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We analyze in detail the so-called pushing gate for trapped ions, introducing a time-dependent harmonic
approximation for the external motion. We show how to extract the average fidelity for the gate from the resulting
semiclassical simulations. We characterize and quantify precisely all types of errors coming from the quantum
dynamics and reveal that slight nonlinearities in the ion-pushing force can have a dramatic effect on the adiabaticity
of gate operation. By means of quantum optimal control techniques, we show how to suppress each of the resulting

gate errors in order to reach a high fidelity compatible with scalable fault-tolerant quantum computing.

DOI: 10.1103/PhysRevA.82.012339

I. INTRODUCTION

Trapped ultracold ions have represented a major candidate
for the implementation of scalable quantum information
processing since the beginning of this research field. The
first proposal of an ion-based quantum computer by Cirac
and Zoller in 1995 [1] has been followed by a great variety
of other schemes based on ions [2], on other quantum
optical systems like neutral atoms [3,4], and on solid-state
systems [5]. With the progress in experimental techniques
and the demonstration of entangling quantum gates based
on several different candidate physical systems, the focus
has progressively shifted toward the fulfillment of scalability
desiderata [6], that is, the realization of quantum gates with
very high fidelities, in the range 0.999-0.9999.

Gate errors in a real implementation of a given quantum
gate scheme can be reduced by different means. Some errors
arise from (or are increased by) experimental imprecisions of
a technical nature and can be controlled by careful alignment,
stabilization, and so on, of the experimental apparatus. Other
errors stem from unaviodable interactions with the environ-
ment and can be reduced simply by completing the gate in
as short a time as possible. Typically, a gate scheme can be
made faster by simple scaling to higher intensities, shorter
distances, and so on. If such simple optimizations of the gate
prove insufficient, one needs to consider changes to the scheme
itself and trade simplicity for improved performance. This is
exactly the goal of quantum optimal control techniques [7],
which allow for a precise tailoring of the system’s evolution
by time-dependent tuning of some external parameters. With
sufficient control over these parameters, a given target state
can often be reached with minimal error even over short gate
operation times. The application of these methods to quantum
information systems requires in turn a very accurate simulation
of the dynamics and a careful understanding of the targeted
error sources. This is precisely the aim of this article, in the
specific case of the two-qubit ion gate proposed in [2] and

1050-2947/2010/82(1)/012339(12)

012339-1

PACS number(s): 03.67.Lx, 02.30.Yy

subsequently analyzed in [8,9]. In this pushing gate, the qubits
are encoded in the internal states of two ions. Each ion is held
in a separate microtrap and state-selective push potentials are
applied in order to modify the distance and thus the Coulomb
interaction between ions (see Sec. I1I). We shall first point out a
series of issues that arise when the assumption of spatial homo-
geneity of the ion-driving force is dropped and subsequently
develop a way to correct each of these issues, exploting a range
of ideas, including in a crucial way optimal control methods.

It should be noted from the outset that in the present article,
we analyze the pushing gate without what is called the 7 -pulse
method in Refs. [8,9], where it was shown to dramatically
reduce some types of errors. The 7 -pulse method is a spin-echo
technique and requires the gate to be repeated with the internal
state of the ions flipped. Typically, single-particle operations
like flipping the internal states can be done with high fidelity,
and it is reasonable to expect that eventually, the m-pulse
method will be used. However, internal state control is at least
in principle a separate issue from the pushing gate operation
itself. Keeping the design process modular in spirit, it is
relevant to optimize the gate without this additional trick and
thus pave an alternative road to high fidelities. As will become
clear, we extract quite general noise-reduction methods from
the automated numerical optimization results, and it is an
interesting topic for future research to combine these with
the m-pulse method.

The remainder of the article is organized as follows.
In Sec. II, we introduce the general setting of conditional
dynamics gate schemes, a useful approximation for simulating
such a gate, and a measure of the gate errors. In Sec. III, we
specialize to the pushing gate. The unoptimized performance
of the gate is reported in Sec. IV, and in Sec. V, we show
how this performance can be significantly improved by a
combination of manual changes and numerical optimal control
methods. Finally, we conclude in Sec. VI. Appendix A-C
contains a number of more technical results and derivations.
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II. CONDITIONAL DYNAMICS

The basic idea of the so-called pushing gate is one of
conditional dynamics; that is, we apply potentials depending
on the internal state of the two ions. The internal states
themselves are not changed during the gate, or in the case of
the 7 -pulse method, are changed on a much shorter time scale
than the external dynamics. This means that the analysis of the
problem splits into four separate evolutions for the external
state, one for each of the logical (internal) states 00, 01, 10,
and 11. In the following, these four evolutions will be denoted
as “branches” and will be indexed by g € {00,01,10,11}. The
complete Hamiltonian can be written in the form of a sum of
internal ® external factorized terms

A1) =Y " 1B}l ® HS\0), e
B

and it results in an evolution operator of a similar form:

0ty =Y_ IB)BI ® U5 (1) )
B

Ideally, when r = T at the end of the gate, the UEX should
differ from each other by at most a phase factor multiplying a

common unitary operator U

UNT) =% U 3)

com

so that U™ itself can be factorized:

0Ty = | D 18)Ble™ | @ U, @)
B

The internal evolution is then that of a phase gate, while the
external evolution can in principle be undone using internal-
state-independent potentials.

The requirement (3) is very hard to achieve and would make
the gate completely independent on the initial external state.
However, we can typically assume to have some degree of
control over the initial external state, for example, by cooling
the particles before the gate. This means that Eq. (3) need only
hold when restricted to a subset of the complete Hilbert space,
typically the states of relatively low energy. In Appendix B, we
show how to evaluate the performance of the gate in general.
For now, we note that since only the low-energy part of U 5 (T)
will be important, we can focus on getting a good approxima-
tion for this part when trying to simulate the gate dynamics.

