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Cross sections for antiproton capture by helium ions
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Accurate quantum-mechanical calculations are carried out for antiproton capture by singly ionized He ions,
that is, p̄ + He+ → p̄He2+ + e, by the combined use of an R-matrix method and direct numerical solution. The
total capture cross sections (or collision strengths) and the state distributions of the capture products, p̄He2+, are
calculated at collision energies ranging from 0 to 4 eV. The present system is rich in resonances, which appear as
a Rydberg series and are characterized as an electron attached to an ion core, p̄He2+. Some resonance levels can
be reproduced by a reasonable model based on molecular-quantum-defect theory. The capture into the highest
energetically possible state of the products, p̄He2+, always takes place overwhelmingly in the presence or absence
of the resonances. However, owing to the resonances, the angular momentum distribution of the products varies
considerably depending on the collision energy. The energy-averaged capture cross sections and the capture rate
coefficients are also presented for the convenience of future experiments.

DOI: 10.1103/PhysRevA.82.012501 PACS number(s): 36.10.Gv, 32.80.Ee, 34.80.−i

I. INTRODUCTION

Antiproton (p̄) capture by atoms or molecules at low
collision energies, leading to the formation of antiprotonic
atoms, is of fundamental importance as a probe of matter-
antimatter interaction [1–3]. The most interesting and simplest
capture process is p̄ + H → p̄p + e. The capture product,
p̄p, named antiprotonic hydrogen (or protonium), is a special
hydrogenic system made of a particle and its antiparticle. In
the p̄ + H system, if the distance between p̄ and H is less
than the so-called Fermi-Teller critical value RFT = 0.639 a.u.,
the bound sate of the electron disappears due to the negative
charge of p̄ [4,5]. For this reason, the p̄ + H system is easily
ionizable, and the p̄ capture reaction becomes very active
in low-energy collisions. The capture process in p̄ + H has
not yet been fully understood theoretically although it is the
three-body problem [6]. Another interesting p̄ capture process
as a three-body system is the present subject, that is,

p̄ + He+(1s) → p̄He2+(N,L) + e, (1)

where (N,L) are the principal and angular momentum quan-
tum numbers of the hydrogenic ion p̄He2+. In the case that
the target is a singly ionized He ion, the electron is always
bound at all the distances between p̄ and He+ in the adiabatic
picture based on the Born-Oppenheimer (BO) approximation
[7,8], and the direct capture probability is found to be very
small [9]. However, it is further suggested that the indirect
(resonance) capture process can be significant owing to the
presence of the Coulomb attraction in both the reactant and
the product channels [9]. We must properly deal with the res-
onances to understand the capture mechanism in the p̄ + He+

system.
The resonance states relevant to Eq. (1) must be composed

of excited He+ and rather can be characterized as a collision
complex closely correlated with the product channel (i.e., a
Rydberg electron attached to an ion core p̄He2+ [10]). If the
total energy is less than the separation limit D of p̄ + He+

(i.e., the collision channel p̄ + He+ is closed), the resonance
states primarily composed of He+(1s) are named antiprotonic

helium. Some of these resonance states have a very long
lifetime (�1 ps) against (Auger) decay channels and were
vigorously investigated in laser spectroscopic experiments
[11,12]. The atomic properties of antiprotonic helium mea-
sured in the experiments can be compared with elaborate
calculations based on the variational method [13–17]. The
high-precision study of antiprotonic helium has an important
contribution to the determination of fundamental physical
constants such as the p̄ mass [11,12]. The present study
promotes a further understanding of the antiprotonic helium
in high-energy states, in addition to gaining an insight into the
p̄ capture dynamics.

So far, there were various kinds of theoretical approaches
to the problem of the p̄ capture by atoms and molecules [6].
However, detailed calculations completely based on quantum-
mechanical (QM) treatment became realizable only recently.
The first effort to perform an accurate QM calculation for
p̄ + H was made by the present author [18] by propagating a
time-dependent wave packet on grid points in the configuration
space. In this sort of direct numerical solution, it is highly
desirable that the numerical algorithm is designed using only
a single set of coordinates. In Ref. [18], Jacobi coordinates
associated with the reactant channel p̄ + H (type I in Fig. 1)
were adopted throughout the entire calculation. Because the
distance between e and p was explicitly handled as a dynamical
variable, their use offered numerical efficiency, especially for
the calculation of the electronic motion under the Coulomb
attraction. However, the type I coordinates were inappropriate
for the asymptotic product channel p̄p + e, and hence only
the total capture cross sections summed over all the final states
were able to be presented in Ref. [18]. If we adopt Jacobi
coordinates associated with the product channel p̄p + e (type
II in Fig. 1), we can properly describe the state distribution of
the products p̄p. Instead, we encounter a technical problem:
The direct numerical method using the type II coordinates
becomes unstable as a solution to the electronic Coulomb
motion. This is because the origin of the electron coordinate
is the midpoint between p and p̄, with the p̄ mass being
equal to the p mass. Later on, Tong et al. [19,20] investigated
the state distributions of p̄p in p̄ + H by employing another
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FIG. 1. Two types of Jacobi coordinates. AZ+ = p or He2+.
X− = µ− or p̄.

