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Colle-Salvetti-type local density functional for the exchange-correlation energy in two dimensions
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We derive an approximate local density functional for the exchange-correlation energy to be used in density-
functional calculations of two-dimensional systems. In the derivation we employ the Colle-Salvetti wave function
within the scheme of Salvetti and Montagnani [Phys. Rev. A 63, 052109 (2001)] to satisfy the sum rule for the
exchange-correlation hole. We apply the functional to the two-dimensional homogeneous electron gas as well as
to a set of quantum dots and find a very good agreement with exact reference data.
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I. INTRODUCTION

Development in modern technology has enabled the fab-
rication of nanoscale electronic devices with a large variety
of low-dimensional systems. Two-dimensional (2D) quantum
dots (QDs) are particularly interesting examples due to the
tunability in their size and shape, and number of confined
electrons [1,2]. From the theoretical point of view, QDs con-
stitute an ideal platform to study the many-particle problem,
electronic correlations, and the role of the dimensionality.

In density-functional theory [3] (DFT) particle-particle
interactions beyond the classical (Hartree) term are captured
through the exchange-correlation (xc) functional, which is
approximated in practice. The development of xc functionals
of varying portions of simplicity and accuracy has a long
and successful history [4]. The Colle-Salvetti (CS) scheme
[5,6] and its variants [7] have had an important role in the
development, especially in terms of the electronic correlation.
However, these efforts have focused almost solely on three
dimensions (3D), apart from orbital functionals where the
aspect of dimensionality is inbuilt through the Kohn-Sham
orbitals. Only very recently, several local [8,9] and semilocal
[10–16] functionals have been developed in 2D, and in
many test cases involving, for example, different QDs, they
have outperformed the commonly used 2D local density
approximation based on the exact exchange and correlation
of the homogeneous 2D electron gas (2DEG) [17,18].

In Ref. [8] a 2D local density functional for the corre-
lation energy was derived using the CS framework with a
Gaussian summation for the pair density [19]. Despite the
good performance of this functional for the correlation, a
compatible approximation for the exchange energy is needed
in view of, for example, total-energy calculations. In fact, a
combination with the 2D generalized-gradient approximation
for the exchange [12] leads to a reasonable accuracy in the
total energy [20]. However, this combined functional is still
semilocal, that is, it depends on the density gradients, which
reduces the numerical efficiency.

In this work we employ the CS framework to derive a 2D
local functional for the xc energy, so that both the exchange and
correlation are treated on the same footing. In the derivation
we follow the 3D scheme of Salvetti and Montagnani [21]
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for the second-order density matrix to satisfy the sum rule of
the xc hole, which is used to obtain a local density functional
of a simple polynomial form. We optimize two remaining
parameters of the functional by fitting against exact results for
six-electron QDs. The obtained parameters show universality
in the sense that a good accuracy and consistency is found
when the functional is tested for QDs with varying electron
numbers as well as for the 2DEG.

II. DERIVATION OF THE FUNCTIONAL

The electron-electron interaction energy can be formally
expressed (in Hartree atomic units) as

Eee = 〈�|V̂ee|�〉 =
∫

dr1

∫
dr2

ρ2(r1,r2)

|r1 − r2| , (1)

where

ρ2(r1,r2) = N (N − 1)

2

∑
σ1,σ2

∫
d3, . . . ,

∫
dN

× |�(r1σ1,r2σ2,3, . . . ,N)|2. (2)

is the diagonal element of the spinless second-order density
matrix describing the distribution density of electron pairs.
Here

∫
dN denotes the spatial integration and spin summa-

tion over the N th spatial and spin coordinates rNσN , and
�(1,2, . . . ,N ) is the ground-state many-body wave function.
The element ρ2(r1,r2) satisfies the normalization

N (N − 1)

2
=

∫
dr1

∫
dr2ρ2(r1,r2), (3)

and it is related to the electron density, that is, the diagonal
term of the first-order density matrix, through

ρ(r1) = 2

N − 1

∫
dr2 ρ2(r1,r2). (4)

Next, the introduction of a symmetric function accounting
for all nonclassical effects called the pair correlation function
h(r1,r2) suggests that we write [23]