A low initial energy means particles localized near the
potential minimum, and this suggests using a harmonic
approximation to the real potential.! The simplest choice is
to Taylor expand around a fixed point, which is not changed
during the gate operation. The next level of refinement is to
expand around the instantaneous potential minimum. This
works very well if the gate operation is nearly adiabatic so
the particles stay near the (moving) minimum at all times.
However, it may be desirable to make fast and substantial
changes to the potential during the gate, and that may induce

!For a thorough introduction to semiclassical wave packet methods,
see, e.g., Ref. [10].
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pronounced nonadiabatic dynamics. In that case, the harmonic
approximation can still be a good one, provided it is done
around the classical trajectories of the particles. Typically
these trajectories cannot be computed analytically, but for any
moderate number of particles, it is a numerically simple task to
find them. In the following, we will use this method and show
how it leads to a relatively simple characterization of Ug".

A. Harmonic approximation

In this section, we focus on a single branch of the
evolution and thus suppress the  index. Let us denote by
X(¢) the classical trajectory, which is found by solving classical
equations of motion. The time-dependent, second-order Taylor
expansion of the potential V(#,x) around X(¢) reads simply

Voo, %) = VO + AX'VO (1) + 1AXTVE () Ax,  (5)
with Ax = [x — X(¢)] and

vO@w) = vt,x),

W
vl = . 6)
92V
vP@) = t.%).
) 8x58xj( X)

Note that we will still use x as our coordinate; that is, we are
not changing to a coordinate system moving with X(¢). Rather,
we simply use a potential that approximates the real potential
close to X(#). Collecting terms of equal order in x leads to the
alternative form

Veo(t.X) = E(t) — X'F(1) + 3x" K ()X, )
with
E®)=VO0) -xX"0VO@0) + X' )VP0)x(1),
F(1) = =VP(1) + VE0)R(@), (8)
K@) = VP@).

B. Gaussian evolution

The big advantage of choosing a second-order approxima-
tion to the real potential is that this restricts the corresponding
approximate U*(¢) to be Gaussian for all 7. Let us introduce
the compact notation q = (x,p) and define the matrix J by

o I,
J = [—L ol ©
where n is the number of degrees of freedom. Then the usual
canonical commutation relations can be written as

lgi.q;]1 =iJ;;. (10)

With the potential of Eq. (7) and a matrix of particle masses
M = diag(my, ...,m,), the time-dependent Hamiltonian
becomes

Hyo = 3p"M~'D + Voo(1,%). (1)

In Appendix A, we show that such a Hamiltonian leads to an
evolution operator of the form

U(t) = e Dy Wi, (12)
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where D, is a displacement operator and W, is a squeezing
operator:

13)

The scalar ¢, the vector ¢, and the matrix S = exp(Jb) should
satisfy the following equations of motion:

3 1
—¢=E— -F'x,
ar? X

0 0
§c=Jhc+|:F:|, 14)

0
—S=JhS,
at

where the 2n x 2n matrix 4 is defined by

ht) = |:K(§t) M011| ‘

The form of solution (12)—(14) holds for any second-order
Hamiltonian. In the particular case where V, is a Taylor
expansion of a real potential around the classical trajectory
X(?), the equation of motion for ¢ reduces to the exact equation
of motion for q = (X,p) where p is the classical momentum. In
the following, we will therefore write q instead of c. It is then
important to remember that the right-hand sides of Egs. (14)
are in general nonlinear functions of X.

15)

C. Fidelity

We can quantify the performance of the gate by calculating
the average fidelity F,y (see Appendix B) between the obtained
output state and the ideal one when the input state is varied.
One can then separate out three kinds of contributions to the
deviation of F,, from 1 (the perfect gate):

l_FaV=E9+Eq+ES- (16)

The three types of errors each have their physical
interpretation. The most straightforward one pertains to
the sloshing errors Eg, which correspond to a residual
motion of the ions after the gate has been completed and the
microtraps are again at rest. The phase errors Ey are errors
in the gate phase. Finally, the breathing errors Eg are induced
by differences in the harmonic approximation parameters
around the classical trajectory for different internal states.
For example, in the case we consider, when the particles are
pushed closer together, the second-order term in the Coulomb
repulsion becomes larger [cf. Eq. (25)].

In our model, we assume that systematic, local phase errors
can be undone. Then an explicit calculation in Appendix B
shows that the phase errors are given by

Eg = (600 — 601 — 610 + 611 — 1)°, (17)

with 0 = —¢g + Tr[bgy ], where y is the covariance matrix
of the external state (see Sec. B3). Note the inclusion of the
Tr[bgy] terms in the definition of f4: These terms correspond
to phase contributions from average excitation energy in the
traps and are therefore temperature dependent through y . For
our parameters, they are small.
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The sloshing errors are given by
1

Eq= 55

Y @ -0 @ - qp). (18)

a<f

and the breathing errors are

1
Es = E;Tr[(b“ — bp)y (b = bp)y]
1
+ 160 ZTr[(ba —bg)J(by —bp)J].  (19)

a<pf

Here ¢g, ﬁﬁ, and by are defined in Egs. (12) and (13) and
are the variables describing the Gaussian approximation in the
B branch of the evolution. Again, y introduces temperature
dependence.

III. THE PUSHING GATE

Let us now focus on the particular case of the pushing gate.
Here we have two ions, each in a separate microtrap.2 To fur-
ther simplify the discussion, we concentrate on just one spatial
dimension; that is, there are two degrees of freedom, n = 2.
The ions are assumed to be of identical mass, m| = my, = m,
and thus M = mI,. The potential energy consists of a micro-
trap for each ion, time- and internal state—dependent pushing
potentials, and of the Coulomb interaction. The pushing poten-
tials can be realized as optical dipole potentials generated by
focused laser beams. The time dependence of these potentials
is most easily achieved by controlling the intensity of the laser
and the state selectivity by polarization selection rules [9]. We
assume that the form for the internal state labeled by g is

&2

1
VP@tx)= Y ~mo’x} +
gt 2 drey |d

+§2f, (’)ao[( Vit x| 20)

+ X2 — x1]

The trapping potentials are assumed to be perfectly
harmonic. The state-dependent pushing amplitudes fl.(ﬂ )
are such that the ions are only pushed if they are in
the internal state 1, fi(ﬂ ) (t) =8p,,1 f(t). Note that the
(—1)" factor means that ion 1 is pushed to the left
and ion 2 to the right. Nonlinear contributions to the
pushing potentials are included via the constant G.
The harmonic oscillator ground-state size is ay = /h/mo.
The two coordinates x; and x, are taken to have origins in the
respective trap centers, a distance d apart. Experimentally, the
parameters in Eq. (20) can be varied quite a lot (see, e.g., [9]).
Trap distances d from 100 pum all the way down to 1 um are
within technological reach. The trap frequency w can be chosen
in the range 27 x (10%*~107) Hz, which for, for example, Ca*
ions will mean an oscillator length ay from 150 down to 5 nm.

