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Direct absorption transitions to highly excited polyads 8, 10, and 12 of methane
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We report on the experimental observation of high-resolution rotationally resolved spectra of vibrational
polyads 10 and 12 of methane lying approximately halfway to the dissociation energy. The spectra were obtained
at 295 K and 124 K and pressures as low as 200 mbar using a highly sensitive laser-induced grating (LIG)
technique. The spectra correspond to direct single-photon absorption transitions from the ground state with cross
sections as low as 10−25 to 10−26 cm2 molecule−1. We discuss theoretical developments toward the complete
analysis of these transitions.
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I. INTRODUCTION

Spectra of very weak absorption transitions long have been
our principal source of information on specific molecular states
or on conditions (pressure, temperature) in situations when
usual dipole transitions are inaccessible (due to saturation,
for example) or forbidden. Such are the well-known cases in
planetary science, astrophysics, atmospheric observations, and
plasma studies.

The weak absorption transitions that we study here are of a
rather general nature. Their probabilities are extremely low not
due to a specific property of the particular quantum molecular
system (symmetry, spin, etc.) but because the absorbed photon
increases the vibrational quantum number v associated with
the affected vibrational degree(s) of freedom by a number of
quanta n � 1, while in the usual allowed absorption transition
v increases just by 1. For weak classical fields, the very small
probability of such an event is described by the n-th Taylor
series term of the effective dipole moment (see Sec. IV). These
types of transitions with the maximal value nact of the number
of quanta of the dipole-active mode running as high as 6–7
were observed in a number of molecules, notably CO, CO2,
ozone, and methane (polyads Pn with n = 2nact)—all of great
importance to various fields mentioned above as well as to
molecular theory itself.

With recent advancements of spectroscopic techniques, it
has become possible to reproduce these transitions in vitro at
maximal spectral resolution. Thus in Ref. [1], we demonstrated
the spectroscopic potential of the laser-induced grating (LIG)
technique on the example of the P0 → P8 near-IR transition
of methane. Most recently, we observed similar transitions to
polyads P10 and P12 [2]; see Fig. 1. The purpose of our article is
to show how our and similar new experiments bring a standard
spectroscopic study into the mainstream of the contemporary
physics and to assess the theoretical work required for the
satisfactory understanding of these data.

We realize that for a number of reasons, the required
theory should go significantly beyond standard techniques
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of molecular spectroscopy and that a detailed traditional
line-by-line analysis and a spectroscopic fit to a Taylor
series phenomenological model may be but a very distant
possibility. The main issue is in preparing the foundation
for such a future analysis. Typically, spectroscopists base
their description on small groups of vibrational states which
they can describe by reasonably compact phenomenological
models. The classification of the states begins with the
ground state, i.e., the framework of small vibrations about the
equilibrium is assumed. We cannot continue this scheme to
the states involved in our experiments. Figuratively speaking,
we should find instead a different starting point for the series
approximation. We believe that this point can be found by
replacing “static” equilibrium-based linear vibrational normal
mode theory for dynamical nonlinear analysis that can select
stable highly nonlinear localized vibrations. Though the idea
itself is not entirely new, we like to draw more attention to
this problem and to set up the framework of thinking that may
lead to a satisfactory physical explanation and the eventual
quantitative analysis.

A. Vibrational levels of methane

Methane (CH4) is a light highly symmetric five-atomic
molecule. The spatial symmetry group of its rovibrational
Hamiltonian is the tetrahedral group1 Td of order 24; the full
symmetry group Td × T [3] which includes time-reversal T
is isomorphic to Oh. This group has two important classes of
subgroups which we refer to as D2d and C3v and which are built
around fourfold and threefold axes, respectively; see Fig. 2.
Methane has nine vibrational degrees of freedom combining
into four vibrational normal modes: ν1 (of symmetry type
A1, or the fully symmetric mode), ν2 (E), ν3 (F2), and
ν4 (F2); ν1 and ν3 are stretching modes, ν2 and ν4 are
bending modes. The ratio of the harmonic frequencies of these
modes

ω1 : ω2 : ω3 : ω4 ≈ 2 : (1:1) : (2:2:2) : (1:1:1) (1)

1Recall that cubic groups have irreducible representations of
dimension 1, 2, and 3, denoted A, E, and F , respectively.
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D. A. SADOVSKIÍ, D. N. KOZLOV, AND P. P. RADI PHYSICAL REVIEW A 82, 012503 (2010)

0

1

2

3

4

5

6

7
8
9

10
11
12
13
14
15
16

De

po
ly

ad

0

5

10

15

20

25

30

35

CH4

F
re

qu
en

cy
 ν

[1
03

 c
m

-1
]

850

750

650
600

550

500

450

400

350

300

5×103

3×103

2×103

1×103

W
av

el
en

gt
h 

 λ
[n

m
]

FIG. 1. (Color online) Polyads of methane and transitions dis-
cussed in this work.

is typical for small molecules and can be considered as a
multidimensional Fermi resonance. Due to this resonance,
quantum vibrational states with the same

n = 2n1 + n2 + 2n3 + n4, (2)

where nk is the number of quanta in mode k, form quaside-
generate polyads Pn labeled by polyad quantum number n.
Vibrational polyads exist in many molecules (CO2, C2H2,
H2O, etc.). The specifics here is in the presence of several
degenerate vibrations which may be considered as exact
resonances. Such highly degenerate situation exacerbates the
problem of classifying and selecting desired states within a
polyad. The analysis is certainly made quite complicated due
to the large total number K = 9 of vibrational degrees of

(1)

(2)

(3)

(4)x

y

z

Cs
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D2d

FIG. 2. (Color online) Coordinates in R3 and symmetry axes of
a tetrahedron.

freedom involved. This kind of studies is more common for
K = 2 or 3 where we can rely more on physical intuition.
Furthermore, the high symmetry of the system imposes the
use of certain mathematical methods which are less important
in other systems. These technical detals can be found elsewhere
[3,4] and we keep them to a minimum.

The ground state of methane P0 and the first two polyads,2

the dyad P1 and pentad P2, have been studied extremely
well [4–6]. P1 is formed by bending fundamentals ν2 and ν4,
while pentad includes stretching fundamentals ν1 and ν3, and
bending overtones 2ν2, ν2 + ν4, and 2ν4. The analysis of the
octade P3, can still be regarded as sufficiently complete [7,8],
and very satisfactory progress has been made in the study of P4

which includes first overtones and combinations of stretching
modes: 2ν1, ν1 + ν3, and 2ν3. Higher polyads remain a widely
open field. The number of rotational levels there is so large that
their complete assignment can hardly be imagined at present.
At the same time, the potential well of methane is very deep,
and even polyad P10 situated at about 14 000 cm−1 is not even
halfway to the first dissociation energy De of approximately
35 000 cm−1 (for CH3-H) [9]; see Fig. 1.

In the past decade, extensive computations [10–15] have
been attempted in order to climb up this vibrational potential
in various ways. However, the analysis of the actual dynamics
of this excited system with strongly interacting nine degrees of
freedom did not follow. It is likely that the concepts of relative
equilibrium and nonlinear normal mode3 generalizing the
more intuitive and simple molecular ideas of local mode and
chromophore, are still not fully apprised in molecular physics.
Yet it is on these more general and truly dynamical concepts
that our progress depends entirely in the case of methane.

B. Spectra and their tentative assignment

We survey briefly what has been done before us. Since
the mid-1990s, a variety of methods has been developed
and applied for extended high-resolution and low-rotational-
temperature investigations of weak overtone and combination
absorption transitions to the high-lying vibrational states of
methane. In particular, three features of the methane spectrum
have been observed in the near-IR spectral range of 889,
861, and 840 nm (between 11 170 and 11 980 cm−1). These
bands are the most prominent features of the P0 → P8 tran-
sition. Intracavity photoacoustic and tone-burst modulation
spectroscopy [21–23], and intracavity laser absorption [24],
were used to study methane bands around 11 300 cm−1. In
addition, the high sensitivity of the intracavity laser absorption
technique has been employed to measure absorption spectra
and coefficients between 10 635 and 13 300 cm−1 [25]. Later,
the spectral region around 11 900 cm−1 has been investigated

2The names dyad, pentade, etc., reflect the number of normal mode
components—not the actual total number of vibrational states. So,
taking the degeneracies into account, the respective numbers of states
in the dyad and pentade are 5 and 19.

3Nonlinear normal modes were introduced in Refs. [16–18], and a
more concrete molecular application was given in Ref. [19]. Within
the polyad framework, they were treated later as relative equilibria
[3,20].
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by applying wavelength-modulated diode laser spectroscopy
[26]. Recently in Ref. [1], we have applied LIG spectroscopy,
a nonlinear technique using resonances of linear absorption,
for the investigation of these absorption bands with resolution
of about 0.04 cm−1.

The most prominent band of the 0 → P8 spectrum at
889 nm is similar to the P10 and P12 transitions that we
describe here in Sec. II. The presence of this relatively simple
and compact strong band is striking. This band is tempting
to be assigned as a transition to a single vibrational “bright”
upper state, which Giver [27] and later Boraas et al. [21]
assigned tentatively as the 3ν1 + ν3 stretching combination
overtone strongly coupled to several “dark” close-lying states.
The weaker 861 and 840 nm features were attributed to the
combination bands 2ν1 + 2ν3 and ν1 + 3ν3, respectively. This
assignment persisted in later work [22–26].

Admittedly, the 3ν1 + ν3 normal mode assignment sim-
plified the spectroscopic analysis because the rotational
structure of the 0 → 3ν1 + ν3 transition resembles that of
the 0 → ν3 fundamental. However, the presence in P8 of
such a predominantly stretching normal mode overtone seems
unlikely because of strong couplings between the modes.
Thus already in P4, the stretching overtones 2ν1, ν1 + ν3,
and 2ν3 have the respective normal mode content at the level
of only 70% (see Table IV in Ref. [7]) and this percentage
drops quickly in higher polyads.4 So, more generally, we may
interpret the bright P8 state as a localized vibrational state (of
predominantly stretching nature if we want to accommodate
for Ref. [21–23]).

Unlike its cousins with heavier central atom (Si, Ge)
[20,28–31], methane is not known to have true local mode
states [10,12,13]. It may, nevertheless, have vibrational
localization of a more complex, dynamical nature. So our
immediate goal is to understand whether vibrational localized
states of any kind, and purely stretching ones in particular,
can show up in highly excited polyads of methane (see more
in subsection II C).

