. A
parameter set used frequently in related work is the one for
gold: h̄ωp = 8.96 eV, λp = 136 nm, and Tp = 1.66 × 104 K.
Room temperature then corresponds to τ ≈ 1.8 × 10−2.

II. PLASMONIC CASIMIR FREE ENERGY

The Casimir free energy of two metallic plates is obtained
by summing the free energy (per mode) over the electromag-
netic modes vibrating inside the cavity [3,13]. This expression
is suitably regularized, namely by subtracting the limit of large
distances between the plates.

Since the modes of the electromagnetic field are formally
equivalent to harmonic oscillators, the free energy of a single
mode of frequency ω in thermodynamical equilibrium at
temperature T is

f (ω) = h̄ω

2
+ kBT ln

[
1 − e

− h̄ω
kBT

]
. (3)

In this paper, we sum Eq. (3) over the dispersion relations
for the surface plasmons modes. Isolated surfaces (at infinite
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FIG. 1. Dispersion relation of the surface plasmon modes at
plate separation L = c/ωp (dotted curves) and L = 2c/ωp (dashed
curves); k is the wavevector parallel to the surface. The solid black
curve ω0(k) corresponds to the surface plasmon on an isolated plate
(L → ∞). The branch ω+(k) crosses the light cone. The asymptotic
value at large k is ωsp = ωp/

√
2.

distance) carry a single surface plasmon mode of frequency
ω0(k), illustrated in Fig. 1. If the plates are brought together,
the electromagnetic fields of the modes overlap, breaking
the degeneracy and splitting the dispersion relation in two
branches, whose frequencies we label ω±(k). The modes ω−(k)
and ω0(k) are both entirely evanescent and lie below the light
cone. The mode ω+(k), however, crosses the light cone and
connects smoothly with the lowest propagating mode (with p
polarization) within the cavity [1]. By adding the free energies
of the coupled modes and subtracting twice the corresponding
values at infinite distance the integral over the dispersion
relations gives the plasmonic Casimir free energy in the form
(with coefficients c± = 1, c0 = −2)

F(L,T ) =
∑

a=±,0

ca

∫ ∞

ka

kdk

2π
f (ωa), (4)

which is convergent at large k [10]. The thermal part of the free
energy [second term in Eq. (3)] naturally cuts off modes above
kBT /h̄. Different choices of the lower limits ka , related to the
subtraction procedure, are possible and have been discussed
in Refs. [11,12,14–16]. They are connected with the way the
evanescent and propagating contributions of the mode ω+(k)
are split. Here we apply the convention of Refs. [11,12] and
set ka = 0 for all modes. We thus include both propagating
and evanescent branches of the “plasmonic mode” ω+(k).

The calculation of the integral (4) is challenging because
the surface plasmon dispersion relations ωa(k) are solutions of
a transcendental equation, except in the nonretarded limit k �
ωp/c, where ω2

a(k) = ω2
sp(1 + ae−kL) with ωsp = ωp/

√
2,

a = 0,±. Progress can be made with the parametric form
described in Refs. [10–12]. Adopting the notation of Ref. [11],
we get the dispersion relations ωa(k), a ∈ {0,±}, from

ω2
a(z) = c2

L2
g2

a(z), k2
a(z) = z + g2

a(z)

L2
(5)
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FIG. 2. Parameter z+(λ) vs the normalized plate separation λ =
ωpL/(2πc) and its asymptotes at small and large distances. The
limiting cases are z+ ≈ (2πλ)2 and ≈ π 2 for λ → 0 and → ∞,
respectively.

with the dimensionless functions

g2
a(z) = (2πλ)2√z

√
z +

√
z + (2πλ)2[tanh(

√
z/2)]a

. (6)

(The exponents are ±1 for a = ±.) The parameter z varies
from −za to ∞: One has z0 = z− = 0, while the number
z+, plotted in Fig. 2 as a function of λ, is the solution [11]
of the transcendental equation

√
z+ = 2πλ cos(

√
z+/2). The

propagating branch of the mode ω+(k) corresponds to the
interval z ∈ [−z+,0]; evanescent modes (below the light cone)
have z > 0.

By changing the integration variable in Eq. (4) from k to z,
the plasmonic Casimir free energy is given by

F = h̄c

8πL3

∑
a=±,0

ca

{∫ ∞

−za

[
ga(z) + 2λτ ln

(
1 − e− ga (z)

λτ

)]
dz

+ 2
∫ ga (∞)

ga (−za )

[
g2

a + 2gaλτ ln
(
1 − e− ga

λτ

)]
dga

}
. (7)

For all plasmonic modes, the second integral has a finite
upper limit ga(∞) = √

2πλ = ωspL/c that coincides with the
nonretarded surface plasmon frequency; their contributions
cancel in the sum over a. The lower boundaries are g0(−z0) =
g−(−z−) = 0 and g+(−z+) = √

z+. The first integral in
Eq. (7) can only be evaluated approximately (see Sec. III),
but a closed form can be given for the second one.