It should be noted that the use of optical dipole potentials
to generate the state-selective pushing forces will in general

>The gate can also be implemented in a string of ions (see [8])
and treated by the method described in this article, but we focus
exclusively on the two-ion case.
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introduce large single-qubit phases because of ac Stark shifts.
This is not a problem as such, but it means that even small fluc-
tuations in laser intensities will lead to loss of gate fidelity. For
the particular case of the pushing gate, the ac Stark shifts can be
balanced against the Coulomb energy as discussed in Ref. [9].
Obviously ac Stark shifts are common to many gate proposals
that use optical potentials. An experimentally demanding but
quite general solution is to compensate the shifts along the
lines of Refs. [11,12]. In this article, we focus on errors that
are more directly related to the motion of the ions and assume
that the push potentials are effectively nonfluctuating.

A. Dimensionless Hamiltonian

The relative strength of the Coulomb interaction to the
trapping potentials turns out to be conveniently quantified by

&2 a2 &2

weod 0 meod
=——>== , (21

mw*d d* ho

which is the ratio of the energy scale of the Coulomb and trap
potential energies at the equilibrium positions of the ions. In
Ref. [9], it was found that € < 1 is the most promising regime.
In oscillator units, the Hamiltonian for the branch labeled by
B reads

[%

N 1
Ao = 3 5 [ +57]+

i=1,2

1)

€. w
4114 % (% — %)
= > 1P &+ 6=} (22)

i=1,2

B. Harmonic approximation

When Egs. (8) are specialized to the pushing gate, we get
the following:

3
1 a 6 _ 5P

By = L% 2

ET(@) {l+a0[(ﬁ) ]| (23)

4 d
d 1+3ao[—(/3) (1/3)]

1
FP0 = -1 70 F ; ,
{1 + ao[ —(B) x(lﬁ)]}3
(24)
1 1
KP0) =142P1)G + <e ;
2 1+ 9= -
(25)
KO = K0 = —3¢ 1 -0

o [— — 3
R )

When these expressions are inserted into Egs. (14) and (15),
we are ready to simulate the gate.

IV. RESULTS OF SIMULATION

A. Choice of parameters

Even with the simplifications we have introduced, there
are still a lot of parameters in the problem. The optimal
working point will always be dependent on experimental
considerations beyond the simplified model treated here.
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For a discussion of parameters and design decisions, see
Ref. [9]. For concreteness, we have chosen to focus on a
limited set of parameters. We first assume the individual ion
traps to be very well separated and let ap/d = 0.001 in all
calculations. Likewise, we assume a reasonably low value for
€ of 0.04. Such parameters would result from, for example,
40Ca ions placed in microtraps with trapping frequencies of
w ~ 2w x 5 MHz and separated by a distance of ~7 um. For
the traveling wave configuration with beam waist w considered
in Ref. [9], G = 4(ap/w)(w/2x9 — 2x9/w), where xq is the
initial position of the ion relative to the beam center. For
realistic focusing of the push beam, w ~ 1 um, this suggests
variation of the nonlinearity coefficient G between 0 and
3 x 1072. As the initial temporal shape of the push pulse, we
choose a Gaussian f(t) = £ exp(—t2/7?), where the amplitude
& should be chosen to give a gate phase of 7. A simple estimate
(for G = 0) suggests that we choose [8]

) b4
&= Jr/8 eJT¥ €2 wT’
The temporal width of the pulse, , should be within an order
of magnitude from the trap period if we want a fast gate. We
will mainly look at t in the range 1-10 trap periods, which
for the parameters quoted earlier results a maximum excursion
because of the push in the range from 12a, down to 3ap.

27)

B. Phase errors

The choice of push amplitude expressed by Eq. (27) is not
optimal. This can be seen in Fig. 1, where we plot Ey as a
function of G. Even for G = 0, the gate phase is not exactly
7. For wt = 3.5, we see that a nonzero G can improve the
gate phase. This is not surprising, but it is also not very useful,
as we shall see later, that Ey is in general easy to reduce. In
Fig. 1, results for three different temperatures are plotted, but
the dependence on temperature is completely negligible.

0.004 0.006 0.008 0.01

G

0 0.002

FIG. 1. (Color online) Phase errors with nonuniform pushing
forces. The physical parameters are € = 0.04, ao/d = 0.001, and
ot = 3.5 (black), 5.5 (red), and 7.5 (blue). Results for temperatures
of T = (0.125,1, 8) x hw/ kg are plotted for each value of T and are
indistinguishable from each other.
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L wr=35

0 0.005 0.01 0.015 0.02 0.025 0.03
G

FIG. 2. (Color online) Sloshing errors with nonuniform pushing
forces. The physical parameters are € = 0.04, ao/d = 0.001, and
wt = 3.5 (black), 5.5 (red), and 7.5 (blue). We plot Eg as a function
of G. As explained in the text, there exist nonzero values of G where
the sloshing is strongly suppressed. Results for temperatures of 7 =
(0.125, 1, 8) x hw/ kg are plotted as dashed, full, and dotted lines,
respectively.

