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Not all pure entangled states are useful for sub-shot-noise interferometry
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We investigate the connection between the shot-noise limit in linear interferometers and particle entanglement.
In particular, we ask whether sub-shot-noise sensitivity can be reached with all pure entangled input states of N

particles if they can be optimized with local operations. Results on the optimal local transformations allow us
to show that for N = 2 all pure entangled states can be made useful for sub-shot-noise interferometry while for
N > 2 this is not the case. We completely classify the useful entangled states available in a bosonic two-mode
interferometer. We apply our results to several states, in particular to multiparticle singlet states and to cluster
states. The latter turn out to be practically useless for sub-shot-noise interferometry. Our results are based on the
Cramer-Rao bound and the Fisher information.
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I. INTRODUCTION

The field of quantum interferometry has received much
attention recently due to the prospect of enabling phase sensi-
tivities below the shot noise, with applications in various fields
such as quantum frequency standards, quantum lithography,
quantum positioning and clock synchronization, and quantum
imaging [1]. Current research on linear interferometers is
directed at the search for optimal input states and output
measurements [2–12], adaptive phase measurement schemes
[13–16], and the influence of particle losses [17–19]. Several
proof-of-principle experiments reaching a sub-shot-noise sen-
sitivity have been performed, for a fixed number of particles
with photons [20–24] and ions [25], while squeezed states for
interferometry with a nonfixed number of particles have been
prepared with Bose-Einstein condensates [26–30], atoms at
room temperature [31], and light [32,33]. Also, schemes for
nonlinear interferometers are under investigation [34–38].

In this article, we are interested in the connection between
particle entanglement and phase estimation for linear inter-
ferometers with input states of a fixed number of particles
N . It has been shown recently that for a linear interferometer
sequence and arbitrary mixed separable input states the phase
sensitivity cannot surpass the shot-noise limit [39–41]:

�θSN = 1√
N

. (1)

Hence, if a quantum state allows for a phase estimation scheme
with a sub-shot-noise (SSN) phase uncertainty, it is necessarily
entangled. We will refer to such states as useful for SSN
interferometry or simply as useful.

In particular, we consider the question of whether all
pure entangled states of a fixed particle number N can be
made useful if arbitrary local operations can be applied on
them before they enter the interferometer. We allow for
such operations as they correspond to a local change of
basis, and hence cannot create entanglement. The related
problem of finding the local transformation optimizing the
interferometric performance of a given input state is of interest
for experimental applications, where typically such operations

are relatively easy to implement. We consider separately
the cases where the particles can or cannot be addressed
individually (cf. Fig. 1 for examples of these situations).

We start by introducing the general framework of parameter
estimation with linear interferometers and basic facts about
entanglement in Sec. II. General observations regarding the
local transformations optimizing the phase sensitivity of an
input state are made in Sec. III. The main results concerning the
usefulness of pure entangled states under local transformations
are presented Sec. IV. Here we also comment on the use
of more general local transformations which are not unitary.
Finally, we apply the results to two important families of states
in Sec. V. We summarize our results in Sec. VI.

II. BASIC CONCEPTS

A. Linear interferometers and collective operators

In linear interferometers, such as the Mach-Zehnder
interferometer [cf. Fig. 1(a)], the phase shift is due to the
independent action of some external effect on each particle.
We restrict ourselves to the situation that the interferometer
is performed in a two-level subspace here. The two levels
could be two momentum states as for the Mach-Zehnder
interferometer, the two wells of a double-well, or two internal
states of the particles (cf. Fig. 1). The corresponding phase
transformation can be characterized in terms of collective spin
operators Ĵi = 1

2

∑N
k=1 σ̂

(k)
i , where σ̂

(k)
i is the ith Pauli matrix

acting on particle k. Here and in the following, we label the
three Pauli matrices with x,y,z or with 1,2,3. The input state

is transformed by exp[−iĴ�nθ ], where Ĵ�n = �n · �̂J and θ is the
phase shift. For a Mach-Zehnder interferometer consisting of a
beam splitter exp[iĴx

π
2 ], a phase shift exp[−iĴzθ ], and another

beam splitter exp[−iĴx
π
2 ], the effective rotation is [3]

UMZ = e−iĴx
π
2 e−iĴzθ eiĴx

π
2 = e−iĴy θ ; (2)

hence, �n = ŷ. This transformation also describes other ap-
plications such as the Fabry-Perot interferometer, Ramsey
spectroscopy, and the Michelson-Morley interferometer.
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FIG. 1. Systems that can be used for linear two-state interfer-
ometry: (a) Archetypical optical Mach-Zehnder interferometer as
in Refs. [22,23], (b) double-well system as implemented in recent
experiments on squeezing in BECs [28–30], and (c) system of single
wells as in ion traps [25,42]. In the first two cases, each of the N

particles lives in the subspace of the two states labeled a and b,
corresponding to momentum states in case (a) and to the left and
the right well in case (b). In case (c), there is one particle per well,
and particle k in trap k has the two internal degrees of freedom ak

and bk (displayed are trap states, while in ion traps typically internal
states of the ions are used [42]). The interferometer operations acts
on the a-b subspace in the cases (a) and (b) and identically on
the subspaces ak-bk in case (c). In the latter case, the particles are
accessible individually via the different traps in principle. They can
be treated as distinguishable particles labeled by the trap number k

if the spacial wave functions of the particles in the different traps do
not overlap [43].

Note that since the collective spin operators are just sums
of single-particle operators, the transformation factorizes,

e−iĴ�nθ = e−iσ̂
(1)
�n

θ
2 ⊗ e−iσ̂

(2)
�n

θ
2 ⊗ · · · ⊗ e−iσ̂

(N)
�n

θ
2 , (3)

where σ̂�n = �̂σ · �n. Therefore, this operation acts only locally
on the particles, and no entanglement can be created this
way. Note that this is true in particular for the beam-splitter
operation exp[−iĴx

π
2 ].

This is different if a mode picture is used. Let us consider
situations (a) and (b) of Fig. 1. In this case, the beam splitter
can turn a separable input state |Na〉 ⊗ |Nb〉 (written in the
Fock basis of the two modes a and b) into an entangled state,
and the connection of entanglement and SSN interferometry
is lost.

We call an operation of the form (3) a collective local unitary
(CLU) operation, since each particle is acted on with the same
unitary operator. A general local unitary (LU) operation is
one which factorizes as well but where the unitary operations
acting on two different particles can be different. Note that
if the particles cannot be addressed individually, as in cases
(a) and (b) of Fig. 1, then only CLU operations can be
implemented, while LU operations are available if we can
address the particles separately [cf. Fig. 1(c)].

We generally work with the particle picture and call
the eigenstates of the σ̂z operator |0〉 and |1〉 such that
σ̂z|0〉 = |0〉 and σ̂z|1〉 = −|1〉. Note that from now on we
label the two states 0 and 1 instead of a and b as done
in Fig. 1. The eigenstates of the collective spin operator Ĵz

will be denoted with |j,m〉, where j = N/2 and 2m is the
difference of particles in the state |0〉 and particles in the
state |1〉. These states are also known as Dicke states [44].

They fulfill �̂J
2
|j,m〉 = j (j + 1)|j,m〉 and Ĵz|j,m〉 = m|j,m〉.