In the following, we scale the plasmonic free energy to the
zero-temperature Casimir value, Eq. (2),

F(L,T ) = EC(L)ϕ(λ,τ ), (8)

and split the correction factor in two terms,

ϕ(λ,τ ) = η(λ) + ϑ(λ,τ ), (9)

where the first is the plasmonic Casimir energy at zero
temperature [11,12]:

η(λ) = −ℵ
2

∑
a

ca

∫ ∞

−za

ga(z)dz + ℵ
3

z
3/2
+ . (10a)
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The second term in Eq. (9) gives the temperature-dependent
part for which Eq. (7) gives

ϑ(λ,τ ) = −ℵλτ
∑

a

ca

∫ ∞

−za

ln
[
1 − e− ga (z)

λτ

]
dz

−2ℵ(λτ )3L
(√

z+
λτ

)
, (10b)

where the following combination of polylogarithmic functions
appears:

L(x) = ζ (3) − Li3(e−x) − xLi2(e−x) (11)

with Lin(x) = ∑∞
k=1 xk/kn. We note that L(x) ∼ 1

4x2(1 −
2 log x) for small x, and L(x) → ζ (3) exponentially fast for
large x. Equation (10b) does not depend only on the product
λτ because the material-dependent parameter λ enters via the
lower limit z+ and the functions ga(z) [Eq. (6)].

The Casimir free energy is shown in figures below for
different distance ranges. Qualitatively, a nonzero temperature
does not modify the behavior of the plasmonic contribution—
we still get a sign change at a distance of order λp/2π , with
the interaction becoming repulsive at large distances. We plot
in Fig. 3 the inversion distance where the Casimir pressure,
−∂F/∂L, changes sign: A weak increase is found as the tem-
perature is raised. Much larger changes will be found in Sec. VI
where configurations out of thermal equilibrium are discussed.

In the following, we analyze the thermal correction
ϑ(λ,τ ) in different regimes of distance and temperature. The
zero-temperature Casimir energy η(λ) depends only on one
physical scale provided by the plasma wavelength and leads
to two regimes, λ 	 1 and λ � 1. For ϑ(λ,τ ) we discuss
three regimes. In all situations of practical interest, it is
safe to assume τ 	 1 for the scaled temperature and we
can distinguish among short distances (λ 	 1), intermediate
distances (1 	 λ 	 1/τ ), and large distances (beyond the
thermal wavelength, 1/τ 	 λ).
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FIG. 3. Repulsive and attractive regimes of the plasmonic Casimir
pressure in the (λ,τ ) plane. A nonzero temperature slightly increases
the distance for which the plasmonic contribution to the Casimir force
becomes repulsive.

III. ASYMPTOTIC EXPRESSIONS

The calculation of asymptotic expressions requires some
care already at zero temperature as was shown in Ref. [12].
When performing approximations on the integrals in Eqs. (10a)
and (10b) one must bear in mind that the functions ga(z) cover
a wide range of values, from very small to large, depending on
z and λ. Their characteristic scale in the variable z is given by
the distance parameter λ. For −za < z 	 (2πλ)2 we may use
(a = 0,±)

ga(z) ≈
√

2πλ
√

z

[
coth

(√
z

2

)]a

, (12)

while for z � (2πλ)2 the (nonretarded) approximations

ga(z) ≈ 2πλ√
2

√
1 + ae−√

z (13)

hold. It is therefore convenient to split the integration range in
Eqs. (10a) and (10b) as follows:∫ ∞

−za

dz =
∫ 0

−za

dz +
∫ (2πλ)2

0
dz +

∫ ∞

(2πλ)2
dz. (14)

The first integral concerns only the mode ω+(k) because
z−,z0 = 0. We can use Eq. (12) in the first two integrals and
Eq. (13) in the third. Depending on distance and temperature
and on the desired accuracy, these have to be compared
with the integrated terms in Eq. (10) [proportional to z

3/2
+ or

L(
√

z+/λτ )].

A. Short distance

At short distance the zero-temperature energy correction
was already analyzed in Ref. [12]. It turns out that it is
dominated by large values of z [third integral of Eq. (14)].
At the leading order, we get

η(λ)
λ	1−−−→ 1.790λ. (15)

Higher order terms take the form λ3(a + b log λ) with numer-
ical coefficients a and b given in the same reference.