ρ2(r1,r2) = 1
2ρ(r1)ρ(r2)[1 + h(r1,r2)]. (5)

The important sum rule for the xc hole can be expressed in
terms of the pair correlation function as∫

dr2 ρ(r2)h(r1,r2) = −1. (6)
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The total interaction energy in Eq. (1) can be split into the
classical Coulomb (Hartree) term associated with ρ(r) and the
nonclassical (indirect) part associated with the xc energy,

Eee = EH + Exc = 1

2

∫
dr1dr2

ρ(r1)ρ(r2)

|r1 − r2|
+ 1

2

∫
dr1dr2

ρ(r1)ρ(r2)h(r1,r2)

|r1 − r2| . (7)

It should be noted that, compared with the conventional DFT
formalism, Exc as defined here neglects the kinetic-energy
contribution to the correlation energy. The Hartree term
can be computed in a straightforward fashion, but the inte-
gration in the xc part is nontrivial due to the pair correlation
function h(r1,r2). The key point in the present work is to obtain
an approximation for h(r1,r2) satisfying the sum rule in Eq.
(6). Before proceeding with that, we will briefly introduce the
CS approach which is relevant for the derivation.

The CS scheme starts with the following ansatz for the
many-body wave function [5,6]:

�(r1σ1, . . . ,rNσN )=�HF(r1σ1, . . . ,rNσN )
∏
i>j

[1 − ϕ(ri ,rj )],

(8)

where HF refers to the single-determinant Hartree-Fock wave
function, and

ϕ(r1,r2) = [1 − �(R)(1 + ζ r)] exp[−β2(R)r2] (9)

describes the correlated part of the wave function written
in center-of-mass, R = (r1 + r2)/2, and relative, r = r1 − r2,
coordinates. The parameter ζ comes from the cusp conditions,
and the quantities � and β act as correlation factors. In
Refs. [19] and [8] dealing with 3D and 2D systems, respec-
tively, β was introduced as a local factor for the correlation
length, β(R) = qρ1/D(R), where D is the dimension, q

is a fitting parameter, and ρ(R) is the electron density.
The CS approach assumes that the first- and second-order
density matrices can be written as ρ1(r1,r2) = ρHF

1 (r1,r2) and
ρCS

2 (r1,r2) = ρHF
2 (r1,r2)[1 − ϕ(r1,r2)]2, respectively [22].

To approximate h(r1,r2), we extend the strategy of Salvetti
and Montagnani [21] to 2D by introducing the correlation
factors in the following way:

β(r1,r2) = γρ1/2(r1)ρ1/2(r2), (10)

� = βα

√
π + βα

, (11)

ϕ(β) = [1 − �(1 + r)]�e−βr2
(12)

with r = |r1 − r2|. Above, γ and α are optimizable parameters
(γ with dimension of ρ−1), and � is a monotonic function
varying between zero and one. The differences from the
original CS scheme are obvious; most importantly, β is now a
nonlocal functional of the density.

We may now search for the pair correlation function

h(r1,r2) = ϕ2 − 2ϕ

f
, (13)

where f is assumed to be a simple polynomial of the form

f (�) = a0�
n + a1�

n−1 + · · · . (14)

The nominator in the expression for h(r1,r2) is similar to the
CS functional [5,6], whereas the denominator is chosen such
that the sum rule in Eq. (6) is satisfied. Substitution of Eq. (13)
into Eq. (6) yields∫

dr2ρ(r2)h(r1,r2) =
∫

drρ(r1 + r)h(r1,r1 + r)

=
∫

dr
ρ(r1 + r)

f

{
�4e−2βr2

(1 + r)2

− 2�3e−2βr2
(1 + r) + �2e−βr2

× [
e−βr2 + 2(1 + r)

] − 2�e−βr2}
= −1. (15)

This expression involves integrals that can be computed
by using the mean-value theorem and the regularity of the
functions. By following the procedure of Ref. [21], we obtain∫

dr g(r1,r1 + r)e−b(r1,r1+r)r2
rn � 2πg(r1)

∫
dr e−br2

rn+1.