II. OBSERVED SPECTRA

In this work, we present higher frequency absorption
spectra of methane recorded using the LIGs technique in the
727-nm (Fig. 3) and 619-nm (Fig. 4) regions, corresponding
to the transitions P0 → P10 and P0 → P12, respectively [2].
Following the tradition, one may like to assign these spectra
to combination bands 4ν1 + ν3 and 5ν1 + ν3.

A. Laser-induced gratings

In general, laser-induced gratings are spatially periodic
variations of the complex refractive index of the medium.
General information on LIGs in various media can be found
in Ref. [1] and references therein. If molecules are resonantly
excited by a short-pulse radiation in the interference region of
two pump laser beams at wavelength λp, which are crossed
at angle 2θp, a spatially periodic variation of the population

4V. Boudon, private communication on the computation for 0 → P8

using currently known spectroscopic Hamiltonian of methane.
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FIG. 3. (Color online) The central part of the LIG absorption
spectrum [2] of the P0 → P10 transition in methane recorded at
124 K and 187 mbar with spectral resolution of 0.04 cm−1; the “zero
signal” level coincides with the nm axis. The arrows (a) and (b) point
to the pump wavelengths λp for the resonant and nonresonant signal
temporal profiles in Fig. 5.

of the energy levels involved is produced. The period of
the spatial modulation equals to the interference fringe
spacing, � = λp/(2 sin θp). Fast collisional deactivation of
the excited states may provide a corresponding modulation
of the refractive index resulting from local temperature and
density variations and thus lead to the formation of so-called
thermal LIGs. Adiabatic compression of the gas by the
spatially inhomogeneous pump electromagnetic field strength,
simultaneous with resonant excitation, generates nonresonant
electrostrictive LIGs. LIGs are usually registered by detecting
the part of read-out laser radiation which crosses the pump
beams interaction region and is diffracted by the modulations

618 619 620 621 622 (nm)

16180 16160 16140 16120 16100 16080 (cm-1)

(cm-1)

D
iff

ra
ct

ed
 li

gh
t e

ne
rg

y
(a

rb
. u

ni
ts

)

124K 200mbar 

7

6

5

4

3

2

1

619.8 620.0 620.2 620.4 620.6 (nm)

16135 16130 16125 16120 16115

D
iff

ra
ct

ed
 li

gh
t e

ne
rg

y
(a

rb
. u

ni
ts

)

124K 200mbar 

7

6

5

FIG. 4. (Color online) The central part (top) and its blowup
(bottom) of the LIG absorption spectrum [2] of the P0 → P12

transition in methane recorded at 124 K and 200 mbar with spectral
resolution of 0.04 cm−1; the “zero signal” level coincides with the
nm axis.
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TABLE I. Principal features of direct absorption transitions to
polyads 10 and 12 of methane at low temperature [2]. Line numbers
correspond to those indicated in Figs. 3 and 4; respectively, line
intensities I are given in relative units.

P0 → P10 P0 → P12

No. λ (nm) I No. λ (nm) I

1 725.414 35 1 618.392 67
2 726.003 39 2 618.563 83
3 726.095 29 3 619.234 46
4 726.474 29 4 619.421 52
5 726.826 100 5 619.853 100
6 726.967 34 6 620.420 85
7 727.196 46 7 620.588 44
8 727.322 40
9 727.352 36
10 727.754 32
11 727.831 39
12 728.095 33

of the complex refractive index. For efficient diffraction, the
read-out, or probe beam, at wavelength λr , should be directed
to the planes of the fringes at the Bragg angle θr , defined as
sin θr = λr/(2�). If a continuous-wave (cw) probe radiation
is employed, the temporal evolution of diffraction efficiency
of a short-pulse excited LIG can be recorded. A pulse of the
diffracted light registered by a photodetector generates the
characteristic LIG signal S(t).

A typical resonant signal observed in the P0 → P10 band
of CH4 (at 187 mbar and 124 K) is presented in Fig. 5(a).
It was recorded after tuning the pump wavelength λp to the
resonance with the transition at 726.967 nm (line 6 in Fig. 3 and
Table I). The signal oscillations in this figure correspond to the
variations of the refractive index caused by spatially periodic
acoustic waves and stationary density modulations. Both are
induced by rapid collisional deactivation of the excited CH4

molecules, and the signal’s temporal profile is characteristic
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FIG. 5. (Color online) Typical temporal profiles of the LIG
signals recorded in the P0 → P10 band of CH4 (187 mbar, 124 K, cf
Fig. 3) for (a) resonant excitation at pump wavelength λp = 726.967
nm (line 6 in Fig. 3 and Table I) and (b) nonresonant excitation at
λp = 727.116 nm in the region of weak absorption.

for that determined by the thermal LIGs. The period of the
oscillations of about 120 ns and the signal decay scale of a
few microseconds are determined by the fringe spacing � and
the sound velocity. Spectroscopy of the absorption transitions
is accomplished by means of tuning the pump laser frequency
through the range of interest and measuring the peak value of
S(t), or its integral within a definite time interval, as a function
of frequency.

B. Experimental details

The experimental setup employed in this work has been
described previously [1]. In brief, the output radiation of a 20-
Hz repetition rate narrowband tunable dye laser providing up
to 25 mJ/pulse was employed as a pump source. Pulse duration
was approximately 10 ns and a spectral bandwidth was ≈0.04
cm−1. The dye laser was pumped by the frequency-doubled
radiation of a Nd:YAG laser. To obtain coherent radiation in
the near-infrared region of 835–895 nm, the frequency of the
dye laser was Raman shifted in a 1.5-m-long cell containing
H2 at 5 bar. The pump radiation was split into a pair of
roughly equally intense LIG excitation beams with parallel
polarizations. These beams were subsequently focused by a
lens (f = 900 mm) and intersected at the crossing angle of
2θp ≈ 1.20◦ (see Fig. 6) that provides a fringe spacing of
� ≈ 35 µm at λp = 727 nm. A wavemeter with the specified
accuracy of 106 is used to measure the absolute excitation
wavelength in each pulse.

The LIGs are read out by utilizing the beam of an Ar+
laser delivering up to 1.1 W at 514.5 nm. The cw probe beam
is propagating parallel to the pump beams and focused by
the same lens into the interaction region at a Bragg angle
of θr = 0.42◦. In this manner, a 3D forward phase-matching
geometry is arranged (see Fig. 6). The diffracted light is
spatially filtered and coupled into a multimode fused silica
fiber delivering it to a fast photomultiplier. Additional stray-
light reduction is achieved by using a band-pass interference
filter centered at the read-out laser wavelength and placed in
front of the photomultiplier. Temporally resolved acquisition
of the LIG signals, single-shot or averaged, is performed by
using a digital oscilloscope with an analog bandwidth of 1 GHz
and a sampling rate up to 4 gigasamples/s. The signals are
recorded during 2–10 µs, depending on pressure. Spectra
are obtained by scanning the frequency of the dye laser
radiation and accumulating the LIG signal integrated within an

FIG. 6. (Color online) The focusing geometry of the pump, probe,
and signal beams in the LIGs experiment; the gas cell with the cold
finger are represented schematically.
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optimized time interval after the excitation pulse. The spectral
resolution of about 0.04 cm−1 has been provided.

The gas cell used in our experiments could be evacuated to
less than 10−4 bar and allowed to work with gas pressures up
to 5 bar. Gas pressure in the sample volume was measured
by a capacitance manometer. A copper cold finger cooled
by liquid nitrogen was mounted to enter into the cell (see
Fig. 6). The sample volume, with the dimensions of about
0.3 mm in diameter and 20 mm in length, was located at the
axis of a narrow (5 mm in diameter and 30 mm in length)
channel through the cold finger. The channel wall temperature
was measured by a thermocouple. The measurements in the
gas cell were performed at CH4 pressures of 0.2–4 bar and
temperatures 298 K and 124–130 K. Methane of quality 2.5
(Messer-Griesheim) has been used for the measurements.

C. Spectra and their assignment: The main objective
of the work

In the rotational structure of spectra P0 → Pn with n =
8,10,12, we distinguish immediately two kinds of lines: a
relatively small number of prominent lines (Table I) forming
a 100–200 cm−1 (several nm’s at these frequencies) large
band and a very dense broader “undergrowth” of much
weaker numerous overlapping lines (see Figs. 3 and 4). All
these lines rise above a structureless background which can
be particularly well observed in Fig. 4 where the actual
zero-absorption signal level is coincident with the nm axis.
To study the background, we tuned the pump frequency away
from single sharp lines and recorded the temporal profiles
of the LIG signal. From these experiments [see Fig. 5(b)],
we can conclude that the background signal, though being
about an order of magnitude weaker and hence demonstrating
noticeable nonresonant contribution from the electrostrictive
LIG (seen as smaller oscillation peaks), is nevertheless caused
primarily by the thermal LIGs which result from the resonant
absorption of the pump radiation.

The conclusion, plausible to anyone familiar with the
rotation-vibration bands of methane, is that the prominent
lines represent rotational levels of one single or, at most, a
few “bright” vibrational states, while the weaker lines and the
background result from a very dense spectrum of surrounding
“dark” states coupled to the bright ones through various
vibrational and rovibrational mechanisms.

In order to simplify the spectra and to facilitate the eventual
identification of the spectral lines, we attempted to reduce the
number of the populated rotational ground state levels by the
cryogenic cooling of the small sample volume in the middle
of the gas cell (see Fig. 6) down to temperatures T ≈ 120 K.
Note that the angular momentum Jmax of the most populated
rotational ground-state level of CH4 can be estimated as Jmax ≈√

kT /hcB, where B ≈ 5.24 cm−1 is the rotational constant
of the molecule. So lowering T from 295 K to 124 K brought
Jmax down from 6 to 4. We have also observed, that the number
of the strongest visible lines in the cold gas spectra appears to
decrease with growing polyad number n (or pump radiation
frequency).

The dense spectrum of the second kind is expected. Indeed,
at these excitation energies, just the density of vibrational states
is approximately one or several states per cm−1, the splittings

are less than characteristic interaction terms, and all these
states are typically mixing well with each other. We are in the
semiclassical domain and the dynamics of the classical limit
system at these energies is significantly irregular.