By considering the thermal correction for λ 	 1, the ther-
mal scale becomes important, too. For realistic temperatures,
we also have λτ 	 1, and the main contribution arises from
the second and the third integrals in Eq. (14). Indeed, it
can be shown that the first integral and the polylogarithmic
term (involving L) are beyond O(λ2). In addition, the main
contribution to the second integral arises from the mode
ω−(k). This is not surprising since the thermal correction
selects frequencies ωa(k) � T and the mode ω−(k) is the
one that vanishes most quickly as k → 0. The corresponding
exponent in k determines the power law in τ , as we discuss
at the end of this section. The opposite case λτ � 1 is
physically irrelevant at short distances, because one would
need τ � 1. Mathematically, one finds a divergence from the
term proportional to L in Eq. (10b) that is exactly balanced
by the first integral in Eq. (14). It follows that the asymptotic
form given in Eq. (16) remains valid.

All told, up to the second order in λ we find

ϑ(λ,τ )
λ	1−−−→ ℵλτ

[
2
λτ 2

π
L(2π

√
πλ/τ 2) + β(τ )

]
, (16)
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FIG. 4. The function β(τ ) vs τ and its asymptotes (18) at low and
high temperatures.

where the function L(x) defined in Eq. (11) appears with
a different argument, and where the temperature-dependent
function β(τ ) is

β(τ ) =
∫ ∞

0
ln

[
1 − e−π

√
2/τ

1 − e−π
√

2(1+e−√
z)/τ

]
dz

+
∫ ∞

0
ln

[
1 − e−π

√
2/τ

1 − e−π
√

2(1−e−√
z)/τ

]
dz. (17)

This function is plotted in Fig. 4 together with its asymp-
totes in the limits of high and low temperatures,

β(τ )
τ	1−−−→ 6ζ (5)

( τ

π

)4
, β(τ )

τ→∞−−−→ ζ (3)

4
. (18)

We observe the emergence of the characteristic ratio λ/τ 2

that determines which of the two terms in Eq. (16) dominates.
This illustrates that the limits λ → 0 and τ → 0 do not
commute for the temperature-dependent Casimir energy. If
λ 	 τ 2 [extremely short distances or high temperatures, Fig. 5
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FIG. 5. Plasmonic contribution to the Casimir free energy vs dis-
tance at different temperatures, normalized to the perfect mirror case
at T = 0 [energy correction factor ϕ(λ,τ ) in Eq. (8)]. Solid curves
are the numerical evaluation of Eqs. (10a) and (10b) for different
temperatures; dashed curves are the short-distance limit given by
Eqs. (15) and (16). Distance and temperature are scaled to the plasma
wavelength 2πc/ωp and temperature Tp = h̄ωp/kB , respectively.
Negative values correspond to a repulsive interaction energy.
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FIG. 6. Thermal correction to the plasmonic free energy at short
distance for different temperatures [energy correction factor ϑ(λ,τ )
in Eq. (9)]. The behavior qualitatively differs from the complete free
energy (Fig. 5), as a quadratic (rather than linear) distance dependence
emerges at low temperatures [cf. Eq. (16)].

and main plot of Fig. 6], the function β(τ ) governs the thermal
correction ϑ, which scales as ϑ ∼ λτ 5 if λ 	 τ 2 	 1. We
recover here the same linear distance dependence as at zero
temperature, Eq. (15). The opposite regime, τ 2 	 λ 	 1,

emerges at low temperatures, where the term involving L in
Eq. (16) dominates: We get a behavior ϑ ∼ λ2τ 3 (inset of
Fig. 6). This crossover from a quadratic to a linear scaling
with distance can be seen in Fig. 6.

This discussion also illustrates the failure of the nonretarded
approximation. This leads to surface plasmon dispersion rela-
tions ω2

±(k) = ω2
sp(1 ± e−kL) and ω0 = ωsp, and it extrapolates

a free energy ϑ ∼ τ 5 down to low temperatures, while the
correct power is τ 3. This is of course crucial for the low-
temperature expansion of a thermodynamic quantity such as
the entropy (see Sec. IV).

B. Intermediate distance

Parameters for typical experiments are τ ≈ 10−2, λ ≈
1, . . . ,102, way beyond short distances. They lie inside an
intermediate regime 1 	 λ 	 1/τ , where the plate distance
is between the plasma and the thermal wavelengths. Here, the
thermal correction to the free energy is still small compared to
zero temperature, as for short distances.