type of time-dependent QM approach and the direct numerical
solution. They adopted the type I coordinates as well. In
calculating the final-state distributions, they had no choice but
to depend on a drastic approximation. Tong et al. [21] carried
out the calculation of the capture also in the p̄ + He system, by
setting the origin of coordinates to the He2+ nucleus and further
by assuming that the resulting cross term in the kinetic energy
operators [22] was negligible. We can expect better numerical
efficiency in this coordinate system, which is surely suitable
for calculating both the attractive Coulomb motions e + He+

and p̄ + He+. However, the accuracy of the approximation
introduced by Tong et al. [21] is quite uncertain. Some
other efforts were made to resolve the coordinate problem
in the p̄ + H system by using hyperspherical coordinates
[23,24]. At the present time, unfortunately, an unphysical
approximation was needed for the accomplishment of such
numerical calculations.

Recently, careful and rigorous QM studies of the final-
state selected capture (or its inverse) process were made
for the systems p̄ + He+ [10], µ− + He+ [25], and µ− + H
[26,27] by means of a time-independent R-matrix method [28]
combined with the direct numerical solution [29]. In these
studies, the type II coordinates were adopted, and hence the
final-state distribution could be calculated accurately. Because
the barycenter of the two heavy particles (AZ+ and X−
in Fig. 1) is close to the nucleus, the use of the type II
coordinates shows no serious numerical instability in these
systems. In reality, the type II coordinates are inappropriate
for the asymptotic reactant channel. However, we can cir-
cumvent this difficulty by introducing the BO approximation,
which is substantially accurate for the description of the
reactant channel, especially in the case that the open channel
of the target is only the ground (1s) state [9,18]. Therefore, if
the nucleus is heavier than the negative particle (p̄ or µ−),
there is no need to rely on any questionable approach such as
the approximations introduced by Tong et al. [19–21].

In this paper, using the R-matrix method of Ref. [29],
we report the accurate results of the total and final-state
selected cross sections for the capture in the p̄ + He+

system at collision energies E ranging from 0 to 4 eV. The
details of the resonance structure are also discussed. The
antiprotonic system p̄He2+ produced in the capture cannot
permanently survive because of the strong (hadron) interaction
[3]. Experimental studies can be found for p̄He2+ [3,30,31],
and these provided the valuable information about the strong
interaction. In the present study, however all the particles,

FIG. 2. The sum of the centrifugal and 1σ adiabatic potentials of
the p̄ + He+ system as a function of the relative distance R for the
total angular momentum quantum numbers J = 0–45. Also shown
is the Coulomb potential −2/R of the p̄ + He2+ system. The p̄He2+

energy levels, EN , are denoted by horizontal bars on the left side.
The energies are measured from that of p̄ + He2+ + e at rest. The
separation limit of p̄ + He+(1s) (i.e., the ground-state energy of He+)
is D = −2 a.u.

e, p̄, and He2+, are assumed to be point charges and the
spin is neglected. (The effect of the strong interaction on the
capture process is briefly discussed in Sec. IV.) In Fig. 2,
we show the p̄He2+ energy levels EN and the effective
potentials of the p̄ + He+ system, that is, the sum of the
centrifugal potential and the lowest (1σ ) adiabatic potential.
The ground-state energy of p̄He2+ is EN=1 � −80 keV. All the
capture channels that have N � 38 are energetically open even
in the limit as E → 0: The reaction is enormously exoergic.
The channel N = 39 becomes additionally open when the
collision energy is E > EN=39 − D = 1.936 eV. In the present
energy range (E � 4 eV), the channels N � 40 are closed
(EN=40 − D = 4.527 eV). Thus, very high states of N � 40
are necessarily involved in the present p̄ capture process.
Accordingly, we must carry out the collision calculations for
the total angular momentum quantum numbers J � 40. Owing
to the Coulomb attraction between p̄ and He+, this remains
true even at E → 0. In the previous R-matrix study for the
p̄ + He+ system [10], only a limited range of J was taken into
account. To obtain the capture cross sections, here we perform
the R-matrix calculations for J = 0–40.

II. THEORY AND CALCULATION

The detailed description of the theoretical formulation and
the numerical method for the collision system of a heavy
negative particle and a He+ ion can be found elsewhere
[10,25,29] and is not repeated here. Only a brief summary
is given. We use atomic units (a.u.) unless otherwise stated.
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We consider the three-body system of p̄, He2+, and e. We
adopt the Jacobi coordinates (R,r) associated with the product
channel p̄He2+ + e (type II in Fig. 1): R is the position vector
of p̄ from He2+, and r is that of e from p̄He2+. The time-
independent Schrödinger equation for the collision problem
is

H�JM (R,r) = Etot�
JM (R,r), (2)

where (J,M) are the total angular momentum quantum
numbers and Etot is the total energy, which is higher than the
separation limit (D = −2 a.u.) of p̄ + He+(1s) in the present
study. The Hamiltonian H is given by

H = − 1

2mR

∂2

∂R2
− 1

2mr

∂2

∂r2
+ V, (3)

with the Coulomb interactions

V = − 2

R
− 2

|(mR/mα)R + r| + 1

|(mR/mp̄)R − r| (4)

and the reduced masses

mR = mp̄mα

mp̄ + mα

, mr = me(mp̄ + mα)

me + mp̄ + mα

, (5)

where me (=1 a.u.) is the e mass, mp̄ is the p̄ mass, and mα is
the He2+ (α particle) mass.