On the other hand, the existence of such a relatively small
number of very bright states is fascinating. How is it possible
for the specific absorption process to be so selective? There
are two aspects to this question: the nature of the excited
state and the absorption process itself. We address them in
Secs. III and IV, respectively. Both aspects surpass con-
siderably the domain of a traditional spectroscopic study.
Answering the first part involves analyzing possibilities of
regular motions in a strongly perturbed nonlinear dynamical
system with many degrees of freedom and the corresponding
localization in the quantum analog system. The second part
requires detailed understanding of the specific interaction
of such a system with light under essentially semiclassical
conditions.

III. VIBRATIONAL POLYADS OF METHANE

We turn to the first part of the question: what subset of the
vibrational states of the polyad Pn is involved in the observed
transitions P0 → Pn with large n = 8,10,12? Is it a small
group of well-localized excited states? If yes, what is its
nature? If no, why is the rotational structure of the spectrum
so “simple”? After recalling pertinent details of the polyad
theory in subsection III A, we address these questions in
subsection III C. The theory in subsections III A and III B is
presented sketchily at the medium-to-advanced level. Some
of the details are relatively standard and may serve as a
checklist or can be skipped altogether at first reading. Specific
material begins with subsections III A6 and continues across
subsection III B.

A. General outline for the polyad approximation

Consider the original classical dynamical system which
represents vibrations of the molecule with K vibrational
degrees of freedom.5 In the most standard setup, coordinates
Q in RK describe small distortions of the equilibrium geo-
metric configuration of the molecule (in the given electronic
state) at Q = 0. The dynamics takes place on the phase
space TRK with dynamical variables (P,Q) and standard
symplectic structure dP ∧ dQ. The energy is given by the vi-
brational Hamiltonian H (Q,P ) with an elliptic equilibrium at
Q = P = 0.

1. Resonances and polyads

The origin of polyads is in the (near) resonance

k−1
1 ω1 ≈ k−1

2 ω2 ≈ · · · ≈ k−1
K ωK ≈ ω0

of the frequencies ωi with i = 1, . . . ,K , of the linearization of
this system at P = Q = 0, i.e., of the harmonic frequencies of
the quadratic Hamiltonian

H0(Q,P ) ≈ ω0N (Q,P ),

5For a nonlinear s-atomic molecule, K = 3s − 6.
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where

H0(Q,P ) = 1

2

K∑
i

ωi

(
P 2

i + Q2
i

)
, and

N (Q,P ) = 1

2

K∑
i

ki

(
P 2

i + Q2
i

) =
K∑
i

kiNi.

The polyad approximation is enforced by normalizing
H (Q,P ) with respect to the flow ϕt

N of the Hamiltonian
vector field XN of the polyad integralN (Q,P ). This involves a
near-unity canonical transformation (Q,P ) �→ (q,p) and gives
the normal form H(q,p) which depends on the dynamical
variables (q,p) of the normalized system.

2. Reduction of polyad symmetry

The normalized system still has K degrees of freedom,
but it now has a built-in strict S1 Lie symmetry which is
given by ϕt

N and which acts on the phase space TRK so that
H(q,p) remains invariant. Note that because it is defined by
a Hamiltonian flow [as opposed, for example, to an SO(2)
rotation symmetry group acting on the configuration space],
this symmetry is called dynamical; since it defines quantum
polyads, it is called polyadic; since the resonance condition is
not exact and higher orders in the initial H (Q,P ) are not
invariant with respect to this symmetry, it is approximate.
Reducing the polyadic symmetry, we eliminate the associated
universal polyad degree of freedom. Technically, in the process
of reduction, the polyad integral N (q,p) is replaced by its
value n � 0 which becomes a parameter. In that way, we
obtain reduced Hamiltonian Hn on the compact reduced phase
space Pn of real dimension 2K − 2 called polyad space. Each
point of Pn lifts to a circular orbit γn ⊂ TRK of ϕt

N , or an
N -orbit for brevity. Pn is generally a weighted projective
space on which the symplectic structure can be defined only
locally. So it is convenient to describe Pn and the reduced (or
internal polyad) dynamics under Hn within an Euler-Poisson
framework using a set of generators of the Poisson algebra of
the reduced system.

3. Integrable approximation

The normal form H(q,p) and reduced Hamiltonian Hn

are formal series in the parameter ε of the perturbations
due to nonlinear terms. Except for the case K = 1 of the
diatomic molecule, this series is known to diverge eventu-
ally. Nevertheless—and there is the main practical value of
the polyad approximation—truncated series H(q,p) and Hn

can give a fair approximation to the original nonintegrable
dynamics. Below we will always imply that H(q,p) and
Hn are truncated. Because H(q,p) and N (q,p) Poisson
commute, we call the approximation given by H(q,p) inte-
grable. This does not mean, of course, that the normalized
system is integrable, because the nonintegrability of the
internal polyad dynamics with K − 1 degrees of freedom is
preserved.

4. Simple examples

Spectroscopists call HamiltoniansH(q,p) andHn as model
(because they rely on the assumption of a certain resonance

condition and associated polyad symmetry S1) and effective
(because all “nondiagonal” interactions between polyads are
accounted for effectively and indirectly). To have a simple
example, think of K = 2. In that case, the space Pn is
homeomorphic and, for the 1:1 resonance, diffeomorphic to
a two-sphere S2, i.e., the CP 1 space. The Poisson algebra of
the reduced system is similar to the so(3) algebra of the Euler
top. The polyad approximation is completely integrable. In the
molecular literature (on such molecules as H2O, O3 and others)
[32], the particular case of the two modes in 1:1 resonance has
been traditionally called the polyad approximation [33,34]. It
was used in systems with other resonances [35,36], such as
2:1:1 in CO2 and polyads of acetylene [37–39]. We further
extend and develop this concept mathematically. A more
substantial review of the relevant work can be found in Refs.
[3,20,40].

5. Quantization and quantum-classical correspondence

From the quantum mechanical point of view, the main
advantage of the polyad approximation is that it results
in the finite set of basis functions or, more correctly, in
working on finite-dimensional subspaces of the Hilbert space.
Those of us who think quantum-mechanically see this as
block-factorization of the matrix of the original quantum
Hamiltonian Ĥ (Q,P ) resulting from the quantum analog of
the Lie transform normalization techniques called Van-Vleck
transformation (see, for example, calculations for methane in
Ref. [14]). From the semiclassical perspective, that we take in
this work, this is a consequence of the compactness of reduced
phase spaces Pn.

In comparison to its quantum counterparts [14], classical
normalization reproduces only principal terms of quantum
commutators. So, strictly speaking, quantization and polyad
normalization do not commute. However, for many purposes,
including ours, corrections arising from the nonprincipal
terms can be neglected. Furthermore, for any spectroscopic
purpose, parameters of Hn have to be adjusted to reproduce
experimental data satisfactorily, and these adjustments are
comparable to the quantum corrections we neglect.

The normalized system with Hamiltonian H(q,p) can
be quantized straightforwardly by replacing (q,p) for (q, −
ih̄∂/∂p). The eigenfunctions of the resulting quantum Hamil-
tonian Ĥ for a given polyad n can be constructed using
oscillator basis functions |n1〉|n2〉 · · · |nK〉 that satisfy

K∑
i=1

kini = n.

For a given n � 1, the polyad Hilbert space is spanned by
approximately

nK−1

(k1k2 · · · kK )(K − 1)!
+ O(nK−2)

functions [41]; the exact number is given by the n-th degree
coefficient of the Taylor expanded generating function

g(λ) =
K∏

i=1

(1 − λki )−1.
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The eigenspectrum of Ĥ approximates the energies of the
system. The reduced system with Hamiltonian Hn can be
quantized by replacing generators of its Poisson algebra for
appropriate quantum operators [42–44]. In the simple 1:1
example, this gives the standard algebra of angular momentum
operators. And, of course, for K � 2 we can use the EBK
quantization principle.

6. Relative equilibria and internal polyad structure

When the linearized system has degeneracies due to
symmetries and resonances, the normal modes reflect little
if any dynamics of the system. We should use the nonlinear
normal modes [16–19] instead. These are families of short-
period periodic orbits that survive breaking the degeneracy
by a system-specific nonlinear perturbation [45,46]; their
number is typically larger than K . Nonlinear normal modes
can be approximated by lifting nondegenerated stationary
points of Hn on Pn back to the original phase space TRK

where they become N orbits of period ≈2π/ω0. So, within
the polyad approximation, nonlinear normal modes become
relative equilibria6 (RE) of the system.

The importance of RE to the analysis of polyads has been
demonstrated repeatedly (see Refs. [3,19,20] and references
therein). Because RE make up the “skeleton” of a polyad, the
study of any polyad system begins with finding and describing
its RE for different values n of the polyad integral N . In
other words, we consider one-parameter families of RE. As n

increases, this includes uncovering bifurcations, which may,
in particular, create new additional RE. The most known
example is the creation of local modes in H2O, O3, and other
molecules. Results of the RE analysis can be represented
using an energy-momentum diagram (otherwise known as
bifurcation diagram) where energies of Hn at different RE
are displayed as functions of n. For K = 2 such diagram
provides a very detailed characterization of polyads; for large
K > 2, interpreting the RE structure of the polyad becomes
more challenging.

B. Classical description of polyads of methane

The vibrational Hamiltonian of methane is a function of
K = 9 vibrational normal mode coordinates q and corre-
sponding conjugate momenta p. Our choice of coordinates,
numbering of hydrogen atoms, and principal symmetry op-
erations that generate cubic groups are illustrated in Fig. 2.
The usual spectroscopic notation is based on the normal mode
index 1 . . . 4, the irreducible representation � and its row σ ,
according to which the particular coordinate transforms. We
will use complex oscillator variables

z = q − ip, z̄ = q + ip,

which are direct analogs of quantum creation-annihilation
operators

√
2a and

√
2a† and the following shorthand

6For an introduction to relative equilibria and definitions, see
Appendix 5C of Ref. [47] and Chap. 3.3 of Ref. [48]; for a more
specific discussion, see Ref. [49].

notation

z Mode � σ k Type
z1 ν1 A1 2 Stretching
z2 ν2 E a 1 Bending
z3 b 1
z4 ν3 F2 x 2 Stretching
z5 y 2
z6 z 2
z7 ν4 F2 x 1 Bending
z8 y 1
z9 z 1

where k indicates the factor in the resonance condition (1).