(16)

Utilizing this approximate integration, which becomes more
accurate as b becomes large, leads to∫

dr2ρ(r2)h(r1,r2)

� 2πρ(r1)

fβ
[�4(i0 + 2i1 + i2) − �3(2i0 + 2i1)

+�2(i0 + 2j0 + 2j1) − 2�j0] = −1, (17)

where we define in and jn as

in =
√

2−n−2β−n

∫
dx e−x2

xn+1 (18)

and

jn =
√

β−n

∫
dx e−x2

xn+1. (19)

Using the definition of β and calculating the integrals, we
obtain the final result for the polynomial function,

f = −2

(
π

γ

)
�(a0�

3 + a1�
2 + a2� − 1), (20)

where the coefficients are given by

a0 = 1

4
+ 1

8β
+ 1

4

(
π

2β

)1/2

,

a1 = −1

2
− 1

4

(
π

2β

)1/2

, (21)

a2 = 5

4
+ 1

2

(
π

β

)1/2

.

Computation of the integral in Eq. (7) is performed by a
similar procedure,

Exc = 1

2

∫
dr1dr2

ρ(r1)ρ(r2)h(r1,r2)

|r1 − r2|
= 1

2

∫
dr1ρ(r1)

∫
drρ(r1 + r)

ϕ2 − 2ϕ

f r

= π

∫
dr1ρ

2(r1)
�

f

√
π

β
[b0�

3 + b1�
2 + b2� − 1],

(22)
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where the coefficients are given by

b0 = 1

2
√

πβ
+ 1

2
√

2
+ 1

8β
√

2
,

b1 = − 1

2
√

πβ
− 1√

2
, (23)

b2 = 1√
πβ

+ 1

2
√

2
+ 1.

Using Eq. (20) and the definition of β, we obtain the final
result for the xc energy in 2D,

Exc =
∫

drρ3/2(r)q(ρ) (24)

with

q(ρ) = −
√

πγ

4

(
b0�

3 + b1�
2 + b2� − 1

a0�3 + a1�2 + a2� − 1

)
. (25)

The remaining task is to find a reasonable pair of values for
γ and α which determine q(ρ) through Eqs. (10), (11), (21),
and (23). Here we choose to fit these parameters to reproduce
the xc energies of parabolic QDs with N = 6, which is the
smallest closed-shell system beyond the simplest N = 2 case.
In the external potential vext(r) = ω2r2/2, we use the con-
finement strengths ω = 1/4 and 1/16 for which numerically
exact configuration-interaction (CI) data are available [24].
These confinements have a rather wide range with respect
to the relative weight of the xc effects, and, moreover, the
chosen values are realistic regarding the modeling of real QD
devices [1,2]. The reference xc energy is obtained from

Eref
xc = Eref

x + Eref
c = EEXX

x + Eexact
tot − EEXX

tot , (26)

where Eexact
tot is the reference total energy, EEXX

tot is the total
energy from the exact-exchange (EXX) calculation performed
here within the Krieger-Li-Iafrate approximation [25] and
using the OCTOPUS code [26], and EEXX

x is the exchange
energy. The best fit with Eref

xc is obtained with parameter values
γ = 1.12 and α = 0.45.

III. TESTING THE FUNCTIONAL

Next we test whether the chosen parameter values yield
reasonable and consistent results for different 2D systems. This
is naturally a desired property in any density functional in order
to be a predictive approximation. First we consider parabolic
QDs with N = 2, . . . ,12 and ω = 1/16, . . . ,1. The results
are summarized in Table I. The reference xc energies have
been calculated from Eq. (26) using the total-energy data from
analytic [27], CI [24], and quantum Monte Carlo (QMC) [28]
calculations as indicated in the table. Overall, we find a very
good performance of our functional, the mean error being
1.86%, which is smaller than that of the 2D LDA (2.19%).
Although the LDA is also this accurate for the xc energy, it
should be noted that both the exchange and correlation parts
have significant errors (see, e.g., Refs. [10] and [14]), and the
good overall performance follows from the well-known error
cancellation. It is also noteworthy that the 12-electron case
is very accurate, and it can be expected that the accuracy is
preserved for larger systems when N is increased further.