In the type II coordinates, the product (electron emission
and capture) channel p̄He2+ + e is rigorously defined by the
electronic angular momentum quantum number l and the
principal and angular momentum quantum numbers (N,L)
of the hydrogenic system p̄He2+ with the energy

EN = −2mR

N2
. (6)

In the product region, the wave function �JM (R,r) can be
given by

�JM (R,r) = (Rr)−1
∑
NLl

YJM
Ll (R̂,r̂)ϒNL(R)f J

NLl(r), (7)

where YJM
Ll (R̂,r̂) is the eigenfunction of the total angular

momentum, and ϒNL(R) is the radial Coulomb function of
p̄He2+. For the reactant channel p̄ + He+, we assume the
lowest adiabatic state (1σ ). In this case, it is sufficient to
consider only the total parity of (−1)L+l = (−1)J , which is
not shown explicitly in the present formulation. In the reactant
region, the wave function �JM (R,r) can be written as

�JM (R,r) = (Rr)−1DJ
M0(R̂)χ1σ (R; r,θ )FJ

1σ (R), (8)

where χ1σ (R; r,θ ) is the wave function of the 1σ adiabatic
state, θ is the angle between R and r, and

DJ
Mλ(R̂) =

[
2J + 1

16π2(1 + δλ,0)

]1/2

× [
DJ

Mλ(R̂) + (−1)λDJ
M,−λ(R̂)

]∗
(9)

is the symmetrized and normalized form of the Wigner D

function DJ
Mλ(R̂).

We employ the R-matrix method for the solution to the
collision problem [29]. In the inner region defined by 0 �

R � A and 0 � r � a, we consider the R-matrix eigenvalue
equation:

[H + L]�JM
ρ (R,r) = EJ

ρ �JM
ρ (R,r), (10)

where

L = 1

2mRA
δ(R − A)

∂

∂R
R + 1

2mra
δ(r − a)

∂

∂r
r (11)

is the Bloch operator [32], and ρ identifies the discrete eigen-
values EJ

ρ . In the numerical calculation, the wave function
�JM

ρ is expanded in the form

�JM
ρ (R,r) = (Rr)−1

∑
λ�0

DJ
Mλ(R̂)φJλ

ρ (R,r,θ ), (12)

where λ is the electronic magnetic quantum number around R̂.
Then, we solve φJλ

ρ (R,r,θ ) numerically, and we can obtain the
R matrix by projecting the wave function �JM

ρ onto the chan-

nel functions YJM
Ll (R̂,r̂)ϒNL(R)/R and DJ

M0(R̂)χ1σ (A; r,θ )/r

at the boundary.
From the R-matrix elements, we can calculate the scattering

S matrix elements (SJ )NLl,1σ for the p̄ capture [29]. The
probability of the capture into the (N,L,l) product channel
is

P J (N,L,l) = |(SJ )NLl,1σ |2. (13)

We define the total capture probability summed over all these
channels by

P J =
∑
NLl

P J (N,L,l). (14)

Introducing the total collision strength � defined by

� =
∑

J

(2J + 1)P J , (15)

which is a useful quantity when we discuss low-energy
collisions in the Coulomb system [9,33], we can give the total
capture cross section in the form

σ = π�

2mE
, (16)

where the reduced mass m = mp̄(mα + me)/(mp̄ + mα + me)
is virtually equal to mR , and E = Etot − D is the collision en-
ergy of p̄ + He+. For the final-state selected capture collision
strengths, we can introduce

�(N,L) =
∑
J l

(2J + 1)P J (N,L,l) (17)

and

�(N ) =
∑
L

�(N,L), �(L) =
∑
N

�(N,L). (18)

Using these quantities, we can give the final-state selected
capture cross sections in the same way as Eq. (16). The energy
distribution of the emitted electrons may be defined by

f (ε) = 1

σ

dσ

dε
= N3�(N )

4mR�
, (19)

where ε = Etot − EN is the electron kinetic energy.
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The wave function φJλ
ρ (R,r,θ ) in Eq. (12) was calculated

directly on the grid points in the (R,r,θ ) coordinate space [29].
As in Ref. [10], we took the boundary values A = 1.3 a.u. and
a = 3.5 a.u. and the numbers of grid points (Nr,Nθ ) = (30,5)
in the (r,θ ) coordinates. The number of gird points in the R

coordinate was chosen differently (NR = 50–200) according
to J . We considered the channels of λ � 1 and l � 3. We
needed to further propagate the R matrix from r = a to a
large distance r = 50 a.u. to eliminate long-range coupling
effects [10,29].