1. Normalized Hamiltonian H and reduced Hamiltonian Hn

In the presence of resonance (1), the system can be
normalized with regard to the periodic flow of the nine-
dimensional harmonic oscillator system with Hamiltonian

N (z) = z1z̄1 + 1

2

3∑
i=2

zi z̄i +
6∑

i=4

zi z̄i + 1

2

9∑
i=7

zi z̄i . (3)

Each N -orbit γn is a specific simultaneous rotation of
symplectic planes (zi,z̄i), i = 1 . . . 9. Starting γn at time t = 0
and point z = (z1,z2, . . . ,z9), where N (z) = n, we have

γn : z �→ (z1θ
2,(z2,z3)θ,(z4,z5,z6)θ2,(z7,z8,z9)θ ),

where θ = eit , θ̄ = e−it , and t ∈ [0,2π ].
In order to remain invariant along γn, the monomials in the

normal form H(z,z̄) should be of certain specific form, e.g.,

z1z̄
2
2, z4z̄2z̄7, etc;

they should include such products of z and z̄ for which the
θ factors vanish. Further restrictions on the allowed terms in
H(z,z̄) are imposed by the Td × T symmetry [3,4].

There are two ways of arriving at H: (i) Similarly to
Ref. [14], one can take the original vibrational Hamiltonian
H (Q,P ) that includes a potential surface V (Q) and normalize
it. (ii) We can take a shortcut and start with the well-developed
spectroscopic phenomenological rovibrational Hamiltonian H
of the Dijon group (see Table II, Refs. [7,8] and references
therein). Because V (Q) of methane is not sufficiently well
determined, the second method gives currently more accurate
predictions for higher polyads. Furthermore, our purpose is
the subsequent analysis based on H and the method by
which H is obtained is not important, so we followed the
second path. The spectroscopic Hamiltonian H in Table II is
already in normal form but its terms are defined implicitly
using the Wigner-Eckart theorem and various coefficients [4].
Explicit expressions for the Hamiltonian used in Refs. [7,8],
such as the ones in Ref. [20], can be obtained by a careful
analysis of definitions in Ref. [4]. Thus we get the quadratic
part

H0 = ω1

2
z1z̄1 + ω2

2

3∑
i=2

zi z̄i + ω3

2

6∑
i=4

zi z̄i + ω4

2

9∑
i=7

zi z̄i ,
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TABLE II. Terms in the vibrational Hamiltonian of methane used by Boudon et al. [7]: d is total degree in vibrational variables,  is the
number of bending-size quanta exchanged by the term, �′

± and �′′
± and �± = � are intermediate irreducible representations of the Td point

group used in the tensorial definition by Champion et al. and Wenger and Champion [4,5]; monomials of O(3) type K and degree di � K are
denoted as diK�i , indices of creation-annihilation variables a† and a correspond to normal modes.

Parameter Value cm−1 d () � �′
+ �′′

+ a
†
1 a

†
2 a

†
3 a

†
4 �′

− �′′
− a1 a2 a3 a4

ω1 2882.40935 2 (2) A1 A1 A1 10A1 A1 A1 10A1

ω2 1533.33258 2 (1) E E E 11E E E 11E
ω3 2998.45069 2 (2) F2 A1 F2 11F2 A1 F2 11F2

ω4 1310.76161 2 (1) F2 A1 A1 11F2 A1 A1 11F2

t344 −52.17645 3 (2) F2 A1 F2 11F2 A1 A1 22F2

t324 −49.84192 3 (2) F2 A1 F2 11F2 E E 11E 11F2

t144 100.38526 3 (2) A1 A1 A1 10A1 A1 A1 20A1

t122 7.31404 3 (2) A1 A1 A1 10A1 A1 A1 20A1

t4444 3.09905 4 (2) E A1 A1 22E A1 A1 22E
t2444 0.51881 4 (2) F2 E E 11E 11F2 A1 A1 22F2

t2424 1.98394 4 (2) F1 E E 11E 11F2 E E 11E 11F2

tE
2244 −1.35085 4 (2) E E E 22E A1 A1 22E

t
A1
2244 −10.69933 4 (2) A1 A1 A1 20A1 A1 A1 20A1

tE
2222 −1.52673 4 (2) E E E 22E E E 22E

t
A1
2222 −3.43159 4 (2) A1 A1 A1 20A1 A1 A1 20A1

t
F2
3434 −11.24401 4 (3) F2 A1 F2 11F2 11F2 A1 F2 11F2 11F2

t
F1
3434 −19.94961 4 (3) F1 A1 F2 11F2 11F2 A1 F2 11F2 11F2

tE
3434 −19.06810 4 (3) E A1 F2 11F2 11F2 A1 F2 11F2 11F2

t
A1
3434 −33.08916 4 (3) A1 A1 F2 11F2 11F2 A1 F2 11F2 11F2

t
F2
2334 0.21457 4 (3) F2 E F2 11E 11F2 A1 F2 11F2 11F2

t
F1
2334 10.95242 4 (3) F1 E F1 11E 11F2 A1 F2 11F2 11F2

t
F2
2323 −22.58362 4 (3) F2 E F2 11E 11F2 E F2 11E 11F2

t
F1
2323 −15.55456 4 (3) F1 E F1 11E 11F2 E F1 11E 11F2

t1434 14.49813 4 (3) F2 A1 A1 10A1 11F2 A1 F2 11F2 11F2

t1423 34.60149 4 (3) F2 A1 A1 10A1 11F2 E F2 11E 11F2

t1414 −21.44273 4 (3) F2 A1 A1 10A1 11F2 A1 A1 10A1 11F2

t1234 −11.09301 4 (3) E E E 10A1 11E A1 F2 11F2 11F2

t1212 −9.67220 4 (3) E E E 10A1 11E E E 10A1 11E
t
F2
3333 −14.26190 4 (4) F2 A1 F2 22F2 A1 F2 22F2

tE
3333 10.39318 4 (4) E A1 E 22E A1 E 22E

t
A1
3333 −150.42460 4 (4) A1 A1 A1 20A1 A1 A1 20A1

t1333 −6.31920 4 (4) F2 A1 F2 10A1 11F2 A1 F2 22F2

t1313 −98.79672 4 (4) F2 A1 F2 10A1 11F2 A1 F2 10A1 11F2

t1113 −3.15814 4 (4) A1 A1 A1 20A1 A1 A1 20A1

t1111 −30.25501 4 (4) A1 A1 A1 20A1 A1 A1 20A1

and the cubic part

H1 = − t144

4
√

3
z1

(
z̄2

7 + z̄2
8 + z̄2

9

) − t122

4
√

2
z1

(
z̄2

2 + z̄2
3

)

+ t344

2
√

2
(z4z̄8z̄9 + z5z̄7z̄9 + z6z̄7z̄8)

+ t324

4
√

2
z2(z̄4z7 + z̄5z8 − 2z̄6z9)

− t324

4
√

2

√
3z3(z̄4z7 − z̄5z8) + c.c.

In the present work, we went up to the quartic terms; their
expressions are lengthy and we do not provide them here.

To reduce the normalized system with Hamiltonian H(z,z̄)
we first construct and describe the reduced phase space Pn

as a (possibly singular) Poisson manifold using a certain
number of polynomial generators of the Poisson algebra of the
reduced system. Then we rewrite H(z,z̄) so that it becomes
a function Hn of the above generators, in other words, a
function on Pn, and parameter n. For polyads with K − 1 = 8
internal degrees of freedom, the latter operation is, however,
hardly advantageous because the generator basis is large and
is complicated by sygyzies. So instead we will use appropriate
C8 charts of Pn and work essentially with H(z,z̄) projected
in the charts. See Refs. [3,20,50] for key technical aspects and
the following section.
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2. Projective decomposition of the reduced phase space Pn

Reduced Hamiltonian Hn is a function on the polyad space
Pn of real dimension 8 × 2. Points of Pn can be described
using complex variables z by the method outlined in Ref. [20].
Following [20], we decompose the large polyad space in
terms of several polyad subspaces or polyad projections. Each
projection is itself a polyad space of a smaller system. Thus the
ν2 projection is a polyad space of isolated ν2 polyads, i.e., of a
system of two oscillators in 1:1 resonance (with a specific C3v

symmetric perturbation similar to that in the Hénon–Heiles
potential). It is, therefore, a CP 1 ∼ S2 [3]. Similarly, both the
ν3 and the ν4 projections have CP 2 topology. We combine
projections by introducing mixing coordinates for amplitude
η ∈ [0,1] and phase and φ ∈ [0,2π ). Specifically, we write

z = √
n

⎛
⎜⎜⎜⎝

√
η1 exp(iφ1)ζ1√
2η2 exp(iφ2)(ζ2,ζ3)√
1 − η1 − η2 − η4(ζ4,ζ5,ζ6)√
2η4 exp(iφ4)(ζ7,ζ8,ζ9)

⎞
⎟⎟⎟⎠ , (4)

where ζ1 ≡ 1 for ν1, and unimodular vectors (ζ2,ζ3), (ζ4,ζ5,ζ6),
and (ζ7,ζ8,ζ9) define points on the respective ν2, ν3, and
ν4 polyad projections. Note that the space described by
coordinates (ζ,φ) is itself a projective space. Substituting in
(3), we can verify that N (z) = n for any z defined by (4). The
simplest two-mode mixing case of stretching modes ν1 and
ν3 (K = 4) which required one pair of mixing coordinates
(η1,φ1) was studied in Ref. [20]. In the general case of
Eq. (4), we should use six such coordinates to mix all four
normal modes. Also note that Eq. (4) implies that η1 + η2 +
η4 < 1, i.e., that the ν3 contribution is nonzero. Furthermore,
this form is most efficient when η1 + η2 + η4 � 1. Such
representation is called a ν3 chart of Pn.

3. Relative equilibria (RE)

In our case, a general search for RE is a formidable task that
requires finding stationary points of function Hn (equilibria)
on a curved compact space Pn of real dimension 16. We
should first exploit fully the symmetry group Td × T of our
system. Specifically, Td × T acts on Pn in such a way that Pn

becomes stratified in various low-dimensional subspaces that
are invariant with respect to subgroups G ⊆ Td × T , called
stabilizers or isotropy groups. For a G-isotropic subspace, all
nonvanishing components of ∇Hn should be tangent to it, and
if G is symplectic, the dynamics may be restricted to it as
well. Obviously, the search for possible particular solutions
becomes easier with decreasing dimension.