In general, the eigenvalue m is degenerate. However, the

FIG. 2. A general phase estimation scheme consisting of (i) the
input state, (ii) the phase transformation, (iii) the measurement, and
(iv) the data-processing stage.

symmetric Dicke states |N/2,m〉S are uniquely defined. Here
and in the following, pure symmetric states are those which
are invariant under the interchange of any two particles [45].
Examples for two particles are |1,−1〉S = |1〉 ⊗ |1〉 ≡ |11〉,
|1,0〉S = (|10〉 + |01〉)/√2, and |1,1〉S = |00〉 and for three
particles |3/2,1/2〉S = (|100〉 + |010〉 + |100〉)/√3.

B. Phase estimation

In a general phase estimation scenario [46,47] (see also
[48] for an introduction), the initial state ρin is transformed
to ρ(θ ) by some transformation depending only on the single
parameter θ , and finally, a measurement is performed. The
phase is then estimated from the results of this measurement.
This scheme is schematically depicted in Fig. 2.

The phase transformation could be, for instance, the
operator exp[−iĴyθ ] for a Mach-Zehnder interferometer, as
we have seen in the last section. A general measurement can
be expressed by its positive operator valued measure (POVM)
elements {Ê(ξ )}ξ [49]. Depending on the possible outcomes
ξ , θ can be estimated from the results of these measurements
with an estimator θest(ξ ).

For so-called unbiased estimators, the relation θ̄est = θ

holds, the estimated phase shift is on average equal to the true
phase shift. The phase sensitivity is defined as the standard
deviation of the estimator. If the estimator is unbiased, it is
bounded by the Cramér-Rao theorem [46,47] as

�θest � 1√
m

1√
F

, (4)

where m is the number of independent repetitions of the
measurement and F is the so-called Fisher information.
Fisher’s theorem ensures that the bound (4) can be saturated
in the central limit, typically for large m, with a maximum-
likelihood estimator [50].

The Fisher information quantifies the statistical distin-
guishability of quantum states along a path described by a
single parameter [51–53]. It is defined as

F [ρ(θ ); {Ê(ξ )}] =
∫

dξP (ξ |θ )[∂θ log P (ξ |θ )]2, (5)

where the conditional probabilities are given by the quantum
mechanical expectation values P (ξ |θ ) = Tr[Ê(ξ )ρ(θ )]. This
holds for general parameter-estimation protocols. In this arti-
cle, we only consider estimation protocols for a dimensionless
phase shift and linear interferometers.

The so-called quantum Fisher information FQ is defined as
the Fisher information maximized over all possible measure-
ments,

FQ[ρ(θ )] = max
{Ê(ξ )}

F [ρ(θ ); {Ê(ξ )}]. (6)
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For pure input states and for a unitary phase transformation
with the generator Ĥ , where Ĥ = Ĵ�n for linear two-mode
interferometers, the quantum Fisher information is [52,53]

FQ[|ψ〉; Ĥ ] = 4〈�Ĥ 2〉ψ = 4(〈Ĥ 2〉ψ − 〈Ĥ 〉2
ψ ). (7)

For mixed input states, the quantum Fisher information is given
by [52,53]

FQ[ρ; Ĥ ] = 2
∑
j,k

(λj + λk)

(
λj − λk

λj + λk

)2

|〈j |Ĥ |k〉|2, (8)

where ρ = ∑
k λk|k〉〈k| is the spectral decomposition of the

input state and the sum is over terms where λj + λk �= 0 only.
A useful property of F , and consequently of FQ, is that it is

convex for mixed states; that is, if ρ = pρ1 + (1 − p)ρ2 with
0 � p � 1, then F (ρ) � pF (ρ1) + (1 − p)F (ρ2) for fixed
phase-transformation and output measurement [54] (see also
Ref. [55]).

C. Entanglement vs shot-noise limit

A pure state of N particles is called fully separable if it can
be written as a product state, |ψfs〉 = ⊗N

i=1|ψ (i)〉, where |ψ (i)〉
is a pure state of particle i. A mixed state is fully separable if it
can be written as an incoherent mixture of such product states,

ρfs =
∑

k

pk

∣∣ψ (1)
k

〉〈
ψ

(1)
k

∣∣ ⊗ ∣∣ψ (2)
k

〉〈
ψ

(2)
k

∣∣ ⊗ · · · ⊗ ∣∣ψ (N)
k

〉〈
ψ

(N)
k

∣∣,
(9)

where {pk} is a probability distribution [56]. Any such state can
be generated by local operations and classical communication
[49,56]. Nonseparable states are entangled, and nonlocal
operations are needed for their production.

Recently, it has been shown that for all fully separable
input states and for any unitary generator Ĥ = Ĵ�n, the
Fisher information is bounded by the number of particles,
F [ρfs; Ĵ�n] � N [40]. By the Cramér-Rao bound (4), the phase
sensitivity is then bounded by the shot-noise limit,

�θest � 1√
Ntot

, (10)

where Ntot = mN is the total number of particles used in the m

runs. Therefore, only entangled input states can reach a SSN
sensitivity.

The so-called Heisenberg limit, that is, the ultimate limit
on the phase sensitivity, depends on the constraints on the
resources used. If m and N are fixed separately, then the
ultimate sensitivity allowed by quantum mechanics is given
by [39]

�θ = 1√
mN

. (11)

However, the total number of particles used in the protocol
is Ntot, and therefore it is reasonable to consider the bound
where only this number is fixed [9,57]. The corresponding
limit is given by

�θHL = 1

Ntot
, (12)

which can be saturated for m = 1 only.

We remark that if the interferometer transformation is
not equal to exp[−iĴ�nθ ], then the shot-noise limit and the
Heisenberg limit have to be redefined accordingly. Assume,
for instance, that the unknown phase shift θ can be applied to
a photon a number of times p at will. Then a protocol where
single photons are passing through an interferometer one after
the other, such that photon k experiences the phase shift pkθ ,
can reach a sensitivity scaling as �θ ∼ 1/N [14,15]. Here, N

is the total number of resources, where not only a photon but
also the application of the phase shift is counted as a resource.

D. Statement of the problem

Now we are ready to start the main investigation. We want
to classify the pure entangled states with respect to their
usefulness for interferometry. Since entanglement cannot be
generated by local operations, we allow for such operations to
be applied to the input state. The question we want to answer is:
can we obtain a bound below the shot-noise limit for every pure
entangled state in this scenario? In other words, can F > N

be achieved for every pure entangled state?
We consider two cases. (i) If the particles are indistin-

guishable bosons which cannot be individually addressed, then
the input states have to be symmetric under interchange of the
particles. The results relating separable states to the shot-noise
limit is still valid here, but since the state space is reduced,
the only admissible separable states are of the form (9), where
all single-particle states are identical; that is, |ψ (i)

k 〉 = |ψk〉
for all k [58]. A typical example is the state |0〉⊗N of N

particles all entering the Mach-Zehnder interferometer at the
same input port. This situation is present in cases (a) and (b)
depicted in Fig. 1. Only CLU operations can be implemented
in this case. (ii) The particles (bosons or fermions) can be
individually addressed, for instance because each particle is
trapped in a different trap as in case (c) depicted in Fig. 1. Then,
the particles can be effectively treated as being distinguishable
[43] and any LU operation can be implemented.