C. Sloshing errors

Let us now turn to the errors described by the Eg term in
Eq. (C8), the sloshing errors. Figure 2 shows how these errors
are strongly dependent on G, the strength of the non-linearity
of the pushing potential. A series of minima of Eg as a function
G can be seen. The optimal values of G depend on the chosen
duration of the pulse, . Each minimum is associated with the
ions performing an integer number of nonadiabatic oscillations
during the push pulse. This is illustrated in Fig. 3, where the
trajectory of ion 1 with respect to its trap minimum is plotted
for values of G that are below, at, and above the one that leads
to the lowest Eg.

In contrast to Eg, Eg depends noticeably on whether T
is (0.125,1,8) x hw/ kg. Higher temperatures always increase
the sloshing errors, and for kgT /hiw > 1, we find that Eg
scales as T since y does [see Egs. (B21) and (B22)].

Curves for three different values of t are plotted in Fig. 2,
and it is immediately clear that one can dramatically decrease
sloshing errors by making the gate slower and thus more
adiabatic. The suppression of Eg is exponential, and this is
thus in general an efficient strategy.

D. Breathing errors

We now turn to the Eg term of Eq. (16). These breathing er-
rors come from the different changes in the effective quadratic
Hamiltonian for the different branches of the evolution. In
Fig. 4, we plot Eg for different values of G and t and for
different temperatures of the external motion. Results for
temperatures of 7 = (0.125,1,8) x hw/ kg are shown, and it
is first of all clear that Eg depends strongly on 7. We also see
that Ey is nearly proportional to G*t. That larger G leads to
larger errors is not surprising but that larger t does is rather
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0.4

03¢

Pcl,1 — Pmin,1

—0.2¢

-03r

-0.4 -0.2 0 0.2

Lel,l — -/I;min,l

FIG. 3. (Color online) Phase-space trajectories forion 1 for a push
duration of wt = 5.5. The coordinates are relative to the potential
minimum in which ion 1 is trapped. Perfect adiabatic evolution
would correspond to the ion simply following this minimum, and
thus the trajectory would be the single point (0,0) in this plot.
Since the push is not infinitely slow, the ion will first lag behind
the moving minimum and then oscillate in the moving potential.
When the potential minimum again approaches its original position,
the ion may happen to have just the right position and speed in
order to end up at rest. Whether this is the case depends (for fixed
push pulse) on G: The higher G is, the more the confinement is
increased during the push. The thick line corresponds to G = 0.002,
which is nearly optimal with respect to returning the ion to rest.
The thin lines correspond to G = 0, 0.001, 0.003, and 0.004. The
lowest G gives the outermost curve over the main part of the loop in
the figure.

counterintuitive: Larger T means a more smooth and thus more
adiabatic push. It also means a smaller amplitude for the push
since the ions will have more time to pick up the gate phase
[cf. Eq. (27)]. Let us discuss the explanation for this behavior
in more detail.

For exponential suppression of errors to be valid, the
evolution should be well into the adiabatic regime. At first
sight, the relevant time scale is ™!, the oscillation period of the
microtraps. Since the traps are assumed to be far apart (ap <
d), the parameter € is small and the normal modes of the system
have periods shifted little from this value: The CM mode is in
fact unaffected by the Coulomb interaction and has frequency
w, while the relative motion mode oscillates at /1 + € w. With
ot > 1, one should therefore not be able to put excitations
into either of these modes. However, it is perfectly possible to
transfer excitations between the modes as the adiabatic time
scale for this process is (v/1 + € @ — w)~! ~ e 'w~!/2. Such
a transfer will be induced by mixing of the CM and relative
motion during the gate operation. A linear push potential will
not mix the two, but a nonlinear one will.

Another effect to remember is that when the instantaneous
oscillation frequencies change during the push, the external
motion will pick up different phases depending on the number
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0.004  0.006 0.008 0.01

G

0 0.002

FIG. 4. (Color online) Breathing errors with nonuniform pushing
forces. The physical parameters are € = 0.04, ay/d = 0.001, and
ot = 3.5 (black), 5.5 (red), and 7.5 (blue). Results for temperatures
of T =(0.125,1,8) x hw/ kg are plotted as dashed, full, and dotted
lines, respectively. For all three temperatures, larger 7 leads to
larger Es. Ej is increasing approximately linearly with G27; i.e.,
for fixed G, Eg will be proportional to 7, the pulse duration!
This is very different from the behavior of Eg previously, which
is rapidly decreased by increasing t and thereby making the push
more adiabatic.

of excitation quanta. Like the transfer of excitations, this effect,
of course, disappears if the system is cooled to the ground state.
A perturbative calculation to lowest order in ag/d, G, and €
gives the result

1 |:1 N ( 2w?7? ) i|
X _— €X —
sinh? (he/ 2k T) P 8

2l —— 42 —2w%t?)}. 2
[sinh2 (o) 2kaT) ]eXp( @t )} (28)

The prefactor gives the scaling behavior both in the naive
nonadiabatic limit wt < 1 and in the more relevant interme-

diate region 1 < wt < €L

GZ
Es o £2G20*t? o —2~. (29)
€

In fact, even in the adiabatic limit ewt > 1, this scaling holds
true since one term in Eq. (28) does not contain an exponential
damping factor with 2. This unsuppressed term stems from
the previously mentioned effect of time-varying instantaneous
mode frequencies.

From Eq. (28), we can also understand the strong tempera-
ture dependence of the breathing errors. For kg T /hw > 1, the
breathing errors will scale approximately like 72. However,
as seen in Fig. 4, high temperatures require very low values
for G. For low temperatures, note that one term in Eq. (28) is
not suppressed even at 7 = 0. This term stems from changes
in the ground-state widths of the two instantaneous normal
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modes and is adiabatically suppressed when wt > 1. To find
the dominant term for very low temperatures and short pulses,
one should do a higher order perturbative calculation.

V. OPTIMIZING GATE PERFORMANCE

From the simulations in Sec. IV, we learn that without
improvement, high fidelities require either very low values of
G or cooling of the external motion almost to the ground state.
In this section, we shall see how a better performance can be
achieved by modifying the temporal shape of the push pulses.