We can argue using the principles of Morse theory [51]
that among all RE, there must be a number of RE that are
invariant with regard to different stabilizers G ⊆ Td × T . In
the simple “minimal” cases, in particular at low n, our Hn

may have only symmetric stationary points with sufficiently
large stabilizers G whose existence is caused primarily by
the action of the symmetry group Td × T and the topology
of Pn [51]. These RE are much easier to find as stationary
points of Hn on Pn (because several equations in ∇Hn = 0
are satisfied autmatically due to symmetry). They correspond
to points of Pn that belong to specific nongeneric orbits of the
Td × T action. The set of all orbits of the same type form a

TABLE III. Representatives of isolated fixed points of the Td × T
group action on the ν3 and ν4 polyad subspaces CP 2, the ν2 subspace
CP 1, and the rotational sphere S2 [3]. For each representative, we
indicate the class of conjugated subgroups of Td × T of its stabilizer
and give in parentheses the number of equivalent points with stabilizer
in the same class.

CP 1 CP 2 S2

Stabilizer ζ2 ζ3 ζ4,7 ζ5,8 ζ6,9 j1 j2 j3

D2d × T (3) 1 0 1 0 0 1 0 0
C3v × T (4) b ib a a a a a a
C2v × T (6) 1 0 b b 0 b b 0
S4 ∧ T2 (6) 1 0 b ib 0 1 0 0
C3 ∧ Ts (8) b ib a χ 2a χa a a a

Here a = 1/
√

3, b = 1/
√

2, χ = eiπ/3.

stratum. The topology of the system of strata and, specifically,
the presence of low-dimensional isolated components within
a stratum and within this system is of prime importance here.
In the simplest case, we may find isolated points that represent
critical orbits. Points on such orbits are necessarily G-invariant
stationary points of Hn [51].

We turn to studying how Td × T acts on our 16-dimensional
Pn. The dimension of Pn is too high for critical orbits to occur;
instead, we have “small” isolated G-invariant subspaces of
Pn.7 We like to find G-invariant subspaces PG

n ⊂ Pn with
smallest possible dimension. Such subspaces will be called
minimal fixed spaces of the Td × T action on Pn.

In order to find minimal G-invariant subspaces PG
n , we

take advantage of our decomposition of Pn in Eq. (4). We
study the action of Td × T on each of the polyad projections
of Pn, namely the CP 1 ∼ S2 space of isolated ν2 polyads and
the CP 2 space of isolated ν3 polyads. On all these spaces, the
action of Td × T has critical orbits [3,50]. So it follows thatPG

n

is minimal if in each projection it is represented by a fixed point
on the critical orbit of the Td × T action on this projection.
When all modes are present (i.e., if neither of the amplitude
mixing coordinates η is 0), we can deduce from Eq. (4)
that minimal fixed spaces are 2:1:2:1 weighted projective
spaces of real dimension 6. Fixed points in the CP projections
were determined in Ref. [3,50] for all possible stabilizers G.
We list them in Table III. We also give the corresponding fixed
points (j1,j2,j3) on the rotational sphere S2 to allow extending
the analysis to rotation-vibration Hamiltonians H(z,z̄,j ), but
for now we assume no rotation (j = 0) for simplicity.

Using information in Table III requires basic understanding
of the Td × T action on projective spaces. The idea is to
substitute coordinates ζ in Eq. (4) for the ones in this table
and allow for mixing coordinates (η,φ) to vary. However, this
will not always preserve the isotropy because G ⊆ Td × T

7In a more rigorous context, we should be more explicit in describing
a G-invariant subspace. In addition to points with stabilizer G, it may
(and usually does) contain points with higher stabilizers G′ ⊃ G.
Obviously, such subspace corresponds to a union of certain isolated
components of several nongeneric strata. This also means that Td ×
T ⊇ G′ ⊃ G acts nontrivially on it, i.e., the image of Td × T is not
1. For examples of such subspaces, see subsections III C1 and III C2.
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may act nontrivially on the phase-mixing coordinates φ and
produce nontrivial automorphisms PG

n ←↩. As a result, the
actual stabilizers G̃ ⊆ G of points ofPG

n may be lower andPG
n

may contain lower dimensional strata of points with nontrivial
isotropy. So, in general, G refers to the symmetry of the
projections of PG

n and not to the actual stabilizer of its points.
For this reason we will call G projected stabilizer.

For example [20], from Eq. (4) with η2 = η4 = 0 we can see
that T : z �→ z̄ acts on purely stretching subspaces as φ1 �→
−φ1. In fact [20], purely stretching symmetry preserving
normal mode mixing is only allowed for the two topmost
stabilizers in Table III which we will call for brevity D2d and
C3v . Of course, mixing is always possible for generic RE that
appear eventually with growing n as the dynamics becomes
increasingly irregular, but mixing possibilities at low n seem
to be quite limited.

This remarkable result is little known, and its full value
remains to be uncovered. Because we are interested primarily
in mixing, we focus in subsection III C below on RE of these
two types. Other symmetric RE, though nonlinear in nature,
are of nonmixed normal mode content and are likely (as in the
case studied in Ref. [20]) to be unstable.

C. Symmetric stretching relative equilibria

Now we can find RE as symmetric stationary points of
Hn. For all possible stablizers G ⊆ Td × T , we restrict Hn

on minimal fixed spaces PG
n and search for stationary points

of the restricted function Hn

∣∣PG
n : PG

n → R. The search can
be further simplified by taking the stratification of PG

n into
account. Note also that polar coordinates (η,φ) do not reflect
correctly the geometry of PG

n and should be used with usual
precautions at “poles” η = 0 and η = 1. Ideally, one should
analyze the whole family of vibrational polyad RE of methane
(and extend them to rotational-vibrational RE). This, however,
is not immediately feasible here. Our approach is relatively
new and we like to develop it more fully on a small number of
examples. So we restrict the analysis to a few potentially most
important RE.

We turn here to stabilizers C3v and D2d because they allow
normal mode mixing and because such highly symmetric RE
are more likely to remain elliptic. Additionally, we will neglect
bending contributions, assuming η2 = η4 = 0. This has two
aspects. One of the C3v RE is smoothly related [20] to what
spectroscopists call local mode [10,12,28–31]. Local modes
are well pronounced in certain molecules and we like to clarify
the situation in methane. At the same time, we also like to
minimize the theory required for understanding our particular
experimental results. Because of the 2:1 stretching-to-bending
frequency ratio, absorbing stretching vibrational quanta is the
“shortest” way to reach highly excited polyads. In the Taylor
series for the effective polyad transition moment µeff (see
Sec. IV), the lowest degree terms describing the P0 → Pn

transition are of maximal degree ≈n/2 in stretching variables
(z1,z4,z5,z6). Intensity depends both on the coefficient in the
µeff series and the upper state wave function. So it makes
sense to investigate whether absorption can be channeled in a
predominantly stretching localized vibration.

1. The C3v RE

Substituting subsequently z in Eq. (4) and ζ for stabilizer
C3v × T in Table III into H(z) = H0(z) + H1(z) + H2(z)
described in subsection III B, we obtain a function HC3v

n (η,φ),
where in the ν3 chart we have η = (η1,η2,η4) and similarly
φ = (φ1,φ2,φ4). HC3v

n (η,φ) lives on the mixing space of real
dimension 6. Fixing η ≡ (η1,0,0), we project HC3v

n (η,φ) on
an S2 subspace with cylindrical coordinates (η1,φ1). This
is the simplest mixing space [20]. Points of this space
represent different phase and amplitude combinations of the
two stretching modes ν1 and ν3 with projected stabilizer
C3v × T . The coupling space S2 is cut into two halves by the
above mentioned action of T . The respective reflection plane
{φ1 = 0,π} intersects S2 on a circle S1 of C3v × T -invariant
points with one exceptional Td × T -invariant fixed point ν1.
All other points have isotropy C3v . Defining longitude and
latitude angles θ ∈ [0,π ] and φ ∈ [0,2π ) so that

η1 = (1 + cos θ )/2, and φ1 = φ,

and using the values of parameters in Table II, we obtain

HC3v

n = H′ + H′′ − 0.45605 n2 sin θ (1 − cos θ ) cos φ

+ (3.47924 cos2 θ + 1.83715 cos θ − 9.0983) n2,

where

H′ = (48.1679 − 29.0103 cos θ ) n,

H′′ = (0.22792 sin2 θ cos2 φ) n2.

This function is depicted in Fig. 7 for n = 8. We can see that
it has a maximum at the north pole (pure ν1), a similar hight
maximum near the south pole, and a shallow minimum-saddle
pair in the ravine at η1 ≈ 1/2 (near 50% mixing). All these
critical points on S2 correspond to different stretching C3v RE.
Finding them has been described in more detail in Ref. [20].

FIG. 7. (Color online) Coupling surfaces of stretching (ν1,ν3)
relative equilibria of methane with isotropy C3v (left) and D2d (right)
for polyad P8. The surfaces are stripe painted at fixed equidistant
energy intervals; pure ν1 and ν3 are at φ = 0 (north) and φ = π

(south) poles. The D2d surface has a vertical symmetry axis C2 while
the C3v one does not; the latter has no stationary point exactly at
φ = π .
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We notice that the Hamiltonian HC3v
n is T invariant and is

therefore symmetric with respect to the reflections φ �→ −φ.
All stationary points that we have found lie on the T circle.

The fixed point at the north pole represents 100% pure ν1 mode.
The point near the south pole is not fixed; it can move onS1, but
it does it only slightly, and the respective RE remains very close
to pure ν3. This differs from the local mode scenario [20] where
this RE evolves smoothly into the local mode with ≈30% ν1

content. The two other stationary points represent additional
strongly mixed stretching RE; they appear as a result of a
bifurcation of the ν1 RE; see subsection III C3.