In the scaled Casimir energy η(λ,τ ), the main contribution
to the integral (10a) arises for z ∼ 1 and we have to consider
the first two integrals in Eq. (14), where, approximately,
z+ ≈ π2. The energy correction factor at zero temperature then
becomes [12]

η(λ)
λ�1−−−→ −74.57

√
λ + 60, (19)

the offset arising from the second term in Eq. (10a).
For the thermal correction, we find the leading order

from the polylogarithmic L in Eq. (10b). The z integral
gives a contribution which is dominated by the interval
z = −z+ . . . (2πλ)2. Combining the two gives

ϑ(λ,τ ) ≈ −2ℵ(λτ )3ζ (3)

(
1 − 1

λπ

)
. (20)
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FIG. 7. Thermal plasmonic Casimir free energy [reduction factor
ϕ(λ,τ ) in Eq. (8)] at intermediate distances and different tempera-
tures. Shown are the exact numerical calculation (solid curves) and the
approximation (19) at zero temperature (thick short-dashed curve on
top of the thick line) and sum of Eqs. (19) and (20) in the intermediate
regime λτ 	 1 (thin long-dashed curves), respectively.

This gives a small correction that scales as τ 3. Both Eqs. (19)
and (20) are plotted in Fig. 7, illustrating the weak impact
of temperature. It is interesting to note that, in this range of
distances, the thermal plasmonic contribution is opposite in
sign to the free energy of the full electromagnetic Casimir
effect (see Sec. IV), and it increases the plasmonic repulsion.

C. Large distance

Let us finally consider the regime λ � 1/τ � 1, corre-
sponding to a plate separation larger than both the plasma and
the thermal wavelengths. The zero-temperature contribution
can still be approximated by Eq. (19), but now the thermal con-
tribution dominates the free Casimir energy. The asymptotic
behavior of the integrals in Eq. (10b) is obtained by expanding
the logarithms for small ga(z)/(λτ ), since the functions ga(z)
are bounded:

−λτ ln
[
1 − e− ga (z)

λτ

] ≈ −λτ ln

[
ga(z)

λτ

]
+ ga(z)

2
+ · · · . (21)

Using this expansion under the integral in Eq. (10b), we
note that the second term balances exactly with the zero-
temperature contribution from Eq. (10a). As for the first term,
we perform the z integration by splitting the integration range
as in Eq. (14). It is easy to see that, in the second interval,
the sum over the mode branches gives zero. The leading
contribution now comes from negative z, while the third
interval in Eq. (14) gives an exponentially small contribution
∼ e−4πλ. The polylogarithmic term L can be expanded for
small argument, which gives eventually

ϕ(λ,τ )
λτ�1−−−→
λ�1 − ℵλτ

2

∫ 0

−π2
ln

[
2π

λτ 2

√
z coth

(√
z

2

)]
dz

−2ℵ(λτ )3L
( π

τλ

)

≈ −ℵπ2λτ

2

(
ln(2λ) − 7ζ (3)

π2
+ 1

2

)
, (22)

where the dependence on ln τ cancels to leading order.
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FIG. 8. Plasmonic Casimir free energy [correction factor ϕ(λ,τ )]
at large distances and different temperatures. Shown are the numerical
calculation (solid curves) and large-distance approximations (19) at
zero temperature (thick short-dashed curve on top of the thick line)
and (22) at nonzero temperature (thin dashed curves).

The validity range of this asymptotic formula is illustrated
in Fig. 8 (dashed lines) where the full free energy is plotted at
large distances.

Summarizing this section, we have generalized a result
known from the zero-temperature case [11,12] to T > 0: Only
the branch of the plasmonic mode ω+(k) that crosses into the
propagating sector contributes to the (repulsive) plasmonic
Casimir interaction at large distances in a significant way.

IV. PLASMONIC CASIMIR ENTROPY

The plasmonic Casimir entropy can be derived from the
plasmonic Casimir free energy, Eq. (7), by differentiation with
respect to T ,

S(L,T ) = −∂F
∂T

= SC(L)σ (λ,τ ). (23)

A convenient scale is given by the Casimir entropy at high
temperatures between two perfect reflectors (which includes
two transverse photon polarizations),

SC(L) = ζ (3)

8π

kB

L2
. (24)

The scaled entropy is connected to the dimensionless thermal
correction ϑ(λ,τ ) by a derivative (where we note that EC < 0),

σ (λ,τ ) = 2

ζ (3)ℵλ

∂

∂τ
ϑ(λ,τ ). (25)

We recall the result for perfect reflectors where the entropy
depends only on the product λτ [17]:

σC(λ,τ ) =
{

12(λτ )2, λτ 	 1,

1, λτ � 1.
(26)

The Casimir entropy due to surface plasmons can be
represented as the integral

σ (λ,τ )

= − 4

ζ (3)

{ ∑
a

ca

2

∫ ∞

−za

[
ln

(
1−e− ga (z)

λτ

) − n̄a(z)
ga(z)