Before we start, let us make two further remarks. First,
optimizing the Fisher information minimizes the lower bound
on the sensitivity (4). However, the smallest number m for
which this bound is saturated depends on the input state.
For fixed total resources Ntot = mN and two input states |ψ〉
and |φ〉, it may may therefore be possible to reach a better
sensitivity �θ with the state |φ〉 even if F (|ψ〉) > F (|φ〉)
[9,57]. Second, the problem we investigate can be viewed as
one further step in the optimization of the Fisher information
when the phase is generated unitarily:

F [ρ; Ĥ ; {Ê(ξ )}ξ ] � FQ[ρ; Ĥ ] � max
UL

FQ[ULρU
†
L; Ĥ ],

(13)

where UL is a LU operation. Both steps preserve the fact that
the shot-noise limit cannot be overcome with separable states.

III. OPTIMAL FISHER INFORMATION UNDER CLU AND
LU OPERATIONS

In this section, we search for the optimal value of the
quantum Fisher information that can be achieved if CLU or LU
operations are applied on a pure input state. We first investigate
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their effect on FQ before we find the optimal value of FQ

for CLU operations and an upper bound for LU operations.
Finally, we show that even though we are considering pure
states only in this article, similar results for the optimal values
of FQ hold for mixed states as well.

A. Effect of CLU and LU operations on FQ

When the input state |ψin〉 is transformed by a LU
transformation UL = U1 ⊗ U2 ⊗ · · · ⊗ UN , then the quantum
Fisher information Eq. (7) changes as

F ′
Q = 4〈�Ĥ 2〉ULψin = 4〈�Ĥ ′2〉ψin , (14)

where Ĥ ′ = U
†
LĤUL. Hence, for Ĥ = Ĵy as in the Mach-

Zehnder interferometer, applying a LU operation to the
initial state is equivalent to a local transformation of the
interferometer operation according to Ĵ ′ = 1

2

∑N
k=1 U

†
k σ̂yUk .

The relation U † �̂σU = O �̂σ holds, where O is an orthogonal
matrix; hence, a unitary transformation of the vector of Pauli
matrices corresponds to a rotation [61]. It follows that

Ĵ ′ = 1

2

N∑
k=1

�n(k) · �̂σ . (15)

Here �n(k) = OT
k ŷ, and ŷ is the unit vector pointing in the y

direction.
Therefore, changing the input state with a LU operation

is equivalent to a change of the local directions of the spins.
A collective spin operator is in general acting differently on
the spins after this operation. If a CLU operation is applied,
where Uk = U for all k, then the collective operator remains
collective; only its direction is changed.

B. Optimum under CLU operations

Given a general pure state |ψ〉, the optimal direction �nmax

of the generator Ĵ�n and the maximal FQ can be determined
directly.

Observation 1. The maximal FQ that can be achieved for
Ĥ = Ĵ�n when �n can be optimized over is given by 4λmax[γC],
where λmax is the maximal eigenvalue of the real 3 × 3
covariance matrix γC with entries

[γC]ij = 1
2 〈Ĵi Ĵj + Ĵj Ĵi〉 − 〈Ĵi〉〈Ĵj 〉, (16)

and the optimal direction �nmax is the corresponding eigenvector
[62]. We will also call γC the collective covariance matrix.

Proof. For Ĥ = �n · �J we have FQ = 4〈(�Ĵ�n)2〉 = 4�nT γC �n
since �n is real. It is known from linear algebra that this expres-
sion is maximized by choosing �n = �nmax as the eigenvector
corresponding to the maximal eigenvalue. �

The matrix γC has appeared before in the context of
interferometry [63] and in the derivation of the optimal spin
squeezing inequalities for entanglement detection [64]. The
results presented in the latter article allow for a different proof
of the fact that separable states cannot beat the shot-noise
limit [65].

Let us consider as examples of the usefulness of Obser-
vation 1 three prominent symmetric states which are known

(a)

(b)

2
N

2
N

2
1

0

2
N

2
N0

2
N

2
N

2
1

0

1

11

(c)

FIG. 3. Examples of symmetric states on which we apply Obser-
vation 1 given in the basis of symmetric Dicke states. (a) N00N state,
(b) twin-Fock state, (c) state considered in Ref. [9]. Plotted are the
squared absolute values of the weights of the symmetric Dicke states
in the superpositions.

to provide SSN sensitivity. Their weights in the basis of
symmetric Dicke states |N

2 ,m〉S are depicted in Fig. 3.
(a) The so-called N00N state (N -particle path-entangled

state |N,0〉 + |0,N〉) is given by [8,66]

|N00N〉 = 1√
2

(|0〉⊗N + |1〉⊗N ). (17)

For this state, we find 4γ N00N
C = diag(N,N,N2). The N00N

state achieves the maximal value of the Fisher information
FQ = N2 [39] when the generator of the phase shift is Ĵz,
while it gives sensitivity at the shot-noise limit if a collective
operator in the x-y plane is chosen instead. Hence, if a N00N

state is entering a normal Mach-Zehnder interferometer, it
has to be rotated first by exp(±i π

2 Ĵx) in order to reach the
optimal sensitivity. This happens because only the Ĵz operator
leads to the maximal relative phase shift exp[−iNφ] between
the two states in the superposition of the N00N state. Similar
corrections have to be applied in the Ramsey scheme originally
considered in Ref. [8].

(b) Another state promising SSN sensitivity is the Twin-
Fock state [4]:

|TF〉 =
∣∣∣∣N2 ,0

〉
S

. (18)

In this state, half of the particles are in the state |0〉 and the other
half are in the state |1〉. Note that this state is a product state
in a mode picture, |N/2〉0 ⊗ |N/2〉1, while it is multipartite
entangled in the particle picture we use. We find 4γ TF

C = (N2

2 +
N )diag(1,1,0); hence, the SSN sensitivity for interferometry
with the generator Ĵ�n is bounded identically by the Cramér-Rao
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lower bound for any �n in the x-y plane, while the state is
insensitive to the phase change if �n = ẑ.

(c) The third example is the following state of an even
number of particles, which offers advantages when used in
a Mach-Zehnder interferometer with a Bayesean estimation
protocol [9]:

|PS〉 = 1√
2

(∣∣∣∣N2 ,1

〉
S

+
∣∣∣∣N2 ,−1

〉
S

)
, (19)

which yields 4γ PS
C = diag( 3

4N2 + 3
2N − 2, 1

4N2 + 1
2N −

2,4). We expressed the states with the symmetric Dicke states
|j,m〉S introduced previously. While for both �n = ŷ and
�n = x̂ the quantum Fisher information is larger than N , it is
largest for �n = x̂.