A. Correcting the phase

Our first step will be to correct the gate phase by a simple
scaling of the push pulse shape. From Fig. 1, we know
that typical errors can be well above the percentage level.
Our strategy is based on the observation that the simplest
estimate of the gate phase suggests that it scales as the square
of the push amplitude, £. [A general gate phase replaces the
7 in the numerator of Eq. (27).] We therefore divide £ by the
square root of the ratio of the observed gate phase and the ideal
gate phase () and repeat the propagation. In Fig. 5, we show
the results of applying this algorithm to the wt = 7.5 curves
of Fig. 1. As can be seen, Ey is rapidly reduced and can be
brought below, for example, 107° in a very modest number of
iterations. For simplicity, we ignore the temperature-dependent
Tr[by] contribution to Ey when rescaling the pulse. This is the
reason for the kg7 = 8hw (dotted curves) departing from the
kgT = 0.125hw and kg T = 1hw curves, especially at low G.

mization
10 optm’nmtlo

10° //

T -

0.004  0.006 0.008 0.01

G

0 0.002

FIG. 5. (Color online) Improving E, by iteratively adjusting the
push amplitude &. The pulse duration is wt = 7.5 and the other
parameters are as in the previous figures. Four sets of curves are
shown, each with results for 7 = 0.125 x hiw/ kg (dashed line), 1 x
hw/kp (solid line), and 8 x hiw/ kg (dotted line). The uppermost set
(looks like a single curve) is for the unoptimized pulse amplitude and
is identical to the wt = 7.5 curves of Fig. 1. The progressively lower
sets are for one and two iterations of the amplitude scaling described
in the text. Note that as the error gets smaller, temperature begins
to have an effect. This simple adjustment is capable of reducing E,
below 107 for all the considered G < 0.01.
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B. Fast gate: Eliminating sloshing in X

A big advantage of the simple harmonic approximation
is that it becomes feasible to solve the equations of motion
many times with different temporal shapes of f(¢) in order
to optimize the performance of the gate. Rather than simple
trial and error, we will apply the global control algorithm of
Krotov, which is guaranteed to improve the performance at
each iteration [13—15]. The relevant equations for our case are
given in Appendix C.

In general, it is desirable to complete the gate in as short a
time as possible. This will limit many undesired effects and will
ultimately enable faster quantum computations. A fast gate,
however, means that the pushing force will deliver a rather
abrupt impulse. This can lead to excitations of the external
motion being left after the completion of the gate, limiting the
fidelity. In this section, we show how such sloshing effects can
be avoided by using optimal control.

We start from an initial Gaussian temporal shape of the
push. The overall amplitude is first optimized iteratively to
get the desired gate phase, as described earlier. We then run
the Krotov algorithm to get a better shape of the pulse. We
assume a nonuniform pushing force, G = 2 x 1073, The result
is plotted in Fig. 6. As can be seen, the influence of sloshing
motion can be decreased by a couple orders of magnitude in a
modest number of iterations.

To investigate the physical mechanism behind the reduc-
tion of the sloshing error, we plot in Fig. 7 (bottom) the
difference between the optimized pulse f,p:(¢) and the original
Gaussian pulse fy(t) = £ exp(—t?/t?). This difference looks
a lot like a simple cosine wave with a period close to
2rw~! multiplied by a Gaussian of the same width as
fo. Thus the optimized pulse is approximately of the form

\\ .
- \\ s
102' \\\
wr=35 == -
10"
> wT =5.5
gt~ ——————————
MNNC e
-3 NNG e
10 ° ¢ \\\
wr =17.5
107"

0 5 10 15 20 25 30
iterations

FIG. 6. (Color online) Optimization of pulse shape to eliminate
sloshing. We plot Eg, the contribution of sloshing to the total infidelity,
as a function of the number of Krotov iterations performed. The
parameters in this example are € = 0.04, ap/d = 0.001, and G =
2 x 107, Each curve corresponds to a separate value of the pulse
duration, wt = (3.5,5.5,7.5), with larger v always giving a lower
value of &.
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FIG. 7. (Color online) (top) Pulse shape both before (full line)
and after (dashed line) Krotov optimization. Curves for three different
pulse durations are shown: wt = (3.5,5.5,7.5); other parameters are
as in Fig. 6. Only for the shortest pulse is the optimized curve
distinguishable from the original Gaussian. (bottom) Difference
between optimized pulse and initial Gaussian pulse (after adjusting
overall amplitude to reduce phase errors). The left plot is for
G = 0, and the right plot is for G = 2 x 1073, Each curve has been
normalized to the prediction of a G = 0 perturbative calculation,
which is seen to describe well the G = 0 case as all curves have a
maximal excursion of approximately —1, while the G # 0 case is
only qualitatively similar.

Jopt(t) ~ fo(t) + Acos(wt) exp(—t*/T?). An approximative
calculation of the sloshing excitation for the simplest G = 0
case reveals that for such a pulse, the nonresonant contribution
of the bare Gaussian pulse is canceled by a resonant contri-
bution from the cosine-modulated pulse. Since the resonant
response is much stronger, only a small, negative A is needed
for this cancellation. More precisely, the optimal A from
first-order pertubation theory is given by —1& exp(—w?1%/4),
and Fig. 7 shows that this is also what the Krotov algorithm
converges to for G = 0. The strategy of the Krotov algorithm
in this case seems therefore to be well understood. For G # 0,
it is more difficult to predict the value of A, but nonetheless,
the Krotov algorithm seems to be highly efficient.