λτ

]
dz

+3(λτ )2L
(√

z+
λτ

)
+ z+ ln

[
1 − e−

√
z+
λτ

]}
,
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FIG. 9. Temperature dependence of the Casimir entropy from
plasmonic modes [correction factor σ (λ,τ ) relative to perfectly
conducting mirrors, Eq. (23)] for short distances and at the high-
temperature limit (28) (dashed line). The inset (double logarithmic
scale) shows the low-temperature behavior at short distance and its
asymptote (dashed line ) σ ∼ τ 2 from Eq. (27).

where n̄a(z) = {exp[ga(z)/λτ ] − 1}−1 is the Bose-Einstein
mean photon number. Figures 9 and 10 show the temperature
dependence of σ (λ,τ ) for several distances λ, small and large.
The strong qualitative differences between these cases could be
anticipated from the free energy of Fig. 6: At short distances,
temperature makes increase ϑ(λ,τ ) toward positive values,
leading to a positive σ from Eq. (25), while the trend is reversed
at larger distances.

Note from Figs. 9 and 10 that the plasmonic Casimir
entropy fulfills Nernst’s heat theorem (σ → 0 as T → 0) at
all distances. Though the same is known for the entropy of
the complete plasma model [18] including photonic modes,
the result is not trivial because surface plasmons are only a
subsystem of the two-plate system.

As before one can distinguish three characteristic distance
regimes for the plasmonic Casimir entropy. The expression for
λ 	 1 can be easily obtained from the approximation (16) to
ϑ(λ,τ ). At low temperatures (regime τ 2 	 λ 	 1), we must
include a subleading term in the small-λ expansion to get the

110100

0.001 0.01 0.1 1 10
40

30

20

10

0

τ

σ
λ,

τ

FIG. 10. Plasmonic Casimir entropy in the scaled form σ (λ,τ )
[Eq. (23)] vs temperature for intermediate and large distances (solid
curves) and the low- and high-temperature asymptotes of Eqs. (29)
and (30), respectively (dashed curves).

right prefactor of the temperature power law. This is done
by adding to Eq. (16) the polylogarithmic term with L of
Eq. (10b) that becomes −2ℵ(λτ )3ζ (3). Differentiation leads
to

σ (τ,λ)
λ	1−−−→
τ	1 σC(λ,τ )

[
1

πλ
+ 5

π2

ζ (5)

ζ (3)

(
τ

πλ

)2

− 1

]
. (27)

The entropy approaches zero quadratically as τ → 0, as for
perfect reflectors [Eq. (26)], but the prefactor is larger by a
factor 1/(πλ). The good agreement with the exact result can
be seen in the inset of Fig. 9.

At high temperature, σ (λ,τ ) becomes a constant that
coincides at short distances with the perfect reflector limit
for one polarization,

σ (λ,τ )
λ	1−−−→
τ�1

1

2
. (28)

This can be seen from Eq. (16) by taking into account the
function β(τ ).

Intermediate (1 	 λ 	 1/τ ) and large (1,1/τ 	 λ) dis-
tances can be treated with Eqs. (20) and (22), which give,
respectively,

σ (λ,τ )
λτ	1−−−→
λ�1 σC(λ,τ )

(
−1 + 1

λπ

)
. (29)

σ (λ,τ )
λτ�1−−−→
λ�1 − π2

ζ (3)

(
ln(2λ) − 7ζ (3)

π2
+ 1

2

)
. (30)

The validity range of these formulas can be seen from Fig. 10
(dashed lines). Note that for intermediate and large distances,
the entropy approaches zero from below as τ → 0.

V. PLASMONIC VERSUS PHOTONIC MODES

We now compare the plasmonic Casimir interaction to the
full system where all electromagnetic modes of the cavity
are included. Knowledge of the surface plasmon contribution
provides some physical interpretation for the complete system.
For example, it is well known [3,4] that the full Casimir
interaction (zero temperature) at small plate separations is
well described by taking only the electrostatic interaction
between surface plasmons. We now show that this remains
valid at nonzero temperature. The fundamental reason is that,
at short distances (λ 	 1), the lowest cavity modes [above the
plasmonic ω− + (k)] have a characteristic frequency 2πc/L

that already falls in the transparency band of the mirrors
(ω > ωp).

The full Casimir free energy FLif = ϕLif(λ,τ )EC can be
obtained from the Lifshitz formula [18,19]. In our scaled units,

ϕLif(λ,τ ) = −2ℵλτ
∑

p

∞∑
n=0

′

p(2πnλτ ), (31)


p(X) =
∫ ∞

X

dκ κ ln
[
1 − r2

p(iX,κ)e−2κ
]
. (32)

The index p ∈ {TE,TM} denotes the polarization. The num-
bers Xn = 2πnλτ are scaled Matsubara frequencies. The
Fresnel reflection coefficients in terms of the variables κ and
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FIG. 11. Casimir free interaction energy including all modes
(Lifshitz theory with the plasma model, dashed curves), compared to
its plasmonic counterpart (solid curves). All energies are expressed
via the correction factor ϕ(λ,τ ).