III. RESULTS AND DISCUSSION

A. Resonances

In the case of Etot ∼ −3 a.u. < D (i.e., E < 0), the
resonance states (antiprotonic helium) can be identified as the
vibrational motion supported by the 1σ adiabatic potential
[8,11]. For the resonances relevant to the capture process
(i.e., E > 0), however, such an adiabatic picture is no longer
appropriate. Instead, we can introduce an idea that the
resonance state is composed of an ion core p̄He2+ and an
outer electron (a Rydberg picture) [10]. Also in the µ− + He+

system, the Rydberg picture was found to be useful for a
systematic study of the resonances relevant to the µ− capture
process [25].

In Fig. 3, we present the total capture probabilities P J

for all the J that contribute to the cross sections at collision
energies 0 � E � 1.85 eV. We can see a lot of resonances for
any J . To roughly examine the properties of these resonances,
first we consider a simplified version of the Rydberg picture
(a hydrogenic model), in which the core p̄He2+ is assumed to
be a point charge and the resonance energy is expressed as

EH
Ncn

= ENc − 1

2n2
, (20)

where N = Nc indicates the closed channel in e + p̄He2+,
and n is the principal quantum number of the electron. The
series limit (n → ∞) of the resonances is the excited-state
energy ENc of p̄He2+. In the range of the collision energies E

shown in Fig. 3, the most important closed channel is Nc =
39, which has the threshold ENc=39 − D = 1.936 eV. We can
see that the present resonances satisfy the requirements for
the justification of the Rydberg picture: The size of the ion
core [∼N2

c /(2mR) � 0.5 a.u.] is much smaller than the average
radius of the electron orbit (∼n2 for n � 2). Figure 3 shows
that most of the resonances can be basically identified as the
hydrogenic states n � 3 associated with Nc = 39. Another
hydrogenic (Nc,n) = (40,2) level is present at E = 1.126 eV
near the (Nc,n) = (39,3) level (E = 1.085 eV). It is certainly
possible that these two adjacent levels are strongly coupled
with each other. Indeed, as discussed later, some complicated
J -dependent behavior of the resonances at E � 1 eV can be
attributable to this coupling effect.

We can see that the probability of the off-resonance
(i.e., direct) capture is always very small (�0.03). If
the resonances were absent, the p̄ capture would not be a
notable reaction channel in the p̄ + He+ system. Actually, a
resonance can yield a large capture probability (occasionally
close to unity), and there are plenty of such resonances. It is

FIG. 3. The total capture probabilities P J for the total angular
momenta J = 0–39 at collision energies 0 � E � 1.85 eV. The
hydrogenic levels EH

Ncn
− D for Nc = 39 and 40 are denoted by

vertical bars on the top of the figure.

evident that the resonance plays a very important role in the p̄

capture by He+, as was suggested in Ref. [9].

B. Quantum-defect-theory model

The ion core p̄He2+ of the resonance complex is the
hydrogenic Coulomb system and also the two-body heavy-
particle system. As seen in Sec. III A, this core is always in a
very high N state, and hence it has a long period of internal
motion. In such a case, we may regard the core p̄He2+ as a
kind of molecule (i.e., a diatomic molecule with a vibrational
quantum number v = N − L − 1 and a rotational quantum
number L). Thus, the present resonance state is similar to a
molecular Rydberg state, and we can expect that molecular
quantum defect theory (QDT) [33,34] is applicable to the
analysis of the resonances. By using QDT, the scattering K

matrix elements associated with the closed channels can be
given by [34]

(KJ )N ′
cL

′l′,NcLl

=
∑

λ

UJl
L′λ〈ϒN ′

cL
′ | tan[πηlλ(R)]|ϒNcL〉 UJl

Lλ δll′ , (21)
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σ

σ

π

λ

λ

FIG. 4. Adiabatic quantum defects ηlλ(R) for various BO states
as a function of the relative distance R.

where ηlλ(R) is the R-dependent adiabatic quantum defect
obtained in the BO approximation, and UJl

Lλ is the matrix
elements of the transformation between the molecular and
space-fixed frames [34]. The adiabatic quantum defects ηlλ(R)
are assumed to be identified by the quantum numbers (l,λ),
and these are shown in Fig. 4. (Strictly speaking, the suffix l in
ηlλ(R) is not coincident with the electronic angular momentum
defined in Sec. II.) We can see that the quantum defects (except
for the ground adiabatic state 1σ ) belonging to the same label
(l,λ) are well approximated by a single curve in the important
range (R � 1 a.u.) of the integration in Eq. (21) (cf. Fig. 2).
If the coupling between the resonance and continuum states is
weak, the resonance energy may be given by the condition [33]

det[tan(πν) + KJ ] = 0, (22)

where ν is the effective quantum number defined by

Etot = ENc − 1

2ν2
. (23)

For the energies E < 1.936 eV, the closed channels of Nc = 39
and 40 were included in the calculation of Eq. (22).