C. Optimum under LU operations

When general LU operations are applied, then the quantum
Fisher information takes the form FQ[|ψ〉; Ĵ ′] = 4〈(�J ′)2〉 =
�mT γR �m, where we introduced the real 3N × 3N covariance
matrix γR with entries

[γR](k1,i1)(k2,i2) = 1

2

(〈
σ̂

(k1)
i1

σ̂
(k2)
i2

〉 + 〈
σ̂

(k2)
i2

σ̂
(k1)
i1

〉)
− 〈

σ̂
(k1)
i1

〉〈
σ̂

(k2)
i2

〉
(20)

and the real vector �mT = ([�n(1)]T ,[�n(2)]T , . . . ,[�n(N)]T ). The
matrix entries are parametrized by two double indices (k1,i1)
and (k2,i2). The optimal value of FQ is hence given by the
solution of the problem

F max
Q = max

�m
�mT γR �m∣∣

[�n(k)]T �n(k)=1 ∀k
. (21)

A simple upper bound on F max
Q can be obtained by relaxing

the N constraints [�n(k)]T �n(k) = 1 to the single constraint
�mT �m = N .

Observation 2. The maximal FQ for Ĥ = Ĵy that can be
achieved when arbitrary LU operations can be applied on the
input state is bounded by

F max
Q � max

�m
�mT γRm

∣∣
�mT �m=N

= Nλmax[γR]. (22)

Equality holds in relation (22) if and only if there is a
vector �m∗ optimizing problem (21) which is an eigenvector
of γR corresponding to the maximal eigenvalue. If �m∗ is the
eigenvector corresponding to the maximal eigenvalue of γR

which fulfills all the N constraints [�n(k)]T �n(k) = 1, then local
directions can be converted into LU transformations as in
Observation 1 [62].

This simple observation, which can be proven in the same
way as Observation 1, will turn out to be very useful for
the proof Proposition 2 and also for the examples discussed
in Sec. V.

Here we obtained an upper bound on the maximal FQ that
can be obtained when arbitrary LU operations are available by
making it possible to optimize over more general operations. In
turn, a simple lower bound can be obtained from Observation
1, since in this case the operations are more restricted.

We remark that the covariance matrix γR with entries
given in Eq. (20) has appeared previously in studies of
macroscopic entanglement [67,68]. Given a pure state |ψ〉,

the index p ∈ [1,2] introduced in these references indicates
the presence of macroscopic entanglement if p = 2. Similar
to our case, its computation involves the maximization of the
variance of a local operator Â = ∑N

k=1 αk �n(k) · �̂σ , where the
αk fulfill

∑N
k=1 |αk|2 = N . Due to the additional parameters

{αk}k , the problem is then of the form max �m �m†γR �m∣∣
�m† �m=N

,
and the maximum can always be reached by the maximal
eigenvector and the corresponding eigenvalue [68]. Here the
dagger † appears instead of the transposition T since the αk

are not restricted to be real [68].

D. Optimum for mixed states

Even though in this article we are only considering pure
states, we note that Observation 1 also holds in the case
of mixed input states ρ = ∑

k λk|k〉〈k| when the collective
covariance matrix γC is replaced with the matrix C with
entries

[C]ij = 1

2

∑
l,m

(λl + λm)

(
λl − λm

λl + λm

)2

〈l|Ĵi |m〉〈m|Ĵj |l〉.

(23)

In analogy, Observation 2 holds if the matrix γR is replaced by
the matrix R with entries

[R](k1,i1),(k2,i2)

= 1

2

∑
l,m

(λl + λm)

(
λl − λm

λl + λm

)2

〈l|σ̂ (k1)
i1

|m〉〈m|σ̂ (k2)
i2

|l〉.

(24)

This follows directly from the form of FQ for mixed states
when the phase comes from unitary evolution generated by Ĵ�n
and Ĵ ′, respectively [see Eq. (8)]. Note that the matrices C

and R are symmetric because of the sums over l and m. For
pure states, they reduce to γC and γR , respectively.

IV. USEFULNESS OF PURE ENTANGLED STATES

Now we are prepared to consider the general question:
Are all pure entangled states useful for SSN interferometry
under CLU and LU operations? In the first part of this section,
we consider pure symmetric states and CLU operations,
corresponding to the situation in a system of N bosons which
cannot be individually addressed, as in cases (a) and (b)
depicted in Fig. 1. If the input state is symmetric but general LU
operations can be applied, we find that FQ cannot be increased
beyond the value obtained with the optimal CLU operation.
The results allow us to draw conclusions on the usefulness
of general states. In the final part of this section, we briefly
comment on how these results change when more general local
operations than CLU and LU are available.

A. Reduced states of pure symmetric states

We start by considering reduced density matrices of pure
symmetric states. This will be very useful for the proofs
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presented later. The reduced density matrix for two particles
of any state |ψ〉 can always be written as

ρ(r) = 1

4

3∑
i,j=0

λij σ̂i ⊗ σ̂j , (25)

where λij = 〈σ̂i ⊗ σ̂j 〉ψ , σ̂0 = 1, and σ̂1,2,3 = σ̂x,y,z. Normal-
ization is ensured by λ00 = 1.

If |ψ〉 is symmetric under the interchange of particles, then
the matrix λ is not only real, but also symmetric, and the
diagonal elements fulfill [45]

3∑
i=1

λii = 1. (26)

Note that this holds for the case N = 2, where ρ(r) = |ψ〉〈ψ |,
and also for the case N > 2, since then the reduced density
matrix also acts on the symmetric subspace only.

If we consider CLU transformations of |ψS〉, then ρ(r) →
U ⊗ U ρ(r) U † ⊗ U †. Since U �̂σU † = OT �̂σ as mentioned
before, λ transforms as

λ ≡
(

1 �sT

�s T

)
→

(
1 �sT O

OT �s T̄

)
≡ λ̄, (27)

where �s is a column vector with entries si = 〈σ̂i〉, T a
symmetric 3 × 3 matrix with entries Tij = 〈σ̂i ⊗ σ̂j 〉 for
i,j = 1,2,3, and T̄ = OT T O. The condition (26) corresponds
to Tr[T ] = 1. Since −1 � λij � 1 holds, only one of the
diagonal elements Tii can be negative. Further, if one element
is negative, then the other two diagonal elements have to be
strictly positive.

B. CLU operations

Here, we consider pure symmetric entangled states under
CLU operations. This is realized in a bosonic system where
all particles can be in two external states, for instance. In
this situation the states can be completely characterized with
respect to their usefulness, and it turns out that any symmetric
state is useful, apart from superpositions of |0〉⊗N and |1〉⊗N

with significantly different weights. We directly state the result
and present the proof afterward.

Proposition 1. For a pure, symmetric, and entangled state
|ψS〉 there is a direction �n such that FQ(|ψS〉,Ĵ�n) > N except
for the following family of states of N > 2 qubits:

|ψS〉 = √
q|0〉⊗N + eiφ

√
1 − q|1〉⊗N (28)

up to a CLU operation and

q � 1

2

(
1 −

√
N − 1

N

)
or q � 1

2

(
1 +

√
N − 1

N

)
.

(29)

Proof. The form of FQ(|ψ〉,Ĵ�n) is

4〈(�Ĵ�n)2〉 =
〈∑

k,l

σ̂
(k)
�n σ̂

(l)
�n

〉
−

〈∑
k

σ̂
(k)
�n

〉2

= N −
∑

k

〈
σ̂

(k)
�n

〉2 + 2
∑
k<l

〈
σ̂

(k)
�n σ̂

(l)
�n

〉 − 〈
σ̂

(k)
�n

〉〈
σ̂

(l)
�n

〉
.