X are

rTE(iX,κ) = κ − κm

κ + κm

, rTM(iX,κ) = ε̃(iX)κ − κm

ε̃(iX)κ + κm

, (33)

with κm =
√

κ2 + (2πλ)2 and the dielectric function of the
plasma model [cf. Eq. (1)] ε̃(iX) = 1 + (2πλ/X)2.

Figure 11 shows the scaled free energies for both the
full Casimir interaction (dashed curves) and the plasmonic
contribution alone (solid curves). A good agreement is visible
at short distances even at nonzero temperature. In this
regime, we can, therefore, obtain detailed information on the
thermodynamics of the Casimir effect by just considering the
plasmonic contribution, which can be worked out in analytic
form quite easily.

For example, we can immediately conclude that the (full)
Casimir entropy at λ 	 1 is given by Eq. (27) at low
temperatures (τ 	 1) and by Eq. (28) for τ � 1.

With respect to the Casimir entropy, Figs. 11 and 12
illustrate that the Lifshitz expression deviates significantly
from the plasmonic contribution when λ � 0.1. It is obvious
that propagating (photonic) modes then become relevant. In the
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FIG. 12. Casimir entropy vs temperature for all modes (plasma
model, dashed curves), compared to the contribution of plasmonic
modes only (solid curves). Entropies are expressed via the correction
factor σ (λ,τ ).

Appendix we calculate their contribution at low temperatures
for the plasma model:

σph(λ,τ )
λτ	1−−−→
τ	1 λτ 	 1σC(λ,τ )

[
2 − 8π2τ

45ζ (3)

2 + πλ

3

]
,

(34)

where the first term is twice the value obtained for perfect
mirrors. This is precisely compensated by the plasmonic
contribution. Indeed, for intermediate distances 1 	 λ 	
1/τ , both Eqs. (29) and (34) are valid, and their sum
reproduces the entropy of the full Casimir effect calculated
in Refs. [18,20–22]. Evaluating Eq. (19) of Ref. [21] in the
regime of intermediate distances, we have

σLif(λ,τ )
λτ	1−−−→
λ�1 σC(λ,τ )

[
1+ 1

πλ
− 8π2τ

45ζ (3)

πλ + 2

3

]
. (35)

VI. BEYOND THERMAL EQUILIBRIUM

Until now, we have assumed both metallic slabs to be
at the same temperature T . The previous results enable us
to deal in a simple way with a more general situation, too,
where each of the (otherwise identical) slabs is described by
a local temperature T1 and T2. The general theory in this
case was investigated in Refs. [23,24]. The nonequilibrium
Casimir interaction for a symmetric cavity is obtained by
simply averaging over the equilibrium free energies of the
two mirrors:

Fneq(L,T2,T1) = 1
2 [F eq(L,T2) + F eq(L,T1)]. (36)

(In Ref. [24], this result was derived for the pressure, but
the same reasoning can be applied for the free energy.) This
Casimir pressure would fall in Fig. 13 right between the lower

(a)

(b)

(c)

τ=0, τpr=0.04

τ1=0, τ2=0.04

τ1=0.018, τ2=0.04

τ=0

τ=0.018

1005020 30 70
−2

−1

0

1

2

3

λ

10
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F
(λ

)
/

|F
C

(λ
p
)|

FIG. 13. Total Casimir force (per unit area) in thermal equilibrium
(thick curve) and in different nonequilibrium scenarios. The force
is normalized to 10−6|FC(λp)|, approximately 3.65 µPa for gold
(λp = 136 nm). In these units, T = 300 K (665 K) corresponds to
τ ≈ 0.018 (0.04), respectively. (a) Total equilibrium at temperature
τ : attractive pressure at all distances. (b) Surface plasmon modes of
one plate out of equilibrium at temperature τ2, with all other modes
at temperature τ1. (c) All modes at τ , except for the propagating
branch of the plasmonic mode [ω+(k)], which is at temperature τpr.
The sign change to repulsion (positive pressure) would occur for gold
at distances between ≈2.7 and 3.7 µm.
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curves (a), for example. By combining this formalism with the
results from the present paper, it is straightforward to calculate
the plasmonic contribution to the nonequilibrium Casimir free
energy. By using the split (9) of the plasmonic free energy into
a zero-temperature and a thermal part, Eq. (36) gives for two
slabs at different temperatures

ϕneq(λ,τ2,τ1) = η(λ) + 1
2 [ϑ(λ,τ2) + ϑ(λ,τ1)]. (37)

From the results given here, we conclude that, qualitatively,
the behavior of ϕneq(λ,τ2,τ1) is similar to the equilibrium
configuration, including a change in sign of the force with the
distance. This is also confirmed by the asymptotic expressions
for long (short) distance and low (high) temperature that can
be easily extracted from these results. The total Casimir force
between identical plates, however, is always attractive, as is
known from Refs. [23,24] for all temperatures.