For several total angular momenta J , we show in Fig. 5 the
total capture probabilities P J at energies 0 � E � 1.6 eV in
detail and also the energy levels obtained by the QDT method
for the s,p (n = 3–6) and d (n = 3) Rydberg electrons and the
Nc = 39 and 40 cores. For J = 5 (and probably also J = 15),

FIG. 5. The total capture probabilities P J for the total angular
momenta J = 5,15,25, and 35 at collision energies 0 � E � 1.6 eV.
The energy levels obtained by the QDT method are denoted by
vertical bars (Nc = 39) and vertical arrows (Nc = 40) on the top of
each panel.

almost all the resonance positions can be identified as the
QDT levels associated with only Nc = 39. The QDT method
seems to work nicely for low J . However, as J increases,
there appear several resonance levels (labeled X and Y ), which
cannot be identified by the present QDT model. Of these, the
resonance (Y ) at E � 1.2 eV for J = 25 has a noticeably
large probability and contributes importantly to the capture.
In the case of J = 25, we can find that each of the two QDT
levels associated with Nc = 40 is very close to a QDT level
associated with Nc = 39. The former levels are recognized as
the p Rydberg state while the latter are as the s state. Because
l is assumed to be conserved in Eq. (22), the coupling between
these adjacent levels cannot be taken into account in the present
QDT model. Actually, the e + p̄He+ system has an anisotropic
interaction, and hence the l mixing would not be negligible.

It is conceivable that the resonance can have an important
contribution to the capture process if the resonance state
consists mainly of the s or p Rydberg electron. Figure 6 shows
the energy levels in the range 0 � E � 1.85 eV obtained by
using the QDT model for the s and p Rydberg electrons;
it is directly comparable to Fig. 3 for all the total angular
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FIG. 6. An energy level diagram obtained by the QDT method
for the s and p Rydberg electrons. The results are shown for the
total angular momenta J = 0–39 in the range of collision energies
0 � E � 1.85 eV (cf. Fig. 3). The hydrogenic levels EH

Nc=39,n − D

are denoted by vertical bars on the top of the figure.

momenta J . Figure 6 may be helpful for our understanding
the major J dependence of the resonance energy levels.
As J increases, the QDT levels seem to converge with the
hydrogenic one (EH

Ncn
− D). If the core is a point charge,

there exits a degeneracy of the hydrogenic levels with the
same (Nc,n). The splitting of the degenerate levels occurs
according to the core effect. This indicates that the core effect
becomes more significant for lower J . As was discussed in
Ref. [25], the importance of the core effect can be explained
in terms of the overlap among the core wave functions ϒNcL:
If J is low (i.e., L is low, considering L ∼ J ), we have a
large overlap among ϒNcL for a fixed Nc [25] and hence the
large matrix elements (KJ )NcL′l,NcLl resulting from Eq. (21)
produces a large level shift. The partial wave J = 39 has a
special situation for the resonances associated with Nc = 39:
Only a single level appears for each n because the angular
momentum L = J or J + 1 (�Nc = 39) is forbidden.

In Fig. 6, we can see that the splitting behavior of the
(Nc,n) = (40,2) levels as a function of J is largely different
from those of the other Nc = 39 levels. As a result, the level
energy versus J exhibits a structure like curve crossing, for
example, near the points of (E = 0.196 eV, J =37), (E=
0.957 eV, J =27), and (E=1.323 eV, J =27). Of particular

Ω
FIG. 7. The capture collision strengths � summed over all the

final product channels at collision energies 0 � E � 4 eV except for
those just below the N = 39 channel threshold. The hydrogenic levels
EH

Nc,n
− D for Nc = 39 and 40 are denoted by vertical bars on the top

of the figure. Inserted is the enlarged figure of the capture collision
strengths � at collision energies 0 � E � 0.02 eV.

importance are the latter two crossing points, at which the
(Nc,n,l) = (40,2,p) levels cross with the (Nc,n,l) = (39,4,s)
and (39,5,s) levels. These crossings can actually occur
because, as mentioned previously, the l mixing is not taken
into account in Eq. (22). Near these crossing points, however,
the s-p coupling should be very important. The neglect of the
l mixing is expected to be the main reason that the present
QDT model cannot explain several resonances (X and Y ) in
the energy range 0.7 � E � 1.2 eV for J = 25 and 35 shown
in Fig. 5.