TABLE I. Exchange-correlation energies for parabolic quantum
dots. The optimal parameters γ = 1.12 and α = 0.45 have been
used for the calculation of Emodel

xc . The last row contains the mean
percentage error.

N ω −Eref
xc −Emodel

xc −ELDA
xc

2 1 1.246a 1.195 1.174
2 1/4 0.5987b 0.5794 0.5821
2 1/6 0.4936a 0.4678 0.4721
2 1/16 0.2774b 0.2789 0.2820
6 1/1.892 2.156b 2.138 2.137
6 1/4 2.014b 2.008 2.011
6 1/16 0.9265b 0.9309 0.9429
12 1/1.892 4.708c 4.716 4.701
� 1.86% 2.19%

aTotal energy from the analytic solution in Ref. [27].
bTotal energy from the CI data in Ref. [24].
cTotal energy from the QMC data in Ref. [28].

Table I raises a natural question of whether the good
performance simply follows from the fact that γ and α were
fitted to a similar system with N = 6. Therefore, in Figs. 1(a)
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FIG. 1. (Color online) Absolute relative error for parabolic
quantum dots, (a) N = 2, ω = 1 and (b) N = 12, ω = 1/1.892, with
respect to parameters γ and α. The crosses mark the values chosen
from the fit to the N = 6 case.
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FIG. 2. (Color online) (a) Exchange-correlation energy per parti-
cle for the two-dimensional homogeneous electron gas obtained using
our functional with the chosen parameters γ = 1.12 and α = 0.45
(dashed line) in comparison with the exact result (solid line). The
inset shows the relative error. (b) Result for the function q(ρ) obtained
using our functional (dashed line) in comparison with the optimal
values required to reproduce the exact exchange-correlation energy
of the two-dimensional homogeneous electron gas.

and 1(b) we examine the “extreme” cases of Table I with N = 2
(ω = 1) and N = 12 (ω = 1.892), respectively. The figures
show the absolute relative errors as functions of both γ and α,

so that here the parameter values have been left undetermined
for both cases. The white crosses show the chosen values
γ = 1.12 and α = 0.45 based on the N = 6 data. In both cases,
the crosses match very well with the optimal regime where the
relative error is smallest for N = 2 and N = 12. Hence, Fig. 1
confirms that, at least for parabolic QDs, the functional is
consistent. The figure also demonstrates the strong correlation
between the two parameters as well as the uniqueness of their
relationship—for each γ (α) there is only one compatible α

(γ ).
Finally we consider the important limit case of the homo-

geneous 2DEG. Figure 2(a) shows the comparison of the xc
energy per particle with respect to the exact 2DEG result.
Here we have used the same parameter values γ = 1.12
and α = 0.45 as before. We find an excellent agreement
through a wide range of the density parameter rs = (πρ)−1/2.
In the realistic density range the relative error is within
a few percent (see the inset). In Fig. 2(b) we show the
function q(ρ) of our functional (dashed line) in comparison
with the optimal values to reproduce the exact xc energy
of the 2DEG. Overall, we find good consistency in the
results at varying rs . More importantly, regarding the values
for γ and α the present functional is also consistent in the
comparison between the 2DEG and the QDs above.

IV. SUMMARY

To summarize, we have used the Colle-Salvetti scheme, and
in particular its recent generalizations, to derive an approx-
imate local density functional for the exchange-correlation
energy of electrons in two dimensions. The functional has a
simple polynomial form and it fulfills the sum-rule constraint
of the exchange-correlation hole. We have fitted the remaining
free parameters against exact results for six-electron quan-
tum dots and found an excellent consistency in the results
for a set of quantum dots with varying electron numbers
and varying relative proportion of the exchange-correlation
energy. The functional is precise also for the two-dimensional
homogeneous electron gas with the same fixed parameters.
Therefore, we may expect the functional to have predictive
power in density-functional calculations for various two-
dimensional electron systems. In this respect, generalization
to spin-polarized systems would be the most important future
extension of the method.
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