For the purposes of our later analysis, it is instructive to look
more closely at the near south pole RE. Since it is almost pure
ν3, it can be characterized sufficiently well by the invariant
variables

k n3,k s3,k t3,k

1 (z4z̄4)/2 (z5z̄6 + z6z̄5)/2 (z5z̄6 + z6z̄5)i/2
2 (z5z̄5)/2 (z4z̄6 + z6z̄4)/2 (z6z̄4 + z4z̄6)i/2
3 (z6z̄6)/2 (z4z̄5 + z5z̄4)/2 (z4z̄5 + z5z̄5)i/2

describing the internal polyad dynamics on the ν3 subspace
CP 2 ⊂ Pn; cf. Table 21 and 31 of Ref. [3]. Notice that vector
t3 = (t3,1,t3,2,t3,3) represents the angular momentum induced
by the ν3 vibrations. Using Eq. (4) and the C3v × T entry
in Table III, we obtain that n3,k ≈ n/6, s3,k ≈ n/3, and t3 =
0. So it follows that quantum states localized near such RE
should have very low (in comparison to the polyad number n)
vibrational angular momentum.

2. The D2d RE

Choosing the D2d × T entry in Table III and following the
same approach as in the previous section, we obtain

HD2d

n = H′ + H′′

+ (3.99289 cos θ2 + 0.80985 cos θ − 8.5846)n2,

which is simpler than HC3v
n . The reason is that the image

of D2d × T acting on the D2d coupling sphere S2 is an
abstract symmetry group D2 = Z2 × T , where the additional
Z2 corresponds to the C2 rotations about axes orthogonal to
the S4 axis and acts as φ �→ φ + π . This produces on S2

the spatial group C2v with reflections in planes φ = 0,π and
φ = ±π/2 and C2 rotations about axis ν1ν3, under which the
HamiltonianHD2d

n is invariant. We depictedHD2d
n with n = 8 in

Fig. 7 (right). Its stationary points lie on the symmetry strata:
at the poles and in the planes. Both poles (on the rotation
axis) are fixed points, they represent 100% pure ν1 and ν3.
Points in the planes come in pairs and can move (pairwise)
in one dimension when n is changed; they are created in the
bifurcations of the ν1 RE described in subsection III C3.

3. Bifurcations involving the C3v and D2d RE

We follow briefly the modifications that the stretching
C3v and D2d RE families undergo with growing value n +
6 1

2 > 0 of the classical polyad integral8 N . In this context,

8The difference N − n is given by Eq. (2) with n1 = 1
2 , n2 = 1 and

n3 = n4 = 3
2 .
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FIG. 8. (Color online) Energy of stretching (ν1,ν3) relative equi-
libria of methane as a function of polyad quantum number n. Circles
mark bifurcations. Negative values of n correspond to classically
allowed values n + 6 1

2 of the polyad integral N � 0.

Fig. 8 showing energies of stretching RE versus n serves
as a bifurcation diagram. We notice first the characteristic
qualitative deformation resulting from a series of closely
succeeding bifurcations of the ν1 RE near N ≈ 3. Like the
local-mode-creating bifurcation in simpler systems (H2O,
SiH4), this event takes place at very small N , below the energy
of the ground state, as a result of strong coupling between ν1

and ν3.
The smallest possible number of stationary points that a

Morse function H�
n can have on S2 is two, a minimum and a

maximum. WhenN < 3, both C3v and D2d coupling functions
are of this simplest kind, with minimum at ν1 and maximum
at ν3. We can say that the system is essentially uncoupled.
Since the number of different C3v and D2d stabilizers is 4
and 3, respectively, the total number of stretching RE with
these projected stabilizers is 8. (Think of four C3v and three
D2d coupling spheres S2 all sharing their ν1 poles; see Refs.
[3,16,17] for details on counting the total number of nonlinear
normal modes of methane.)

The first bifurcation occurs on the D2d sphere at N ≈
3.298. It is a pitchfork bifurcation with broken symmetry of
order 2. The ν1 RE goes unstable (on this sphere) and a pair of
new stable D2d RE with with φ = ±π/2 are emanated. As n

increases, the pair descends south and takes more ν3 content.
Next we have a saddle-node bifurcation that takes place on the
φ = 0 semicircle of the C3v sphere very close to the minimum
at the ν1 pole. It creates a new minimum which moves away
from the pole (thus gaining ν3 content) and a saddle that moves
toward the pole. What happens can be best observed projecting
the coupling sphere in the R2 plane tangent at the ν1 pole with
coordinates

(x,y) = 1
2 sin θ (cos φ, sin φ),

such that

cos θ =
√

1 − 4(x2 − y2).
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2
of polyad integral N and y = 0 (φ = 0,π ). Each curve is shifted
vertically for better comparison; bolder lines mark critical sections.

Additionally, since the reflection symmetry is not broken, we
can fix y = 0, and study the dependence of HC3v

n on x and
parameter n as illustrated in Fig. 9.

The deformation culminates in a more complex event at
N = 3.478 that creates two new unstable RE with φ = 0,π

on the D2d sphere, while at the same time, the saddle on the
C3v sphere moves through the ν1 pole to the φ = π semicircle
while the pole turns into a maximum; see Fig. 9. So we end
up with coupling surfaces in Fig. 7. At sufficiently large n, all
newly created RE have minimum energies, while the “original”
ν1 and ν3 RE evolve toward maximal energies arriving for
n = 8 at the energy gap of 500–1000 cm−1, see Fig. 8. This is
comparable to the local-mode well in SiH4 [20].

Finally, we like to mention a number of bifurcations of
these original stretching RE which involve bending modes
and change the full eight-degree-of-freedom stability (see
respective circles in Fig. 8). In particular, very early at
N = 4.272, the C3v ν3 RE goes through a Hopf bifurcation
involving both ν2 and ν4; later at N = 10.224, this RE has
a pitchfork bifurcation that involves ν4. This indicates very
clearly that stretching-bending distinction is not globally valid
in methane and that the information we acquired in this section
on the stretching RE remains incomplete.

4. Dipole active localization

Ignoring bending degrees of freedom, we can, nevertheless,
suggest certain localization possibilities and select the ones
that induce the largest dipole moment. We consider stable (in
the restricted sense) stretching RE. For n = 8, all original
stretching RE, are stable and furthermore, we have stable
RE among newly created ones at bottom energies. We notice
immediately, that the ν1 RE and the D2d ν3 RE (maximum
energy in Fig. 8) cannot induce any dipole moment. At the
same time, because of the shallow valley geometry of the

coupling surfaces (Fig. 7), stretching localization near one of
the new low-energy RE is incomplete; it resembles that of a
hindered one-dimensional rotor. It follows that the most simple
candidate to explore below in Sec. IV is the C3v (φ = π ) ν3

RE. We further note that (in polyads P2 and P4) the overtones
of ν3 are known to be the states with strongest absorption, and
that motion along the C3v RE results in the most significant
electric dipole moment oscillations.

We note (cf. Fig. 16 of Ref. [3] for C3v × T ) that unlike the
ν1 RE and the D2d ν3 RE, which are essentially just normal
modes ν1 and ν3, the C3v ν3 RE is a specific nonlinear normal
mode with zero angular momentum. In the configuration
space R3 of the normal ν3 displacements, it corresponds to
vibrations along one of the four C3 axes of the tetrahedron.
As a consequence, the respective localized state is four times
(quasi)degenerate, just as the local mode to which this RE is
smoothly connected.

IV. INTENSITY OF SINGLE PHOTON TRANSITIONS
P0 → Pn WITH LARGE n

In this section, we consider the description of the intensity
of the direct transition P0 → Pn, and in particular, we like
to understand its dependence on the polyad number n. For
sufficiently large n, this can be done semiclassically.

We pursue two approaches. In the model approach, we try
to reduce the analysis to a single dimension corresponding
to the polyad degree of freedom. We select a predominant
direction of the dipole active distortion of the molecule along
a stable RE. Following subsection III C4, we focus on the C3v

RE. In a more general approach, we investigate the possibility
to rewrite the dipole moment operator in such a way that the
polyad degree of freedom becomes separated.

We also explore the origins of the terms in the polyad dipole
moment. Using the normalizing transformation (Q,P ) �→
(q,p) introduced in subsection III A, we express the original
vibrationally induced (oscillating) dipole moment µ(Q) in
the variables (q,p) of the normalized system and obtain
the effective dipole moment µeff(q,p). For the quantized
normalized system, neglecting rotation of the molecule and
assuming that the electric field component of the radiation
E and dipole moment µ are collinear, the probability of the
transition |0〉 → |n〉 is proportional to |〈0|µ̂eff(q,p)|n〉|2.

A. One-dimensional Morse oscillator model

The general scheme can be illustrated using a one-
dimensional Morse oscillator with Hamiltonian

HMorse = p2
r

2M
+ De

[
1 − exp

(
−α

r − re

re

)]2

,

where parameters De, re, and α, represent the dissociation
energy, the equilibrium distance, and the “strength” of the
chemical bond and M is the reduced mass. The Birkhoff
normal form for this system

H = ω0(N − 2ε2N2) (5a)
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is a polynomial9 of degree 2 in the classical action

N = 1
2 (p2 + q2) (5b)

with the smallness parameter

ε = 1
2

√
α/re(2DeM)−1/4 (5c)

and the frequency

ω0 = 8Deε
2 (5d)

of harmonic oscillations about the equilibrium r = re. Taylor
expanding the canonical transformation that brings the system
to this normal form gives for Q = r − re

Q �→ 2ε
re

α

(
q + ε(q2 + 2p2) + ε2

2
(5q2/3 − p2)q + · · ·

)
.

Rewriting the first (linear) term of the vibrationally induced
dipole moment µ(Q) = µ1Q + · · · , in terms of the dynamical
variables (q,p) of the normalized system, and quantizing the
latter, we compute the matrix element

〈0|µeff|n〉 = µ1
re

α
εn(−1)n−1

√
2nn!

n
(6)

that describes the transition |0〉 → |n〉.

B. Generalization to the multidimensional case

The motion along the classical S1 orbits defined by the
polyad integral N can be associated with a 1D anharmonic os-
cillator system, such as the Morse oscillator in subsection IV A.
If this motion corresponds to an RE and the latter is an elliptic
orbit stable enough for quantum localization to occur, the
induced dipole moment for the localized states will be defined
primarily by the deformations of the molecule associated to
the particular classical RE. The system becomes, therefore,
essentially one-dimensional and we can use the results of the
previous section, namely Eq. (6) with n treated as the value
of N .