C. Capture collision strength

We calculated the capture collision strengths � at energies
E � 4 eV, and the results are shown as a function of E in
Fig. 7. As can be seen in Fig. 3 or 6, the resonance position
shifts with a change in J , and the extent of its shift is not
always negligibly small compared with the resonance width.
For this reason, summing over all the related partial waves J

yields a highly complicated resonance structure in the collision
strength. Nevertheless, we can still recognize a Rydberg series
of resonances converging to the N = 39 channel threshold
EN=39 − D. (The resonances become too dense at energies just
below EN=39 − D, and hence no data are presented there in the
figure.) In the µ− capture by He+ [25], a cluster of resonances
belonging to the same (Nc,n) can be apparently split into two
groups, and it appears in the form of bimodal major peaks.
However, no such structure can be observed clearly in the
present case. There is a jump in the collision strength at E =
EN=39 − D due to the threshold effect in the Coulomb system
p̄He2+ + e [33,35].
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The Coulomb attraction works also in the reactant channel
p̄ + He+, and the capture reaction is exoergic. For this reason,
in the limit as E → 0, the collision strength remains finite, and
the capture cross section diverges as E−1 [9]. At the lowest
energy E = 0.001 eV considered here, we have � = 21.2.
If the collision strength is assumed to be constant at E <

0.001 eV (as can be expected in Fig. 7), then the low-energy
behavior of the capture cross section is estimated to be

σ (in a.u.) = C

E (in eV)
for E � 0.001 eV, (24)

where C = 0.618. The nonzero and constant nature of the
collision strength at low energies are well known in electron
scattering from ions [33]. For a negative particle X−, if m′ de-
notes the reduced mass of X− + He+, the partial waves of the
angular momentum J up to J0 = (m′)1/2 − 1 can participate
in the capture at E ∼ 0 (J0 � 37 for X− = p̄) [9]. Assuming
P J = 1 and summing it over 0 � J � J0 in Eq. (15), as the
upper bound of the capture cross section at energies E ∼ 0, we
have σupper = π/(2E), which is independent of m′. In the form
of Eq. (24), this gives Cupper = 42.7. In the adiabatic picture,
the X− capture reaction is treated as a nonadiabatic process. If
the resonance is absent, there is no reason for the nonadiabatic
coupling to become important in the X− + He+ system. This
presents in the way of C 
 Cupper. For the µ− capture by
He+, the value of C was determined to be Cµ− = 3.33 [25],
which is larger than the value for the p̄ capture. As a matter
of course, the nonadiabatic coupling should be stronger for
a lighter X− mass. (The p̄ mass is about nine times heavier
than the µ− mass.) The situation is quite different from that in
the X− + H system. Irrespective of the X− mass, the capture
cross sections for the neutral target are very close to the
Langevin value, which can be regarded as the upper bound
at low energies [27,36].

Figure 8 shows the capture collision strengths �(N ) for
the formation of p̄He2+(N ) with the principal quantum
number N specified. At collision energies E � 1.8 eV (below
the N = 39 threshold), the collision strength �(N ) at the same
energy becomes the largest always for N = 38, which is the
highest open capture channel. If 1.95 � E � 4 eV (above the
N = 39 threshold), then the most populated state becomes
N = 39, which is the highest one at these energies. The upper
panel of Fig. 9 shows the N distribution �(N )/� of the
products p̄He2+ at three collision energies above the N = 39
threshold. Regardless of whether resonances are present, the
N distributions are nearly a monotonically decreasing function
of N , and the capture into the highest energetically possible
state occurs overwhelmingly. As a result, the average principal
quantum number 〈N〉 is always very close to the highest
possible value 39 (or 38) (Fig. 10). The kinetic energy
distribution f (ε) of the emitted electrons is plotted in the
lower panel of Fig. 9. Because the highest open channel N

has the largest population, the capture mainly leads to the
emission of slow electrons, as was found also in the µ− + He+

system [25]. At the collision energy E = 2 eV, which is just
above the N = 39 threshold (1.936 eV), a lot of electrons are
emitted with only a small kinetic energy ε = 0.064 eV. The
capture into very low N states is practically forbidden because
the emission of electrons having extremely high energies is
unrealistic.

Ω

FIG. 8. The final-state selected capture collision strengths �(N )
as a function of the collision energy E for the principal quantum
numbers N = 36,37, and 38 at 0 � E � 1.8 eV, and for N = 37,38,
and 39 at 1.95 � E � 4 eV.

Figure 11 shows the energy dependence of the capture
collision strengths �(L) for the formation of p̄He2+(L)
with angular momentum L = 5,15,25, and 35. The details
of the L distribution �(L)/� of the products p̄He2+ are
shown in Fig. 12 at three collision energies. In contrast to
the N distribution, the resonances make the pattern of the
L distribution quite different according to the energy, and
furthermore any (even very low or very high) state in the
range 0 � L � 38 can have a finite population. It seems that
very high L states are produced effectively rather through high
Rydberg resonances. In the energy region where no prominent
resonance occurs (E = 2.3 eV in Fig. 12), the L distribution
forms roughly a smooth curve and reflects the statistical weight
∝ (2L + 1) for the angular momenta up to L � 20 for which
�(L)/� becomes the maximum. In Fig. 10, we can see that
the average angular momentum 〈L〉 gives values fluctuating
sharply around ∼20, and the range of fluctuation is much wider
than that of 〈N〉 owing to the resonances.