Let us now consider a slightly different nonequilibrium
scenario where temperature is still raised locally (in one plate),
but only for a subclass of modes. If it were possible to increase
the mean excitation of the plasmonic modes on one plate, above
the equilibrium level of the propagating (photonic) modes, the
total Casimir free energy would read

ϕ
neq
Lif (λ,τ2,τ1) = ϕLif(λ,τ1) + 1

2 [ϑ(λ,τ2) − ϑ(λ,τ1)], (38)

where the first term is the total Casimir free energy at
equilibrium. The set of curves (b) in Fig. 13 illustrates that
this scenario can create a regime where the total Casimir
force becomes repulsive, and this over a fairly large range
of distances. We plot the Casimir pressure (nonequilibrium
force per unit area) when the photonic modes are at the
scaled temperature τ1 (zero or room temperature) and for
the plasmonic modes on plate 2 at τ2 > τ1. It appears that
this setting breaks the delicate balance between photonic and
plasmonic modes we found in Sec. V. A similar interpretation
has been put forward in Ref. [25] for the change in distance
dependence of the atom-surface interaction out of equilibrium.
The two values for τ1 give close results because in the
intermediate distance range, the effect of the temperature is
still moderate for the equilibrium case. As could be expected,
the inversion distance increases and the maximal repulsion
becomes weaker as τ1 increases toward τ2.

We have also included in Fig. 13 a scenario where only the
propagating part of the plasmonic mode ω+(k) is populated at a
temperature different from the rest of the system. It contributes
a free energy

ϑ
pr
+ (λ,τ ) = −ℵ(λτ )

∫ 0

−z+
ln

[
1 − e− ga

λτ

]
dz

− 2ℵ(λτ )3

[
L

(
g+(−z+)

λτ

)
− L

(
g+(0)

λτ

)]
,

(39)

where g+(−z+) = √
z+ as noted before, and

g+(0) = 2πλ

√
1

1 + πλ
(40)

gives the (dimensionless) wavevector for which the dispersion
relation ω+(k) crosses the light cone. This leads to a nonequi-
librium free energy

ϕ̃
neq
Lif (λ,τpr,τ ) = ϕLif(λ,τ ) + ϑ

pr
+ (λ,τpr) − ϑ

pr
+ (λ,τ ), (41)

where τpr is the temperature of the propagating plasmons and
τ is the temperature of all other modes. The corresponding
pressure [curve (c) in Fig. 13] increases with respect to the
previous nonequilibrium scenario by approximately a factor
of 2, and repulsion sets in at a somewhat shorter distance. This
is because (i) the—otherwise attractive—mode ω−(k) is less
excited and (ii) the propagating branch of ω+(k) dominates the
interaction at these distances and excites the electron plasma
on both plates rather than a single one.

The selective excitation of surface plasmon modes is a
well-studied problem (Ref. [26] and references therein). Most
of the setups have to cope with the fact that the corresponding
electromagnetic field is evanescent and, therefore, cannot be
excited directly by laser photons incident from free space. A
Kretschmann or Otto configuration [2] together with a wide-
angle light source could provide an interesting starting point
for an experimental implementation of the nonequilibrium
Casimir setup. In fact, Fig. 13 (curve c) shows that the most
significant change can be achieved by exciting propagating
modes. These couple to free-space light fields and can be
excited by shining a laser [27] from the side onto the gap
between the mirrors. (See Ref. [28] for a related discussion.)
This option has the drawback of a very limited optical access in
a typical Casimir setup (large plates at short distance). One can
also use, however, a thin metal plate and illuminate it from the
back side. The surface plasmon modes in this geometry are still
very similar to the situation of this paper if the plate thickness
is large enough (with no coupling between the surface modes
on both sides; see Ref. [1]).

The excitation of plasmons over a wide angular range
(broad k range) is also challenging from the experimental
side. Corrugated surfaces are of some help here: Not only do
they convert plasmons into far-field radiation [29] and vice
versa, but also a single plasmon mode excited by a laser on a
rough surface is spread over a large angular range by surface
scattering [2].