For symmetric states, the terms 〈σ̂ (k)
�n 〉 and 〈σ̂ (k)

�n σ̂
(l)
�n 〉 do not

depend on the sites k and l, and hence

4〈(�Ĵ�n)2〉 = N (1 − 〈σ̂�n〉2) + N (N − 1)(〈σ̂�nσ̂�n〉 − 〈σ̂�n〉2)

= N + N (N − 1)〈σ̂�nσ̂�n〉 − N2〈σ̂�n〉2,

where we left out the particle indices. It follows that for pure
symmetric states

FQ[ψS,Ĵ�n] > N ⇔ 〈σ̂�nσ̂�n〉 >
N

N − 1
〈σ̂�n〉2. (30)

Hence, the task is to see whether it is possible for any pure
symmetric state to find a CLU operation or a direction �n such
that condition (30) holds.

We can choose a CLU operation such that 〈σ̂x〉 = 〈σ̂y〉 = 0,
OT �s = (0,0,δ)T . Now we have to consider several cases:
(i) Let us assume that the elements T̄ij , i,j = 1,2 are not
all equal to zero. Since 〈σ̂x〉 = 〈σ̂y〉 = 0, if we can make
〈σ̂x σ̂x〉 or 〈σ̂y σ̂y〉 positive, then condition (30) is fulfilled for the
respective direction. If there are nonzero elements T̄ij , i,j =
1,2, then the trace of this submatrix might be zero, but the
eigenvalues will be different from zero. Then they have to be
both different from zero, and only one of them can be negative.
Hence, there is an orthogonal transformation 1 ⊕ Õ ⊕ 1 which
makes λ11 positive while keeping �s = (0,0,δ)T . Therefore, we
can make 〈σ̂x σ̂x〉 positive and fulfill condition (30) for �n = x̂.

(ii) If all elements T̄ij are equal to zero for i,j = 1,2,
then T̄33 = 1 due to Eq. (26). What kind of states |ψS〉 are
compatible with these values? Only those of the form of
Eq. (28). This can be seen as follows: We can expand |ψS〉 =∑N/2

m=−N/2 cm|N/2,m〉S in the basis of symmetric Dicke
states. Then 1 = 〈σ̂zσ̂z〉 = ∑

m |cm|2〈N/2,m|σ̂zσ̂z|N/2,m〉 =∑
m |cm|2, where the latter equality comes from the nor-

malization of |ψS〉. It follows that cm can only be different
from zero if 〈N/2,m|σ̂zσ̂z|N/2,m〉 = 1, which is the case for
m = ±N/2 only. These are the states of Eq. (28) with the
notation cN/2 = √

q and c−N/2 = eiφ
√

1 − q.
For N > 2, the coefficients si and Tij (i,j = 1,2) vanish for

any value of q. In this case, 〈σz〉 = 2(q − 1
2 ), and condition

(30) reads (q − 1
2 )2 < (N−1)

4N
. This condition is violated if

Eq. (29) holds. This suggests that if q is too close to 0 or to
1, then FQ � N . What is left to show is that there is no other
direction �n where FQ > N for this state. This follows directly
from Observation 1 since γC = diag(N

4 ,N
4 ,N2

4 [1 − (2q − 1)2])
is diagonal already. Hence, there is no better basis, and if
Eq. (29) holds, then the entanglement of the state (28) is not
useful for SSN interferometry in any direction �n.

In contrast, for N = 2, the coefficients si and Tij for i,j =
1,2 vanish only if q = 0 or q = 1, that is, if |ψS〉 is a product
state. It follows that any pure symmetric entangled two-qubit
state is useful for SSN interferometry. �

We point out three things concerning the states (28). (i) The
region where the states are not useful shrinks with increasing
N . (ii) When q is changed such that the states change from
being useful to not being useful, then the optimal direction
�n changes from ẑ to any direction in the x-y plane. This is
not surprising, since for the product states |0〉⊗N and |1〉⊗N ,
the variance of Ĵ�n is maximized for �n lying in the x-y plane,
while the variance of the N00N state 1√

2
(|0〉⊗N + |1〉⊗N ) is
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maximized for �n = ẑ as seen in Sec. III B. However, one
could have expected a smooth transition from �n = ẑ to
the x-y plane. (iii) The states of Eq. (28) are not separable
with respect to any partition if q �= 0 and q �= 1, and hence
genuinely multipartite entangled, but still of no use for SSN
interferometry when condition (29) holds and only CLU can
be applied to the input state.

C. LU operations

We have found that states of the form (28) are not useful
for SSN interferometry if the condition (29) holds and if only
CLU operations can be applied. It is natural to ask whether or
not this can be changed by applying arbitrary LU operations
on this state. It turns out, however, that this more general
class of transformations does not help. This is the content of
Proposition 2. Hence, not all pure entangled states are useful
for SSN interferometry, even if arbitrary LU operations can
be applied to the input state. The main results of this article
regarding this question are summarized in Theorem 1.

Proposition 2. For a pure, symmetric, and entangled state
|ψS〉 under LU operations the maximum quantum Fisher in-
formation is obtained by choosing a collective spin vector with
�nmax determined as stated in Observation 1. For N > 2, any
non-collective operation leads to a strictly smaller value of FQ.

Proof. In order to apply Observation 2, we first have to
construct γR as defined in Eq. (20). The terms 〈σ̂ (k)

i 〉 and
〈σ̂ (k)

i σ̂
(l)
j 〉 do not depend on the sites k and l if |ψS〉 is

symmetric. The resulting covariance matrix has the block form

γR =

⎛
⎜⎜⎜⎝

A B B · · · B

B A B · · · B

...
...

...
. . .

...
B B B · · · A

⎞
⎟⎟⎟⎠ , (31)

where Aij = δij − 〈σ̂i〉〈σ̂j 〉 and Bij = 〈σ̂i σ̂j 〉 − 〈σ̂i〉〈σ̂j 〉 =
Bji are 3 × 3 matrices. With the notation introduced prior
to Eq. (27), we can write A = 1 − �s�sT and B = T − �s�sT .
The rank of γR is in general full, but there are at most
six distinct eigenvalues. This can be seen as follows: If we
find the three eigenvectors �ak of the matrix [A + (N − 1)B],
then we can directly construct three eigenvectors of γR which
are fully symmetric under interchange of the blocks, namely,
�xT
k = (�aT

k ,�aT
k , . . . ,�aT

k ), where k = 1,2,3. Furthermore, if we
find three eigenvectors �bk of the matrix [A − B], we obtain
3(N − 1) linearly independent eigenvectors of γR of the form
[�y(j )

k ]T = (�bT
k ,0, . . . ,0, − �bT

k ,0, . . . ,0), where the second vec-
tor −�bk is located at the positions of block j , j = 2,3, . . . ,N .
These vectors are orthogonal to the vectors �xk by construction,
so the spectrum of γR is given by the eigenvalues of the
matrices [A + (N − 1)B] and [A − B]. Let us denote by λ1

the largest eigenvalue of the first matrix and by λ2 the largest
eigenvalue of the second matrix. If λ1 � λ2, then the optimal
FQ can be reached by a collective spin operator with all spin
operators pointing in the same direction, while if the inequality
holds strictly, λ1 > λ2, then it is clear that the optimal FQ

reached with a collective operator is strictly larger than the
largest FQ that can be achieved with a non-collective spin
operator.