D. Energy-averaged capture cross section

Let us take another look at the capture cross sections with
finite resolution of collision energies. We average the cross
sections over the energy interval (E − �E/2,E + �E/2),

012501-7



KAZUHIRO SAKIMOTO PHYSICAL REVIEW A 82, 012501 (2010)
ε

ε

Ω
Ω

FIG. 9. The N distributions �(N )/� of the products p̄He2+

(upper panel) and the kinetic energy distributions f (ε) of the emitted
electrons (lower panel). The collision energies are E = 2, 3, and 4 eV.

FIG. 10. Average quantum numbers 〈N〉 = ∑
N N �(N )/� and

〈L〉 = ∑
L L�(L)/� at collision energies 0 � E � 4 eV.

Ω

FIG. 11. The final-state selected capture collision strengths �(L)
as a function of the collision energy E for the angular momenta
L = 5, 15, 25, and 35 at 0 � E � 1.8 eV and at 1.95 � E � 4 eV.

Ω
Ω

FIG. 12. The L distributions �(L)/� of the products p̄He2+ at
collision energies E = 2.3, 2.8, and 4 eV.
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∆
∆

FIG. 13. The energy-averaged capture cross sections, 〈σ 〉,
summed over all the final product channels at collision energies
0 < E < 4 eV. The energy resolutions are �E = 200 and 500 meV.
Also plotted are the cross sections obtained by Eq. (24) and the cross
sections for the direct capture (•) and for the direct plus resonance
capture (◦) obtained in Ref. [9] using the wave packet propagation
method. The hydrogenic levels EH

Nc,n
− D for Nc = 39 and 40 are

denoted by vertical bars on the top of the figure.

where �E may correspond to the experimental energy
resolution:

〈σ 〉 = 1

�E

∫ E+ 1
2 �E

E− 1
2 �E

σ dE. (25)

Figure 13 shows the energy-averaged capture cross sections
summed over all the final product channels for the resolutions
�E = 200 and 500 meV. With the energy resolution �E =
200 meV, the resonances identified as n = 3 are smoothed to
form a single peak structure, and the n = 4 and 5 resonances
all together seem to appear as a broad peak. No further notable
peak structure can be seen for the n � 6 resonances. With
�E = 500 meV, the n = 3 peak becomes obscure although
the n = 4 and 5 broad peak remains. We also plot the cross
section obtained by Eq. (24), which is expected to give the
background (direct) contribution of the capture cross section
at low energies. It is evident that the averaged cross sections
are significantly enhanced from the background values in the
resonance region.

The present author calculated the capture cross sections
in p̄ + He+ by using the time-dependent wave packet prop-
agation method [9]. However, the detailed structure of the
resonances could not be resolved, and the results were
presented separately for the direct cross sections and for
the resonance part of the cross sections averaged over the
resonances. Figure 13 also includes these results. (Here, the
central energy of the wave packet [9], which has a certain
energy distribution, serves as a substitute for the collision
energy.) The direct cross sections of Ref. [9] are close to the

∆

FIG. 14. The energy-averaged capture cross sections for the
formation of p̄He2+(N ) with N = 35–38 at collision energies 0.2 <

E � 1.6 eV. The energy resolution is �E = 500 meV.

present background values. In Ref. [9], the direct cross section
at E = 0.5 eV was fitted to the form of Eq. (24) to provide
CWP = 0.844, which is 40% larger than the present value of
the low-energy limit. The total (direct plus resonance) cross
section of Ref. [9] is also close to the present energy-averaged
result at E = 0.5 eV, but it is much larger than the present
result at E = 2.5 eV. Probably, the reason for the latter is that
the wave packet used in Ref. [9], which has the distribution
over a wide energy range 0 � E � 6 eV, inevitably includes
a huge number of irrelevant resonances, while no prominent
resonances can be observed around E = 2.5 eV in the present
calculation. Cohen calculated the capture cross sections in
p̄ + He+ by using a fermion-molecular-dynamics method,
in which the classical-trajectory analysis is employed with
some quantum corrections [37]. However, his results are far
too much larger than the present values and are not shown
here.

For the capture into p̄He2+(N ) with N specified, the
energy-averaged cross sections calculated with the resolution
�E = 500 meV are presented for N = 35–38 at collision
energies E � 1.6 eV in Fig. 14. The averaged cross sections
for all these N have a similar shape, although the magnitude
varies significantly.

E. Capture rate coefficient

Finally, we calculate the capture rate coefficients thermally
averaged over collision energies, which are given by

k = (2π )1/2

(µκT )3/2

∫ ∞

0
� exp(−E/κT ) dE, (26)

where κ is the Boltzmann constant and T is the temperature.
The rate coefficients summed over all the final product
channels are shown in Fig. 15 in the temperature range
1 � T � 10 000 K. We also plot the rate coefficients k0 =
(2π/kT )1/2m−3/2� obtained by assuming that the collision
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Ω

FIG. 15. The capture rate coefficients k summed over all the final
product channels at temperatures 1 � T � 10 000 K. Also shown
are the rate coefficients k0 obtained by assuming that � (=21.2) is
independent of E.

strength is constant (� = 21.2) as in Eq. (24). If the values of
k0 can be regarded as the contribution of the direct capture, we
can see that the resonances become important at temperatures
T > 1000 K.