VII. DISCUSSION AND CONCLUSION

We have calculated the contribution to the thermal Casimir
effect due to surface plasmons, which are hybrid field-matter
eigenmodes of metallic surfaces. The expression we found
for the free energy of interaction is valid at any distance and
temperature, and we have derived its asymptotics at small,
intermediate, and large distances. Thermal effects become
significant when the distance is larger than the thermal
wavelength λT , similar to perfectly conducting plates, and
below λT for nonequilibrium configurations. The other length
scale of the system (plasma wavelength) determines the
detailed behavior of the free energy.

We have found that at short distances and temperatures the
thermal correction is small and that the plasmonic Casimir
interaction changes sign with distance, leading to a repulsive
regime, as has been known from zero temperature [11,12].
This goes hand in hand with a change of sign of the
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plasmonic Casimir entropy. In the short-distance regime,
we found that the complete Casimir interaction between
metallic plates (described by the plasma dielectric function)
is completely dominated by the surface plasmon contribution.
The asymptotic scaling laws explain why T = 0 is a good
approximation in most experimentally relevant situations
(intermediate distance regime, low temperature). In this regime
the known result for the complete plasma model is recovered
in a simple way by adding propagative photonic modes.

Things are different at high temperatures and large dis-
tances. Here it was shown that the plasmonic Casimir in-
teraction is determined by a branch of the surface plasmon
dispersion relation corresponding to propagating modes, re-
sulting in a large repulsive contribution that is enhanced by the
temperature. This effect is probably one of the best illustrations
of Casimir repulsion that arises from the radiation pressure of
a standing wave mode. The pressure is repulsive, because the
traveling photons are bouncing off the cavity walls, while the
reference mode, a single-interface plasmon, has an evanescent
field with zero radiation pressure.

The balance between plasmonic and photonic modes was
emphasized by considering two configurations out of global
thermal equilibrium where plasmonic modes are selectively
excited to a higher temperature. These configurations show
a crossover to a total Casimir force that becomes repulsive
at plate distances L ≈ 20λp–25λp (a few microns for gold).
This can be understood qualitatively in terms of radiation
pressure due to the propagating branch of the plasmonic mode.
We emphasize that this happens at distances shorter than the
thermal wavelength where the Casimir pressure is stronger.

In conclusion, it seems in principle possible to tune the sign
of the Casimir force by the selective excitation of the surface
plasmons. Still, future research must address experimentally
relevant questions for such a scheme, for example, how to avoid
exciting photonic modes just above the plasmonic one and how
to populate plasmonic modes over a wide angular range.
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APPENDIX: FULL CASIMIR ENTROPY
AT LOW TEMPERATURES

The dimensionless correction factor for the Casimir entropy
of the plasma model can be written as the following integral
over (scaled) real frequencies:

σLif(λ,τ ) = − 4

πζ (3)

∫ ∞

0

xdx

sinh2 x
Im

∑
p

Mp(2xλτ ), (A1)

where p = TE,TM indicates again the polarization and

Mp(�) =
∫ ∞

0
dκ κ ln

[
1 − r2

p(�,κ)e−2κ
]

+
∫ �

0
dy y ln

[
1 − r2

p(�, − iy)e2iy]. (A2)

The first (second) integral in Eq. (A2) corresponds to the
evanescent wave (propagating wave) sector, respectively. For
p = TE, the argument of the logarithm is always positive in
the first integral, and hence its imaginary part vanishes. This
does not happen for p = TM where the first integral gives
the contribution of surface plasmons (evanescent branch),
which has been evaluated in this paper. As mentioned in
Sec. V, we are interested here in the propagating contribution
only.

The function x/ sinh2 x significantly differs from zero only
for x � 1. In the limit λτ 	 1, we can therefore expand the
integrands in Mp(�) for small y and � since y � � 	 1. This
yields

Im M
ph
TE(�) ≈ −π

4
�2 + �3

3πλ
(1 + πλ), (A3)

Im M
ph
TM(�) ≈ −π

4
�2 + �3

3πλ
(3 + πλ). (A4)

Performing the x integral in Eq. (A1), we get

σph(λ,τ )
λτ	1−−−→
τ	1 σC(λ,τ )

[
1 − 8π2τ

45ζ (3)

2 + πλ

3

]
. (A5)

Note, however, that this result contains the propagating
branch of the plasmonic mode ω+(k) whose free energy is
given by Eq. (39). By reviewing the analysis from Secs. III A
and III B, it is easy to see that, in the limit considered here,
the polylogarithmic term dominates in Eq. (39) and becomes
L(

√
z+/λτ ) ≈ ζ (3). Subtracting this contribution from (A5),

we find the entropy of the propagating photonic modes given
in Eq. (34).
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