Comparing λ1 and λ2 is equivalent to comparing the
eigenvalues of (N − 1)T − N�s�sT and −T . Let us denote the
eigenvalues of the matrix T by ti , i = 1,2,3 and order them
increasingly. Due to Eq. (26), they fulfill t1 + t2 + t3 = 1. The
largest eigenvalue of −T is hence given by −t1. We have to
consider several cases: (i) If t1 > 0, then −T has no positive
eigenvalues, whereas (N − 1)T has only positive eigenvalues.
Hence, there is always a vector �r⊥ orthogonal to �s such that
�rT
⊥[(N − 1)T − N�s�sT ]�r⊥ > 0 > −t1, which implies λ1 > λ2.

(ii) If t1 � 0, −T has at most one positive eigenvalue |t1|. There
is a two-dimensional subspace S̃ such that for �r ∈ S̃, �rT T �r �
|t1| holds since t3 � t2 � |t1|. The last inequality holds since
|ti | � 1 for all i. Hence there is a vector �r⊥ ∈ S̃ orthogonal to �s
with �rT

⊥[(N − 1)T − N�s�sT ]�r⊥ � (N − 1)t2 � |t1|, implying
λ1 � λ2.

So far we have shown that we can always choose a
symmetric collective operator Ĵ�n. Let us focus now on the cases
where λ1 = λ2 holds, where also nonsymmetric collective
operators may reach the optimal FQ. This may happen if
N = 2 and t2 = |t1| or if N > 2 and t1 = t2 = 0. In the
first case, symmetric vectors (�nT ,�nT )T and antisymmetric
vectors (�nT , − �nT )T always reach the same optimum unless
t1 = t2 = 0, when the state is separable. This can be seen
by a direct calculation of λ with the general symmetric
state |ψS〉 = c1|1,1〉 + c1,−1|1,−1〉 + c0|1,0〉 and by requiring
that T be diagonal with t1 = −t2. In the second case, T =
diag[0,0,1]. As mentioned in the proof of Proposition 1,
this is only possible for states of the form (28), for which
�sT = (0,0,δ), where δ = 2(q − 1

2 ). Then the condition that
(N − 1)T − N�s�sT = diag[0,0,(N − 1) − Nδ2] has a strictly
larger eigenvalue than |t1| = 0 is fulfilled unless condition
(29) holds. If it holds, then FQ = N , and this can be
reached by choosing �n(k) = (c(k)

1 ,c
(k)
2 ,0)T for any c

(k)
1,2, as

can be seen directly by writing down γR from Eq. (31) in
this case. �

Summarizing, this allows us to formulate a central result of
this article.

Theorem 1. Allowing for general LU operations to be
applied on the input state, then for N = 2, any pure entangled
state is useful for SSN interferometry. For N > 2, there are
pure entangled states which are not useful even if they can
be transformed by arbitrary LU transformations. The pure
entangled symmetric states which are not useful are completely
characterized by Proposition 1.

Proof. Proposition 2 implies that even allowing for any
LU operation does not make the states (28) useful for SSN
interferometry if condition (29) holds. Therefore, for N > 2,
there are pure entangled states which cannot be made useful.
For N = 2 we have seen already that all states of the form√

q|00〉 + eiφ
√

1 − q|11〉 are useful unless q = 0 or q = 1.
In this case any state can be brought into this form by a local
change of basis; therefore, any pure entangled state of two
qubits is useful for SSN interferometry. �

The result that all entangled states with N = 2 particles lead
to FQ > N for some change of the local basis also follows
directly from results obtained for the Wigner-Yanase skew
information I (ρ,Ĥ ) depending on a state ρ and an observable
Ĥ [69]. For any pure entangled state |ψent〉 of N = 2 particles,
it has been shown that 4I (|ψent〉,Ĥ ) > 2 can be achieved by
local rotations [70]. This proof carries over to the Fisher
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information since for pure states, the quantities are related
by F (|ψ〉,Ĥ ) = 4I (|ψ〉,Ĥ ).

D. More general local operations

So far we considered the scenario in which a single copy of
a pure state is used to perform a phase estimation protocol.
We allowed for local manipulations of this state prior to
the experiment. Typically, investigations of quantum entan-
glement assume that the parties controlling the particles are
very far apart and that they can only perform local operations
on their system and classical communication (LOCC) [49].
In this scenario, the particles can be treated effectively as
distinguishable [43] and general LU can be applied. More
general local measurements can be performed when each
party is allowed to add local particles, so-called ancillas, and
to perform LU operations and measurements on the ancilla
particles, discarding them after the operation [49]. They can be
described with so-called Kraus operators Âi , where i labels the
results of the local measurements. They fulfill

∑
i Â

†
i Âi = 1

and transform the initial state as |ψin〉 → ∑
i Âi |ψin〉〈ψin|Â†

i .
With probability 〈ψin|Â†

i Âi |ψin〉, the state is transformed as
|ψin〉 → Âi |ψin〉.

Let us assume that N parties share a state |ψ〉 of the form
(28) with q such that the state is not useful, and let us choose
φ = 0 for convenience. Then a single party could perform
the general measurement with the two-outcome measure-
ment Â1 = √

1 − q|0〉〈0| + √
q|1〉〈1| and Â2 = √

q|0〉〈0| +√
1 − q|1〉〈1|. With probability P = 2q(1 − q), the state is

transformed into the N00N state, while with probability
1 − P , the state |ψ2〉 = (q|0〉⊗N + (1 − q)|1〉⊗N )/

√
1 − P is

obtained. Hence, in one case, the maximally useful N00N state
is obtained, while in the other case, the state is still as useful as
the original state (namely, shot-noise limited). Therefore, the
classification of usefulness changes in this situation. However,
from an experimental point of view, CLU or LU operations
are significantly easier to implement in general.

This result has an implication regarding a possible measure
of entanglement which is useful for SSN interferometry. For
LU operations UL, the quantity

e(ρ) = max

[
0, max

UL

FQ[ρ; Ĵy] − N

]
(32)

defined for arbitrary mixed states ρ satisfies the following
conditions which are typically required of an entangle-
ment measure [71,72]: (i) e(ρ) = 0 for separable states and
(ii) e(ρ) is invariant under LU operations. However, the
preceding example shows that it violates the postulate that the
function should not increase on average under LOCC since

e(|ψ〉) < Pe(|N00N〉) + (1 − P )e(|ψ2〉) (33)

holds because we chose the initial state |ψ〉 such that
e(|ψ〉) = 0.

V. EXAMPLES

A. Symmetric states

From Proposition 2 we know that that Observation 1
delivers the optimal FQ for pure symmetric states. Hence,

the results obtained for the three examples of symmetric states
in Sec. III B are already optimal.