For the capture into p̄He2+(N ) or p̄He2+(L), the rate
coefficients are plotted in Fig. 16. The rate coefficient becomes
the maximum for the formation of p̄He2+ having N = 38
and L ∼ 20 at low temperatures. At T � 1000 K, the state
distributions have a similar shape except for the magnitude.
In the case that the resonances are expected to be important
(T = 10 000 K), however, the state distribution seems to be
somewhat different from the ones at other temperatures.

IV. FURTHER DISCUSSION

The low angular momentum states of p̄He2+ are unstable
because they decay via pair annihilation [3,30]. If their lifetime
against the annihilation were shorter than the collision time of
the capture reaction, these states could not be observed as the
p̄He2+ products. The annihilation widths of the (N,L) state
can be given by

�NS = 1

N3
�1S, (27)

�NP = 32

3

(
1

N3
− 3

N5

)
�2P , (28)

�ND = 2187

40

(
1

N3
− 5

N5
+ 4

N7

)
�3D, (29)

�NF = 65536

315

(
1

N3
− 14

N5
+ 49

N7
− 36

N9

)
�4F , (30)

with �1S = 11.1 keV, �2P = 35 eV, �3D = 2.07 meV, and
�4F = 0.014 µeV [30]. If we consider N = 38, which is the

FIG. 16. The capture rate coefficients for the formation of
p̄He2+(N ) and of p̄He2+(L) at temperatures T = 1, 10, 100, 1000,
and 10 000 K.

highest and most populated state of p̄He2+ in the low-energy
capture, the annihilation lifetimes can be estimated to be
τ38S � 3 × 10−15 s, τ38P � 10−13 s, τ38D � 3 × 10−10 s, and
τ38F � 10−5 s. The typical collision time τcoll at very low
energies may be defined by the passage time from R = A to
R = 0 (J = 0) under the Coulomb force −1/R. At E = 0,
this gives τcoll = 6.5 × 10−16 s, which is much shorter than
the annihilation lifetimes for L � 1. Therefore, the capture
into p̄He2+ having N = 38 and L � 1 at low energies can be
counted as an atomic event without any problem. Although
the resonance phenomenon makes the collision time much
longer, the annihilation in the resonance capture process would
be significant at most only for L = 0 and 1 unless n is
extremely large. It should be noted that if the detection of
p̄He2+ needs a long time (of � microseconds) in means
of measurement, the annihilation of the L = 0–3 states may
be one of the loss processes of p̄He2+ in an experimental
study. In any case, the annihilation effect is negligible for
the determination of the actual value of the total capture
cross section, to which a lot of angular momentum states
up to L � 35 always contribute. After the capture reaction
is completed, the annihilation of the resultant p̄He2+, even
if having initially high L, will be further activated by the L

mixing, which is induced by collisions with other particles (or
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FIG. 17. The total capture probabilities P J for the total angular
momentum J = 32 at collision energies 0 � E � 1.82 eV obtained
by using the accurate method and the approximation of Tong et al.
[21].

possibly by external fields) [38–42]. The L-mixing processes
are very important for understanding the atomic cascade and
the lifetime history of p̄He2+ [3,30,31,38,39].

In the calculation of the p̄ capture by He, Tong et al.
[21] introduced the approximation, in which the coordinate
origin was set to He2+ and the resulting cross term in the
kinetic energy operators was neglected. As mentioned in
Sec. I, this approximation makes the numerical calculation
much more tractable. Since the present system has the same
mass combination as that of p̄ + He except for the additional
electron, it is interesting to examine to what extent this
approximation is appropriate for the present capture process. In
Fig. 17, we compare the total capture probabilities of p̄ + He+

for J = 32 calculated by using this approximation with the
present accurate results. The approximation of Tong et al.
may not be so bad for the high Rydberg resonance capture
and possibly for the direct capture, but it no longer serves a
useful purpose for other prominent resonances. Although the
resonance capture is absolutely not important for the neutral He
target, we should note that the present result raises questions
about the use of the approximation of Tong et al. in the p̄ + He
system. Furthermore, the description of the state distribution
should be sensitive to the choice of the coordinate system.
The approximation of Tong et al. would be a little more
useful for the targets much heavier than the He atom. If this
approximation is poor for the p̄ + He system, it is so much
the worse for the p̄ + H system because mp̄ = mp < mα .
However, Tong et al. introduced this approximation to analyze
the final-state distributions in the p̄ capture by H [19,20]. The
coordinate problem is obstructive to the accurate numerical
treatment in this system. It is highly desirable to progress a
theoretical study on the subject of the p̄ capture by H.
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Phys. 70, 1995 (2007).
[13] N. Elander and E. Yarevsky, Phys. Rev. A 56, 1855 (1997).
[14] V. I. Korobov and I. Shimamura, Phys. Rev. A 56, 4587 (1997).
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