Polyads of the CH4 molecule were approximated globally
in Ref. [52] using a one-dimensional Morse oscillator with
frequency which is naturally close to that of bending vibrations
(1582 cm−1 for ν2 and 1367 cm−1 for ν4 [53]). However,
the 1:2 resonance makes the situation singular. Because of
the resonance, any purely stretching RE is “short”, i.e., its
frequency ω0 is twice that of the N motion. Furthermore, if
we double the polyad frequency when working with such an
RE, then in Eq. (6) we should also use the number of stretching
quanta n/2 instead of the polyad number n. For the C3v × T
ν3 RE of the CH4 molecule we can use the following values

9In quantum mechanics, we have N = n + 1
2 and the closed normal

form in Eq. (5a) corresponds to the well known exact solution for the
Morse oscillator system.

(in cm−1, atomic units, and debyes)

µ1 0.352 [54], 0.390 [53] D/a0 (for ν3),

De 35000 [9] or 37360 [52] cm−1,

ω0 2 × 1563.6 [52] or 3095 [53] cm−1,

ε ≈0.10 (from De, and ω0),

f 0.332 Eh/a
2
0 (ν3 force constant) [53],

M 0.916 mu (from f/ω2
0),

re/α 1.0 a0 (from ε, De, and M),

and obtain from Eq. (6) the vibrational transition moment
|〈µ〉| = |〈0|µ̂eff(q,p)|n/2〉| for the 0 → Pn transitions (see
Table IV). Below we use these values to give estimates of
the intensity of the most prominent lines in the rotationally
resolved 0 → Pn bands with n = 8,10,12.

The cross section for a single absorption line

σ (ν) = 2π2|〈µ〉|2(3ηε0ch)−1F (T ,J )νg(ν − ν0)

includes dielectric constant η ≈ 1, line form factor g(ν − ν0),
and factor F (T ,J ) that accounts for the population of the
lower state with a given angular momentum J , degeneracy of
that state, and rotational matrix elements. At the resolution
of 0.04 cm−1, we may assume that the fine structure of the J

multiplet caused by the tensorial centrifugal distortion remains
unresolved and that consequently, F (T ,J ) includes the sum
over the components of a single multiplet. For our purposes, we
may also further simplify F (T ,J ) by using the total degeneracy
of the multiplet in place of exact rotational and nuclear spin
factors, so that

F (T ,J ) ≈ (2J + 1)2 exp(−J (J + 1)Tr/T )Q(T )−1,

where Tr = hcB/k ≈ 7.54 K and the partition function Q(T )
can be approximated by Eq. (3) of Ref. [55]. For T =
295 K, the J = 6 multiplet is most populated and we have
F (295,6) ≈ 0.1. Assuming a Lorentzian form factor with full
width at half maximum (FWHM) = 0.04 cm−1 being about
the minimal collisional line width observed, and taking its
value (πFWHM/2)−1 at the center frequency of the spectral
line, we arrive at the values for σ in Table IV.

Integral absolute band strengths Sband of the unresolved
0 → Pn bands with n = 8,10,12 where estimated experi-
mentally in Refs. [25,27,56,57]. Lucchesini and Gozzini [26]
determined cross sections σline for individual rotational lines
in the weak 840-nm band, a satellite of the main 0 → P8

transition at 889 nm. Comparing their data to the respective
Sband value and assuming similar σline/Sband ratio for n =
10,12, gives σline values of the same order as those in Table IV.

TABLE IV. Estimated absorption cross sections σ of the most
intense rotational transitions in the 0 → Pn, n = 8,10,12 bands
of methane for T = 295 K and full width at half maximum =
0.04 cm−1.

n ν (cm−1) |〈µ〉| (D) σ (cm2/mol)

8 11 300 2.3 × 10−4 3.7 × 10−22

10 13 760 6.1 × 10−5 3.2 × 10−23

12 16 135 1.8 × 10−5 3.5 × 10−24
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This suggests the utility of Eq. (6) for crude estimates. This
also indicates that our experiment (Sec. II) with the estimated
minimal cross section of 10−26 cm2 per molecule had a good
margin of sensitivity even in the case of 0 → P12 and that
observing rotational structure of the 0 → P14 band should be
within reach of contemporary techniques.

C. Model transition moment for CH4

One of the most frustrating problems in the traditional
Taylor series–based spectroscopic approach [5,6] to the
analysis of direct transitions P0 → Pn with large n ≈ 10 is
the absence of any clues as to the possible values of the
parameters of the effective transition moment µeff induced
by the vibrations. In such analysis, both the effective polyad
Hamiltonian H and dipole moment µeff are Taylor expanded
near the equilibrium, and as the work progresses to states
in higher excited polyads, higher degrees in both series get
involved and their coefficients are determined. However, there
is a profound difference between the way in which H and
µeff are extrapolated. The lower degree terms of H can be
determined from the analysis of lower polyads, notably P3 and
P4, and can be used subsequently to predict—with varying
accuracy—the higher excited states. Not so for µeff : in this
traditional approach, in order to describe P0 → Pn, we have
to inject new terms of specific degrees. For large number K

of the vibrational degrees of freedom involved in the polyads,
the number of terms to be injected can be quite significant
(subsection IV C1).

It is clear that any spectroscopic analysis of P0 → Pn with
large n would require rough initial values of the parameters in
µeff . At the contemporary level of ab initio calculations, there is
little hope to obtain anything beyond cubic and maybe quartic
terms in µeff . Therefore, we should use more information on
the dynamics of the system to confine our description to a
smaller number of quantum states which would require smaller
number of phenomenological parameters (subsection IV C2).
We should also think of rewriting µeff in such a way that it can
be extrapolated similarly to H.

1. Number of linearly independent terms in µeff

Recall that in the case of tetrahedral symmetry, µeff =
µ

F2
eff transforms like any polar three-vector according to the

irreducible representation F2. So within the usual framework,
P0 → Pn is described by terms of type F2 of degree at least
n/2 or higher in creation operators a+. For example, the term
(a+

1 )3a+
3 describes the P0 → 3ν1 + ν3 transition suggested

in Refs. [21,22]. Clearly, there are much more such terms
of degree 4, let alone those of higher degrees that involve
bending modes, and the coefficients in front of them are
unknown and cannot be derived from the studies of lower
polyads.

All terms in µ
F2
eff describing the P0 → Pn transition without

recombinations, i.e., terms consisting purely of z (or of creation
operators a+), are described by the generating function

gµ =
(
t2
2 + t2 + 1

)(
t2
3 + t3 + 1

)(
t2
4 + t4 + 1

)
χ

D1D2D3D4

of four formal variables (t1,t2,t3,t4) representing normal
mode coordinates z1, z2,3, z4,5,6, and z7,8,9, respectively. The

numerator of gµ with

χ = t4 + t3 − t3t4 + (t3 + t4 + t2)t3t4
+ t3t4

(
t2
4 + t2

3

) + t2t3t4(t3 + t4) + t2t
3
3 + t2t

3
4

+ t3
3 t2

4 + t2
3 t3

4 − t2t3t4
(
t2
3 + t2

4

)
+ t2t

4
4 t3 + t2t

4
3 t4 + t2t

2
3 t3

4 + t2t
3
3 t2

4 − t3
3 t3

4

+ (t4 + t3 + t2)t3
3 t3

4

represents F2-type covariants; the denominator terms

D1 = 1 − t1

D2 = (
1 − t2

2

)(
1 − t3

2

)
D3 = (

1 − t2
3

)(
1 − t3

3

)(
1 − t4

3

)
D4 = (

1 − t2
4

)(
1 − t3

4

)(
1 − t4

4

)
describe principal totally symmetric (type A1) invariants.
Taylor expanding gµ and collecting terms t

k1
1 t

k2
2 t

k3
3 t

k4
4 with

2k1 + k2 + 2k3 + k4 = n gives a formal representation of the
P0 → Pn effective dipole moment. Each monomial represents
a particular type of linearly independent F2 covariants;
coefficients in front of the monomials indicate the number
of covariants of the particular type.

If µ
F2
eff is analytic, then terms of higher relative degree in t1

and t3 are of lower total degree and make, therefore, a more
important contribution to µeff and to the intensity of the P0 →
Pn transition. For even polyads, the most important terms in
µeff contain only stretching variables t1 and t3. Thus we have

Polyad Stretching part of µeff

P6 t2
1 t3 + t1t

2
3 + 2t3

3

P8 t3
1 t3 + t2

1 t2
3 + 2t1t

3
3 + 2t4

3

P10 t4
1 t3 + t3

1 t2
3 + 2t2

1 t3
3 + 2t1t

4
3 + 4t5

3

P12 t5
1 t3 + t4

1 t2
3 + 2t3

1 t3
3 + 2t2

1 t4
3 + 4t1t

5
3 + 4t6

3

Further interpretation of these expressions and explicit
construction of the purely stretching terms is relatively simple
because powers of t1 represent essentially a trivial factor. It
follows that we should construct all F2-type covariants of a
given degree in z4,5,6, see next subsection IV C2, Table V, and
Ref. [58]. For odd n, the most important P0 → Pn terms in µeff

are, necessarily, of degree 1 in one of the bending variables
t2 or t4. To find the number of required phenomenological
parameters, we should sum up all coefficients in the Taylor
expansion. Below we give these numbers for the number of all
terms, purely stretching terms, and purely ν3 terms (the two
latter have degree 1 bending contribution for odd polyads).

Polyad P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

Total 1 3 8 20 43 90 169 313 540 917 1480 2356
ν1,ν3 (1) 1 3 2 7 4 14 6 24 10 38 14
ν3 (1) 1 2 1 4 2 7 2 10 4 14 4

We can see that the total number of possible parameters
grows rapidly beyond reasonable. But even the number of
purely stretching parameters is relatively large, given that their
values are completely unknown. For example, for the analysis
of P0 → P10 within the STDS [4–6] framework, we should
“guess” the values of four parameters of purely ν3 terms, and,
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TABLE V. Terms in the transition dipole moment of degree 3 and 4 for excitations of the
stretching RE of symmetry C3v × T .