B. Singlet states

Singlet states of N qubits exist if N is even. By definition,
these states fulfill (i) U⊗N |ψ〉 = eiφ|ψ〉 for some phase φ

and (ii) �̂J
2
|ψ〉 = 0. It follows that FQ[|ψ〉; Ĵ�n] = 0 holds for

any direction �n. Hence, there is no CLU operation which
makes these states useful for SSN interferometry with a
Mach-Zehnder interferometer. Therefore, it is natural to ask
whether they can be made useful with LU operations. This
situation can only be achieved with bosons or fermions
which can be individually addressed. In the case of Fermions
occupying just two modes, the only entangled state which can
occur in the particle picture is the two-particle singlet state

1√
2
(|01〉 − |10〉), which is not useful for interferometry under

CLU operations. An obvious example of a N qubit singlet
state of individually addressable particles is the tensor product
of N/2 two-qubit singlet states. For these states we already
know that they can be made useful with LU operations from
Theorem 1.

In the following, we consider the nontrivial family of N

qubit singlet states defined in Ref. [73] as

∣∣S (2)
N

〉 = 1

N
2 !

√
N
2 + 1

∑
P

z!

(
N

2
− z

)
!(−1)N/2−zP[|01〉⊗N/2],

(34)

where the sum runs over all permutations of the state |01〉⊗N/2

and z is the number of 0’s in the first N
2 positions. Apart from

(i) and (ii) they are (iii) multipartite entangled, (iv) invariant
under the permutations Pij |S (2)

N 〉 = |S (2)
N 〉 if i,j ∈ [1, . . . ,N

2 ]
or i,j ∈ [N

2 + 1, . . . ,N], and (v) invariant up to the factor
(−1)N/2 under exchange of the first N

2 qubits and the second
N
2 qubits. Due to the symmetries (iv) and (v), the covariance
matrix of the states has the form

γ
singlet
R =

(
Ã C̃

C̃ Ã

)
, (35)

where Ã is a block matrix of the form of Eq. (31) and C̃ is a
block matrix of 3 × 3 matrices C. Hence, we have to compute
the matrices A, B, and C. Due to (i), the single-particle reduced
states fulfill Uρ(k)U † = ρ(k) for any unitary operation U . The
only state of a single qubit with that property is 1/2, from
which �s = �0 and A = 1 follows. Also due to (i), all reduced
two-particle states fulfill U ⊗ Uρ(k,j )U † ⊗ U † = ρ(k,j ). The
only states of two qubits with that property are the so-called
Werner states [56],

ρ(k,l) = f |ψ−〉〈ψ−| + (1 − f )
1 − |ψ−〉〈ψ−|

3
, (36)

where f ∈ [0,1]. The two-qubit singlet state is the only pure
state of two qubits fulfilling (i). It follows that

λ(k,l) =
(

1 �0T

�0 ξ1

)
, (37)
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where ξ = 1
3 − 2

3f and the matrix is defined as in
Eq. (27). Hence, the matrices A, B, and C are proportional
to the identity. For reduced two-particle states within the sets
considered in (iv), f = 0 has to hold since the reduced state
is acting on the symmetric subspace only, and we obtain
B = 1

31. The missing parameter from C can be calculated
by employing (ii) since it implies γC = 0̂, where γC is
the collective covariance matrix introduced in Observation
1. Setting C = ξC1, we find that this condition is fulfilled
provided that

ξC = − 2

N2

[
2

3
N + N2

6

]
. (38)

We can find the optimal directions {�n(k)} using Observation
2 by diagonalizing γ

singlet
R and showing that the maximal

eigenvector has the properties of �m from Eq. (21). As expected,
we find γ

singlet
R �m(+) = 0 for symmetric eigenvectors ( �m(+))T =

(�nT ,�nT , . . . ,�nT ), while the vectors ( �m(−))T = (�nT ,�nT , . . . , −
�nT , . . . , − �nT ) are eigenvectors with eigenvalue 4

3 + 1
3N . In

�m(−), the vectors for the particles N
2 + 1, . . . ,N have the minus

sign. Finally, the eigenvalue 2
3 is shared by the vectors �x(1)

k ,
which have vanishing elements except for a vector �n at the
positions of particle 1 and a vector −�n at the entries of particle
k ∈ [2,N

2 ], and the vectors �x(2)
k , which have vanishing elements

except for a vector �n at the positions of party N
2 + 1 and a

vector −�n at the entries of party k ∈ [N
2 + 2,N ]. We did not

further specify the vectors �n because they are eigenvalues of
the identity matrix in three dimensions since A, B, and C are
proportional to 1.

Hence, the vectors �m(−) are the eigenvectors with the
maximal eigenvalue, and we conclude that they lead to the
maximal quantum Fisher information

F max
Q

(
S (2)

N

) = N2

3
+ 4

3
N, (39)

surpassing the shot-noise limit for all N . This bound can
be reached by keeping |S (2)

N 〉 unchanged while choosing
the collective operator Ĵ ′ such that −σ̂ (k)

y for the particles
k = 1, . . . ,N

2 , and σ̂ (k)
y for the remaining ones, for instance. If

we consider instead a LU applied to the initial state and the
Mach-Zehnder operator Ĵy , then we can apply σ̂z to the first
N
2 parties only. Due to the definition of z in Eq. (34), N

2 − z is
the number of 1’s in the first N

2 positions. So the effect of this
LU transformation is to remove the factor (−1)N/2−z.

Any singlet state of N (N even) qubits can be obtained
from superpositions of permutations of tensor-products of two-
qubit singlet states. It is an interesting question whether all
such states can be made useful for SSN interferometry with
LU operations. The usefulness of singlet states in the mode
picture has been considered recently in a different scenario in
Ref. [12].

C. Graph states

Finally, we discuss the usefulness of the so-called graph
states of N qubits, which recently have received large attention
because of their importance for one-way quantum computa-
tion, quantum error correcting codes, studies of nonlocality,

(c)(a) (b) (d)

FIG. 4. Examples for graphs describing important graph states:
(a) a GHZ or N00N state (up to LU operations) [77,78], (b) a linear
cluster graph, (c) a ring cluster graph, (d) a cluster graph in two
dimensions.

and decoherence (see [74] and references within). After
discussing general properties of graph states in relation to the
usefulness for SSN interferometry, we consider the so-called
cluster states and again the N00N state (usually referred to as
the GHZ state [75] in this context).

Let us first recall the definition of graph states. A graph G

is a collection of N vertices and connections between them,
which are called edges [74]. In a physical implementation, the
vertices correspond to qubits and the edges record interactions
(to be specified below) that have taken place between the
qubits. For each vertex i we define the neighborhood N (i),
the set of vertices connected by an edge with i, and associate
to it a stabilizing operator

K̂i = σ̂ (i)
x

⊗
j∈N(i)

σ̂ (j )
z . (40)

It is easy to see that all the stabilizing operators commute. The
graph state |G〉 associated to the graph G is the unique N -qubit
state fulfilling

K̂i |G〉 = |G〉 for i = 1,2, . . . ,N. (41)

From a physical point of view, one can also define a graph
state as the state arising from [(|0〉 + |1〉)/√2]⊗N, if between
all connected qubits i,j the Ising-type interaction ĤI = (1 −
σ (i)

z ) ⊗ (1 − σ
(j )
z ) acts for the time t = π/4. See Fig. 4 for

examples of prominent graph states.
The group of products of the K̂i is called stabilizer S [76].