C. Minimizing breathing errors

We now know that phase errors and sloshing errors can
be controlled, and we turn to the breathing errors of Fig. 4.
Without optimization, these errors put rather stringent limits
on the parameters. In order to keep Eg at an acceptable level,
either very low temperature or very small G is required.
For very low temperature, kg7 = 0.125%w, we need just
G <1072 to get Eg below 107, but if we assume a more
modest cooling to kg7 = lhw, the same error level requires
G <2 x 107*. Note that even at G =0, breathing errors
persist, and that for kg7 = 8hw, they never get below the
1073 level. These errors stem from the high-order terms in the
Coulomb potential, which have been ignored in Eq. (28).
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As described in Sec. IV D, breathing errors cannot be
eliminated simply by increasing the push duration t: First
of all, the adiabatic time scale is ~ e’la)’l/Z, which will
mean a slow gate, and second, even in that limit, errors from
the change in normal mode frequencies remain and even
increase [compare the subsequent discussion and Eq. (29)].
It turns out that a simple application of the Krotov algorithm
is also not very efficient in reducing the breathing errors. A
partial explanation for this can be found from the perturbative
calculation leading to Eq. (28) and the previous analysis of
sloshing error reduction: Since the adiabatic time scale for
the breathing errors is long, the Gaussian pulses we consider
are not adiabatic with respect to breathing errors, and thus
the admixture of a small resonant component in the push
pulse will not be enough to get the cancellation we found in
the case of sloshing errors. In fact, the amplitude of the cosine
modulation should be comparable to the total amplitude for
the relatively short pulses considered. There is nothing to be
gained from a small-amplitude modulation, and thus the linear
version of the Krotov algorithm we apply (see Appendix C)
will not work.

In fact, in order to cancel out the contribution to the
breathing errors because of mode frequency changes, sign
changes in the push amplitudes are required during the pulse.
This is beyond the simplest physical implementations, where
the push amplitude is proportional to some laser intensity. In
principle, it is possible to play with detunings to implement
the sign changes, and this will in fact give many of the
advantages of the m-pulse method (see Ref. [9]). Allowing

—2
10 © rx
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FIG. 8. (Color online) Combined strategy for reducing infidelity
fore = 0.04 and G = 2 x 1073. The three contributions E,, E,, and
E are labeled by triangles, circles, and squares, respectively. Their
sum is labeled by crosses. The leftmost column contains the results
for a simple Gaussian with wt = 7.5. The breathing errors dominate.
In the next column, breathing errors have been reduced (but sloshing
increased) by using a cosine-modulated pulse based on Eq. (28). The
overall amplitude is then iteratively optimized to reduce phase errors,
asdescribed in Sec. V A. As can be seen, three iterations are more than
sufficient to render £, completely insignificant. The dominating error
type is now sloshing, and in the third column, the Krotov algorithm
is applied to finally reduce the total infidelity below 10~*.
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negative push amplitudes and putting by hand an optimized
cos(ewt /2) -modulated contribution, we have been able to, for
example, reduce Eg below 10~®forwr =7.5,G =2 x 1073,
and T =1 x hw/kg. Compared to the results reported in
Fig. 4, this is a reduction by more than 3 orders of magnitude.
Unfortunately, the strongly modified pulse now gives rise to
large sloshing errors. To obtain an overall safisfactory fidelity,
we use a combined strategy: We first put the breathing error
reduction by hand, then iteratively reduce phase errors, and
finally use the Krotov algorithm to reduce the sloshing errors.
In Fig. 8, we show results of this strategy starting from
ot =17.5.

VI. CONCLUSION

In this article, we have shown how a time-dependent,
quadratic approximation to the Hamiltonian can be a useful
tool when analyzing quantum gates based on conditional
external dynamics. The resulting equations are much more
manageable than the original two-body Schrédinger equations.
This is especially true if one includes more spatial dimensions
than the one considered here: A full time-dependent, three-
dimensional, two-body wav function calculation is an ex-
tremely demanding numerical task, whereas the corresponding
quadratic approximation will be much more manageable.

We used the developed method to show how to improve on
a naive design of the pushing gate. This was done including
a nonuniform contribution to the pushing force. An important
lesson of our analysis and simulations is to pay attention
to changes in the symmetry of the Hamiltonian during the
gate operation. In the present case, a nonlinear push potential
invalidates the separation of the dynamics into CM and relative
motion. This opens up another type of nonadiabaticity, namely,
transfer of excitations between the two normal modes. The
adiabaticity parameter for this type of error is ewt, and for
small e, adiabaticity will require gate times much larger
than the charateristic time of the microtraps. An efficient
countermeasure is to decrease temperature so that there are
in fact no excitations to transfer between modes. Failing that,
one should increase € as much as possible and, somewhat
counterintuitively, do the gate as fast possible. Sloshing errors
put alower limit on the gate time, but as we show, an optimized
choice of the temporal shape of the push can dramatically
reduce this problem.

By analyzing the way that the Krotov optimized pulse
reduces sloshing errors, we identified the basic mechanism
as a destructive interference between the nonresonant, nona-
diabatic contribution from the finite push pulse duration and
a resonant contribution from a small-amplitude superposed
oscillation of the push force. Generalizing this idea to deal
with breathing errors, we were able to reduce them by several
orders of magnitude. However, since breathing errors are
not significantly adiabatically suppressed for the considered
pulse durations, the destructive interference required sign
changes in the push amplitude, which introduce experimental
complications. The suppression of breathing errors also came
at the price of increased sloshing errors, but we showed that
the Krotov algorithm once again was able to improve the pulse
shape.
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One may ask to what extent the final pulse shape is optimal
for the given overall gate time. This is an interesting question
in general, and in this study, we saw examples both where
the Krotov algorithm seemed to exhaust the potential in its
strategy (the G = 0 case in Fig. 7) and where it was not
able to find an optimization. In the latter case, we could
improve the pulse by hand (eliminate the breathing errors by
destructive interference). The problem of optimality is related
to the question of a quantum speed limit (QSL) [16], and this
connection has been studied in Ref. [17]. Note, however, that
in our case, the Hamiltonian is time dependent, and what we
want is in fact to leave the external motion unaffected after
the pulse. It would be interesting to investigate such a general
adiabaticity problem along the same lines as the work on the
QSL.
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APPENDIX A: EVOLUTION UNDER QUADRATIC
HAMILTONIAN

In this appendix, we show that a second-order Hamiltonian
leads to an evolution operator that can be written like U (1)
[Eq. (12)]. For alternative parametrizations, see Refs. [18,19].
We will do a direct calculation showing that U (¢) fulfills the
Schrodinger equation:

(A1)

The demanding part of the the calculation involves differentiat-
ing expontials of time-dependent operators. A useful formula
can be found in, for example, Ref. [20] and involves integration
over an auxillary variable 7. It results in

N Y N
ZEDCZ_/(; D,,CcTJqu]canc

1
- / ¢TJ @ — ne) dn D
0

. 1 N
=¢ly <q — §c> D,
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for the squeezing operator. It is now easy to show that the
equations of motion (14) for ¢, ¢, and S = exp(Jb) lead to
U = exp(—i¢)D.W,, fulfilling Eq. (A1).3

APPENDIX B: FIDELITY FOR GAUSSIAN EVOLUTIONS

In this section, we derive expressions for the fidelity
as a function of the variables used to characterize the
evolution in the harmonic approximation, ¢pg, ﬁﬁ, and Sg,
B =00,01,10,11.

If we assume that the initial state of the system is a product
of an internal state density matrix and an external state density
matrix, p ® o, we get the following state for the internal
degrees of freedom after the application of U'' of Eq. (2):

o' = Tre[U*p @ 0(U')]

= 1) (Bl [0 o Rlus. (B1)
of

Here o denotes the elementwise matrix product (the Hadamard
product) and R is the matrix given by

[Rlus = T 020 (05)']. (B2)

It is easy to see that R is Hermitian and that all its diagonal
elements are 1. In particular, TrR = 4. Slightly less obvious is
that R is positive semidefinite: Let ¢ € C*. Then

¢'Rc = Tr“ Zcf;U;X}J{ Zcﬂ(ﬁgx)f}]
= ZC;;UEX]T{ Yalsle]=0. ®3

where we have used the cyclic property of the trace and the fact
that the trace of a product of positive semidefinite operators is
nonnegative.

The elementwise product form in Eq. (B1) is perhaps not
the most illuminating. If we diagonalize R =), wy, w,ﬁ, we
get instead a Krauss operator sum form

4
=) KoK} (B4)
h=1

with K; = diag(wp,).

There are different ways to define the fidelity of the gate.
The one used in Refs. [8,9] is the minimum fidelity of the
obtained final state with respect to the wanted final state when
the input state is varied. This means that

Fin = min(y|Ug o}, Uol ), (BS)

3There are two caveats regarding the equation of motion for S. First
of all, the translation from S to b and thus W;, is not one to one.
Second, the equation of motion for S cannot necessarily be fulfilled
by an S in the form exp(Jb) with a differentiable b(¢). Both problems
are, however, eliminated when the Ss in the four branches never
deviate much from each other.

012339-9



POULSEN, SKLARZ, TANNOR, AND CALARCO

with py, = [¥) (| and U, being the gate operator we aim for.
In the case of a phase gate, Uy is diagonal in the logical state
basis:

Oo=)_"1B)(Ble™, (B6)
B
and we get the simpler minimization problem
Fnin = min p'Rp. (B7)
pi

where the p € Ri and 3" p; = 1. The matrix R = U()RU(;r
is Hermitian, but since p is confined to be real, only its real
symmetric part contributes. The minimization in Eq. (B7) is a
so-called quadratic programming problem, and very efficient
numerical methods for its solution exist. Given R, it is
therefore simple to calculate Fi,;, on the computer. However, a
more direct evaluation is possible if fidelity is instead defined
as an average over input states as

Fu = fs WU, ol av. (B8)

Here $?"~! denotes the normalized states (unit sphere) in C”",
and the volume element dV is such that f g1 dV = 1. For
F,y, a compact formula exists [21], and using it in the present
case leads to

D | TR+ > R |- (B9)

ap

av

or when using the properties of R,

1 — Fpy = 1 > [1 — Re(Rap)]. (B10)

10

a<p

1. General small errors

Typically, we will be mostly interested in situations where
the four logical states lead to almost identical evolutions for
the external states. It is then useful to write

Ug* = exp(i Dp)US)

com

= exp(i(Dg)) exp(i ADp)US: (B11)

where (D) = Tr[DU oo (U* Y land AD = D — (D). Cal-

L com com n
culating R to second order in the A Ds, we get

Ryp = exp(iAG,){1 — 3(AD] + ADj — 2AD, ADy)}
(B12)

This form is useful as it separates the infidelity into systematic
phase errors [the exp(£i A6, ) factors] and decoherence (factor
in curly brackets). The phase errors Afg = (Dﬂ) — 6 can be
made small by tuning the average of laser powers, and this can
usually be done very well. The challenge will therefore most
often be to suppress the fluctuations, that is, the terms in curly
brackets in Eq. (B12).
Assuming also the A#s to be small, Eq. (B10) becomes

x exp(—iAbg).

1 2 a N \2
1 —Fy = 2—O;ﬁ{mea — MG + (AD, — ADp)?)}.

(B13)
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At first sight, this form might seem dubious since only
differences in the Afs and A Ds enter. However, one should
remember that any common evolution on the four branches
can be absorbed into U in Eq. (B11). This emphasizes that
for the implementation of a single gate on the logical state,
the external motion must not necessarily be returned to its
initial state as long as the final state is common to all logical
input states. Typically, the further requirement that energy not
be pumped into the external degrees of freedom by repeated
application of the gate must be made. In the particular case
of the pushing gate, this requirement is in fact already hidden
in Eq. (B13) since the § = 00 branch contains no pushing.
In other cases, one could apply cooling to the external state
between gate operations.

2. The nonlocal part of the phase

We are seeking to implement the phase gate (B6). In many
cases, the gs are not so important individually since single-
particle operations are easy to perform and only the truely
nonlocal phase is interesting. Assuming that perfect single-
particle phase changes can be implemented on average, it is
straightforward to show that one should replace ), _,[A6, —

A6;]? by

a<f

[Abog — A6y — Abig + Aby T (B14)
in Eq. (B13).