Degree Term gµ STDS tensor definition [4–6] Coefficient

ξ 3 µ113 t2
1 t3 z2

1 µ
F2
3 12 η1(1 − η1)1/2

µ133 t1t
2
3 z1 [µF2

3 ,µ
F2
3 ]F2 12 η

1/2
1 (1 − η1)

√
2

µ�
(33)3 t4

3 [[µF2
3 ,µ

F2
3 ]�,µ

F2
3 ]F2 �=A1 4 (1 − η1)3/2

√
3

�=F2 8 (1 − η1)3/2

ξ 4 µ1113 t3
1 t3 z3

1(z4,z5,z6) = z3
1µ

F2
3 −16η

3/2
1 (1 − η1)1/2

µ1133 t2
1 t2

3 z2
1 [µF2

3 ,µ
F2
3 ]F2 −24η1(1 − η1)

√
2

µ�
1(33)3 t1t

3
3 z1[[µF2

3 ,µ
F2
3 ]�,µ

F2
3 ]F2 �=A1 −16η

1/2
1 (1 − η1)3/2

√
3

�=F2 −32η
1/2
1 (1 − η1)3/2

µ
�F2
(33)(33) t3

3 [[µF2
3 ,µ

F2
3 ]�,[µF2

3 ,µ
F2
3 ]F2 ]F2 �=A1 −8

√
6(1 − η)2

�=F2 −8
√

2(1 − η)2

if ν1 is also important, another six parameters. We address this
problem in the next section.

2. RE-induced dipole moment

The number of terms in µeff becomes so large that we need
a model of what goes on. In subsection III C4 we selected the
C3v × T stretching RE for the analysis. Here we assume that
the bright state of the P0 → Pn transition is localized near
this RE. Let Z = ZC3v

(η(n),φ(n)) define such RE on Pn in the
form (4). Let (ξ,ξ̄ ) be coordinates along the axis defined by Z

in the original phase space. Then we can represent µ as mainly
a power series in (ξ,ξ̄ ). At first, we can neglect all other small
terms in that series.

To have a simple example, let us assume no bending content
(η2 = η4 = 0) in Z, and let us fix the remaining phase φ1 = π

as in Ref. [20] and denote η1 = η(n). Let us also distinguish
the four different equivalent C3v × T RE by vector subscripts

α = (1,1,1), (−1, − 1,1), (1, − 1, − 1), (−1,1, − 1),

one for each of the four axes C3 in Fig. 2. Then according to
Eq. (4) we have

Zα = √
n

(
−√

η,(0,0),
√

1 − η
α√
3
,(0,0,0)

)

and therefore

ξα(z) = −√
ηz1 +

√
1 − η

3
α(z4,z5,z6)T .

Vectors ξα represent distortions caused by four stretching RE
of the system. In order to reach polyad P2s , we should excite
either one of them by s stretching quanta in a row. This means
that µ should include terms ξ s

α . Once this is understood, all we
have to do is to construct components of the three-vector µF2

(with respect to coordinate axes in Fig. 2) by combining the
monomials ξ s

α appropriately. To this end, we note that ξ s
α with

s = 1,2,3, . . . are permuted by the operations of Td in the same

way as ξα . Therefore,10 we can combine four ξ s
α in the same

way as four ξα in order to obtain the three components of vector

µF2 =
⎛
⎝+1 −1 +1 −1

+1 −1 −1 +1
+1 +1 −1 −1

⎞
⎠

⎛
⎜⎜⎜⎝

ξ s
(1,1,1)

ξ s
(−1,−1,1)

ξ s
(1,−1,−1)

ξ s
(−1,1,−1)

⎞
⎟⎟⎟⎠ .

Substituting expressions for ξα and expanding, we express
µF2 in terms of normal mode coordinates zk . The result
may have several terms but it depends on a single mixing
parameter η = η1. Specifically, for each degree s in z, we
can express µF2 (z,η) as a linear combination of STDS
tensor operators [4–6] constructed from z

A1
1 = z1 and

µ
F2
3 = (z4,z5,z6). Results for s = 3 and s = 4 are given in

Table V. Thus for s = 4, the dipole moment µF2 (z,η) can
be expressed using six tensors, while for s = 3 we use four
tensors. Replacing zk by quantum creation operators a+

k , we
arrive at the wanted quantum transition moment operator µ̂F2 .

Note that the formal tensor construction of powers [µF2
3 ]s

in Table V with all possible intermediate irreducible repre-
sentations � gives redundancies. � = A2 and F1 are excluded
automatically because, obviously, only even powers, i.e., in-
variant with respect to permutations, can be built. Furthermore,
the number of linearly independent terms of degree s and
symmetry type F2, which can be constructed from µ

F2
3 is

given by the coefficients in front of the respective powers
in the Taylor expansion of the generating function [58]

g
F2
3 (t3) = (

t3 + t2
3 + t3

3

)/
D3 = t3 + t2

3 + 2t3
3 + 2t4

3 + · · ·
So there are only two cubic and two quartic terms and in each
case, among three possibilities with � = A1,E,F2 one should
be excluded, i.e., one coefficient should be set exactly to 0. In
Table V, we have chosen to exclude � = E.

Furthermore, our results in subsection III C1 suggest that,
unlike in a local mode system, the ν1 content in the C3v × T RE

10This is equivalent to projecting ξ s
α on the rows of the irreducible

representation F2.
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of CH4 remains low (about 1% for n = 8). Consequently, terms
of nonzero degrees in η

1/2
1 are strongly discriminated and can

be neglected. This contradicts the hypothesis of Boraas et al.
[21,22] which implies high ν1 content and which was made
largely for the sake of simplifying tentative line assignments.

V. DISCUSSION AND RESULTS

At the base of all contemporary, extremely sophisticated,
attempts [5,7,8] to analyze spectroscopic data on excited rovi-
brational states of methane (and similar systems) is the Taylor
expansion in dynamical variables (q,p) at the equilibrium.
Clearly, this becomes increasingly inadequate as we ascend
higher up in energy both in terms of convergence and the
sheer number of parameters. We believe that progress will not
always be possible through accumulation of computer power
and models that stem essentially from 1930s. In this work,
we attempted to investigate alternatives and complementary
approaches and to foresee the future of this field. The idea is to
uncover a small part of the polyad Pn, which is distinguished
dynamically and is visible in the P0 → Pn experiment, and to
confine the analysis accordingly.

A. Vibrational localization in methane

One of our principal objectives was understanding vi-
brational localization in higher polyads which would allow
selecting a small group of excited vibrational states that
we observe. We have not resolved this problem definitely
for several reasons: low cutoff in the Taylor series for
the vibrational Hamiltonian, restriction to purely stretching
modes, and neglect for rotation-vibration interactions. Indeed,
our present analysis relied on the purely vibrational quartic
Hamiltonian H. From Table II, we can see that several terms
in H2, notably t

A1
3333 and t1313 describing stretching modes, are

excessively large and that such H can hardly be considered
as a well-behaving converged series. So information on
higher-degree terms from spectroscopic sources [7,8], ab initio
predictions [14,59,60], and Morse potential models should be
incorporated. We have seen that bending modes were involved
in a number of bifurcations of stretching RE and cannot
therefore be disregarded. Finally, methane has relatively large
rotational constant B and strong rotation-vibration interactions
which cause, in particular, mixing of vibrational modes. The
most important lowest order Coriolis interactions of type
[q × p] · j may result in bending-stretching mixing, higher-
order terms may couple stretching modes. All these aspects
can be incorporated in our analysis without any significant
extensions of the theory and will result in a more reliable
description of the RE structure of polyads and in extending
this description by an additional parameter, the amplitude of
the total angular momentum j .

B. Interpretation of the P0 → Pn spectra

Traditionally, the P0 → P8 transition was assigned to an
overtone of the fully symmetric stretch ν1 and one quantum
of the dipole active ν3 mode. The most plausible explanation
of the P0 → Pn spectra that we have come up with as a result
of the present study is quite different. We proposed a concrete
vibrational assignement in terms of vibrational relative equi-
libria and explain it. Of nine vibrational degrees of freedom
we suggest focusing on a particular one, which is, however,

neither a naive normal mode overtone, nor a simple “local
mode” (LM) vibration of a particular chemical bond C–H.

We believe that our P0 → Pn spectra involve a small group
(cluster) of bright and dark upper states localized near the
C3v × T nν3 RE. Because we deal with the same isotropy as
in the case of LM’s, the number of states and the symmetry
properties of the cluster are the same. We have four states split
into an A1 + F2 doublet, in which the A1 component is dark
(in the absence of rotation) and the F2 component is active.
Unlike the LM states, however, the ν1 content is negligible.

Comparing to the (n − 1)ν1 + ν3 assignment we may note
a number of strong points in our favor. Most importantly, a
transition to an appropriate C3v localized nν3 state is likely
to be by orders of magnitude stronger than (n − 1)ν1 + ν3.
Furthermore, because it involves vibrations about the ν1 RE,
the (n − 1)ν1 + ν3 state is less likely to be localized and less
likely to have such a simplistic normal mode characteristics.
Further clarification of this situation can be given after
computing stability of the RE in question and frequencies of
oscillations about them.

Returning to our proposed assignment, it can be tested in a
number of ways. A complete rovibrational polyad computation
of the 0 → Pn spectrum (using, for example, the STDS
program [4–6]) with the dipole moment in subsection IV C2
may be attempted and the vibrational states that become
involved in the transition may be identified subsequently. Such
computation requires considerable resources but is technically
possible. In the simplest approximation for even polyad
numbers n, one may attempt to interpret the involved states as
part of a purely nν3 stretching polyad localized near the C3v RE
(and thus follow the older work [3,50]). Such localized states
would constitute a cluster of four states composed of states
with smallest value of the vibrational angular momentum l.
For even and odd n, this would involve l = 0,2 and l = 1,3,
respectively. Computations in such approach become less
heavy. One should note, however, that the rest of the nν3 states
has to be disregarded since entire isolated stretching polyads do
not exist in methane. Finally, it may be possible to reproduce
the rotational structure of such states using an appropriate
effective rotational Hamiltonian of a four-well C3v symmetric
top. This should be similar to the local mode formalism of
Ref. [28], albeit the wells do not correspond to the four C–H
local modes but are formed by the ν3 mode alone.

Prior to such attempts, we should follow the outline in
subsection III C and demonstrate more convincingly that
the localization of the C3v × T ν3 type does indeed occur.
If that is confirmed, it is quite likely that the individual
rovibrational transitions reported in Sec. II can be interpreted
satisfactorily on the basis of our vibrational assignment and
treated subsequently within a standard spectroscopic approach.
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