The state |G〉 can be expressed with the elements of the
stabilizer [77,78],

|G〉〈G| = 1

2N

∑
s∈S

s. (42)

This form is particularly useful for our purpose, because it
makes it possible to read off directly the reduced one- and
two-qubit density matrices in the form of Eq. (25).

Observation 3. (i) For the reduced state of p qubits, products
of at most p stabilizers K̂i contribute. (ii) For p = 1, the
reduced state is ρ

(r)
i = 1

21 unless qubit i is not connected to

any other qubit, in which case ρ
(r)
i = 1

2 (1 + σ̂ (i)
x ). (iii) If ρij

is a reduced state of p = 2 qubits, then the stabilizers K̂i (or
K̂j ) contribute if i is the only neighbor of j (or vice versa).
Also, the products K̂iK̂j contribute if the qubits i and j have
the same neighbors, where it is irrelevant whether i and j are
neighbors themselves.

Proof. All elements s of the stabilizer have the form ± ⊗N
i=1

σ̂
(i)
j (i) . Hence Tri[s] = 0 unless j (i) = 0 (since then σ̂

(i)
j (i) = 1)

and, in analogy, if more than one qubit are traced out [74]. If
we compute the reduced one- and two-qubit density matrices
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from Eq. (42), then only those s will contribute which act
as the identity on the traced-out particles. More specifically,
products of p̃ stabilizers are of the form

p̃∏
k=1

K̂ik ∝
(

p̃⊗
k=1

σ̂ (ik)
x

)(
p̃⊗

k=1

(⊗jk∈N(ik ) σ̂ (jk )
z

))
. (43)

Since [K̂i,K̂j ] = 0 and K̂2
i = 1 for all i and j , we only have to

consider products of different stabilizers for a given p̃. Then
(i) follows because if p̃ is larger than the number of qubits p in
the reduced state, one or more σ̂x operators remain acting on
the rest, which remain traceless even when multiplied by the
σ̂z operators acting on the neighborhoods. While (ii) and the
first part of (iii) follow directly, the second part of (iii) follows
because otherwise σ̂z operators would be left acting on qubits
which are traced out. �

Since we are not interested in the situation where a qubit
is fully separable from the rest, we can assume that �s(k) = �0
for any k in the following, since the reduced states are equal
to 1

21 in this case. From Observation 3 it follows directly that
cluster states of all kinds are practically of no more use for
SSN interferometry than product states.

Proposition 3. The maximal quantum Fisher information
F max

Q of linear cluster states with N � 4 particles is N + 4.
For N � 5 qubits, ring cluster states as well as cluster states
in more than one dimension have F max

Q = N.

Proof. For N = 3 the linear cluster state is LU equivalent to
a GHZ state and for N = 4 the ring cluster state is equivalent
to a linear cluster state [74]. The claim for the ring cluster
state and the cluster states in more than one dimension follows
directly from Observation 3, as all reduced two-qubit density
matrices are of the form ρ(r) = 1

41, and hence γR = 1. Then
Observation 2 yields F max

Q � N . For linear cluster states,
there are four off-diagonal elements of γR coming from the
stabilizers K̂1 = σ̂ (1)

x ⊗ σ̂ (2)
z and K̂N = σ̂ (N−1)

z ⊗ σ̂ (N)
x at the

ends of the cluster. Writing down γR in the block order
1,2,N − 1,N,3,4, . . . ,N − 2 yields

γR =
(

1 x̂ẑT

ẑx̂T 1

)
⊕

(
1 ẑx̂T

x̂ẑT 1

)
⊕ 1, (44)

where x̂T = (1,0,0) and ẑT = (0,0,1). This matrix can
be reordered as γR = (2|x+〉〈x + |) ⊕ (2|x+〉〈x + |) ⊕ 1N−4,
where |x+〉 = 1√

2

(1
1

)
. Hence, from Observation 2 it follows

that F max
Q � 2N . However, this limit cannot be reached due

to the restriction on �m. Due to the block-diagonal structure
of γR , the largest expectation value is obtained by choosing
�mT = (x̂T ,ẑT ,�n, . . . ,�n,ẑT ,x̂T ), where �n may point in any
direction, which leads to FQ = N + 4. �

A phase estimation scheme for one-dimensional cluster
states enabling SSN sensitivity was suggested in Ref. [19].
In contrast to the situation we considered, the authors
suggested using superpositions of cluster states and a non-
collective generator of the phase shift, showing that in this
case SSN sensitivity is possible even in the presence of
noise.

Let us finally illustrate why the GHZ states have the largest
Fisher information possible from the point of view of graph
states. From Fig. 4(a) we see that if the qubit 1 is connected
to all the others then all K̂i , i �= 1 contribute to the reduced

two-qubit states since all those qubits have only one neighbor.
Further, all the products K̂iK̂j for i,j �= 1 contribute since
these qubits have all the same neighborhood. The covariance
matrix γR then takes the form

γR =

⎛
⎜⎜⎜⎜⎝

1 ẑx̂T ẑx̂T · · · ẑx̂T

x̂ẑT 1 x̂x̂T · · · x̂x̂T

...
...

...
...

...
x̂ẑT x̂x̂T x̂x̂T · · · 1

⎞
⎟⎟⎟⎟⎠ . (45)

It can be directly checked that �mT =
1√
N

(ẑT ,x̂T ,x̂T , . . . ,x̂T ,ẑT ) is the eigenvector of γR

corresponding to the maximal eigenvalue N , and hence
F max

Q = N2.

VI. CONCLUSION

We have studied linear two-mode interferometers from a
quantum information theory perspective. In particular, we have
addressed the question of whether all pure entangled states of
N particles can achieve SSN sensitivity in such interferometers
if they can be optimized by operations which are local in the
particles. We used the Cramér-Rao theorem, which gives a
lower bound on the optimal sensitivity via the quantum Fisher
information FQ. For FQ > N , SSN sensitivity can be achieved
in the central limit.

We have studied the maximal quantum Fisher information
FQ that can be achieved for a general two-state linear
interferometer such as the Mach-Zehnder interferometer. We
have found a simple way to determine the optimal CLU
operation, and an upper bound for the optimal FQ for LU
operations, which is tight in many cases. The optimizations
carry over directly to the mixed state case and are useful for
the experimental optimization of the source if tomographic
data of the state are available.

Using these results, we have fully characterized the pure
symmetric entangled states which are of no more use than
noncorrelated states under CLU operations. These states and
operations are available in bosonic two-mode interferometers.
Further, we have obtained that for symmetric states of
particles which can be individually addressed, a CLU operation
achieves the maximal FQ even if arbitrary LU can be applied.
From these results it follows that while for N = 2 any
entangled state can be made useful with LU operations, there
are pure entangled states, and even fully N -partite entangled
states, which are not useful for SSN interferometry. We briefly
commented that this picture changes when more general local
operations are available.

Finally, we discussed several interesting states from the
literature, finding the optimal sensitivity that they can deliver.
Among them, we find that the highly entangled cluster states,
which comprise a resource for one-way quantum computation
[74], are practically not more useful than separable states.
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[9] L. Pezzé and A. Smerzi, Phys. Rev. A 73, 011801(R) (2006).
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