This simplified view of single-particle phase changes
should of course be revisited in a more complete analysis of any
given proposal for quantum computing. In the present work,
we use the replacement (B 14) throughout, but let us emphasize
that fluctuations in the single-particle phase rotations are more
naturally incorporated in the AD terms of Eq. (B13) than in
the A6 terms: One simply models the fluctations as a
consequence of some fluctuating parameter which can be
included in 0.

3. The Gaussian case

For Gaussian evolutions like Eq. (12) and a Gaussian (e.g.,
thermal) external state o with covariance matrix

vij = 3aiq; +q;q) — (ai){q))

= ReTr[g;q;0] — Tr[q;0]Tr[g;0] (B15)
and vanishing means
(q:) = Trgio] =0, (B16)
one gets phase contributions
(Dg) = —¢pp — Trlbpy] (B17)
and decoherence terms
(ADy — ADg)*) = (ca —cp) Ty I (co — cp)
+ 3Ttl(by — bp)y (by — bp)y]
+ 3 Tt[(by — bp)J (e — bp)J]1.  (B1B)
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In general, for a harmonic oscillator in thermal equilibrium at
temperature 7', the covariance matrix is given by

_L 1 o (B19)
Ythermal = 2 tanh “hao_ 0 hmo s

2ksT
where kp is the Boltzmann constant. In the present case,
the CM and the relative motion are separately in thermal
equilibrium, and for the corresponding dimensionless position
and momentum operators [xcm = (X1 + x2)/2, etc.], we get

Y = YoM 2] Vrels (BZO)

with

2
1 1 Ese 0 :|
(I+e€)
Yrel = 3 7 |: 12 (B21)
(14+6)!/%h (I+€)
2 tanh e 0 g

and

11 10
= . B22
vem Ztanh% |:0 2:| (B22)

In the limit € < 1, we have approximately y o I, if we use
the set of individual ion operators (x1,x2, p1, p2)-

APPENDIX C: THE KROTOV ALGORITHM

Optimizing the temporal shape of the push pulse is done
using the Krotov algorithm [13]. For an introduction to the
method, see, for example, Ref. [14].

1. Aucxillary variables

The key ingredient in this approach is a function
q>(t,{¢ﬂ,qﬂ,s‘3}ﬁ:00!01.1()y11) which allows us to translate the
global goal of improving the final U'°(T') to a local problem
of choosing a better f(¢) for each ¢t. Constructing & is in
general very difficult, but it is relatively simple to get a linear
approximation to it. The coefficients in this approximation
will constitute a set of auxillary variables. For each branch,
the equations of motion for the auxillary variables ¢~>,3, g, and
S s are determined by the requirement that they are conjugate
to the physical variables ¢g, qg, and Sg, respectively.

Let us focus on a single branch and suppres the § index like
in Sec. II A. We then need to construct H(t;qb,ﬁ,S;dB,(],S')
such that Egs. (14) can be written

0 0

—¢ = —=H, C1
8t¢ 8¢H (CD
9 - = 9 H (C2)
i T ag "

0 0

—S8;; = —H. C3
at J E)Sin ( )

This leads simply to

H(t;¢.0.5:6.4.5) = p[E@.X) — 3F (1,%)]
+q"[Jh(t.%)q — JF(1.3)]
+ Tr[STTh(z,%)S]. (C4)
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Then the equations of motion for the auxillary variables
become

J -~ 0
Ed) = _%H =0, (CS5)
9
Eq = —VqH, (C6)
0 ~ .
5 = VsH = h(t.DJS. 7

The equation of motion for { is rather involved since H
depends on X in a complicated manner through h, F, and
E. It can be rewritten as two coupled time-dependent, forced
harmonic oscillators. Note, on the other hand, that qB is
time independent and that J§ solves the same equation
as S.

2. Objective function

Our ultimate goal is to improve the fidelity of the gate.
However, it is somewhat impractical to apply this as the
objective in the Krotov algorithm: Calculating the fidelity is
only simple for small errors, and in general, it depends on,
for example, the temperature of the external motion. Instead
we shall work with a simpler function of the variables ¢, q,
and S for the four branches. The reduction of this objective
function should tend to increase the fidelity of the gate. On the
basis of the fact that in the pushing gate, the branch g = 00
is not subject to any time-dependent forces, we choose the
following:

T {bs.95,Sp}p=00.01.10.11)
=Tp+ Ty +Ts

1
= 5[4500 — o1 — P10 + 11 — 71

1
+ 7 Xﬂ:[(xﬂ —X00)® + (Pg — Poo)’]

1
+5 ;wsﬁ — S00) (Sp — So0)]. (CB)

The term with ¢s aims to ensure the correct phase in the
phase gate, while the other terms aim at identical evolution for
the external motion in the four branches. In the limit € < 1,
Eq. (B13) formally justifies the use of our chosen objective
function, given the extra proviso that we are only interested in
the nonlocal part of the phase.

3. Terminal conditions

The objective function supplements the auxillary-variable
equations of motion (C5)—(C7) with the following terminal
conditions, that is, boundary conditions att = T':

0
3¢f3 T

— (=1 (oo — po1 — p10 + d11 — )7, (C9)

Gp(T)
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Xs(T) = —Vz,JIr

—(3X00 — Xo1 — X10 — X , =00,
_ (_ 00 - o1 —Xi0 —X1)lr, B (C10)
—(Xg — Xo0)I7> B # 00,
Pp(T) = =Vp,Jlr
—(3PBoy — Bor — Pro —Bi)lr. B = 00,
B (_Poo _P01 Pio —Pilr. B 1)
_(pﬁ - pO())'Tv ﬁ ?é 00,
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Sp(T) = —Vs, 1
)=S0 = So1 = S10 = Si)lr. B =00,

— (C12)
—(Sg — Soo)lr, B # 00,

where (—1)# is +1 for 8 = 00 and 11 and —1 for 8 = 01 and

10. These equations express the values of the auxillary varibles

attime ¢t = T in terms of the physical variables also att = T

and give the input to the backward propagation of the auxillary

variables (cf. Ref. [13]).
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