
PHYSICAL REVIEW A 82, 012336 (2010)

Suppressing decoherence and improving entanglement by quantum-jump-based
feedback control in two-level systems
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We study the quantum-jump-based feedback control on the entanglement shared between two qubits with
one of them subject to decoherence while the other qubit is under the control. This situation is very relevant
to a quantum system consisting of nuclear and electron spins in solid states. The possibility of prolonging the
coherence time of the dissipative qubit is also explored. Numerical simulations show that the quantum-jump-based
feedback control can improve the entanglement between the qubits and prolong the coherence time for the qubit
subject directly to decoherence.
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I. INTRODUCTION

Superposition of states and entanglement make quantum
information processing much different from its classical
counterpart, but a quantum system would unavoidably interact
with its environment, resulting in a degradation of coherence
and entanglement. For example, spontaneous emission in
atomic qubits [1] would spoil the coherence of quantum states
and limit the entanglement time.

Recent experimental advances have enabled individual
systems to be monitored and manipulated at the quantum
level [2]. This makes the quantum feedback control realiz-
able. Among the feedback controls, the homodyne-mediated
feedback [3,4] and quantum-jump-based feedback controls
have been proposed to generate steady-state entanglement in a
cavity [5,6]. These two feedback schemes are Markovian; that
is, a feedback information proportional to the quantum-jump
detection is synchronously used. These control schemes can
also be used to suppress decoherence [7–10].

Meanwhile, researchers are looking for good systems for
experimental implementation of quantum information pro-
cessing. Among the various candidates, solid-state quantum
devices based on superconductors [11] and lateral quantum
dots [12] are promising; however, the decoherence from
intrinsic noise originating from two-level fluctuators is hard
to engineer [13]. For this reason, the nuclear spins have
attracted considerable attention [14] due to their long co-
herence times [15]. However, their weak interactions with
others make the preparation, control, and detection on them
difficult. Thanks to their intrinsic interactions with electron
spins, electron spins can be used as ancillas to access single
nuclear spins. This naturally leads to the following question:
Can feedback strategy be used to suppress decoherence as well
as to prepare and protect entanglement between the nuclear
and electron spins by controlling the electron spin? In this
article, using a generalized model, we study this problem by
considering a nuclear spin (as a qubit) coupled to electron spin
(as the other qubit) that is exposed to its environment. We
show that a Markovian feedback based on quantum jumps can
be used to suppress decoherence, produce entanglement, and
protect it.

The article is organized as follows: In Sec. II, we describe
our model and present the dynamics in the absence of feedback.
In Sec. III, we introduce the quantum-jump-based feedback

control and give the dynamical equation under the feedback
control. The effect of feedback control on decoherence and
entanglement is discussed in Secs. IV and V, respectively.
Section VI concludes our results.

II. MODEL

Our system consists of a pair of two-level systems, called
qubit 1 and qubit 2, where only qubit 2 interacts with its
environment. We present a scheme employing quantum-jump-
based feedback control on qubit 2 to affect the decoherence
of qubit 1 and increase entanglement between the two qubits.
The Hamiltonian of the system reads

H = 1
2h̄ω1σ

z
1 + 1

2h̄ω2σ
z
2 + h̄g(σ+

1 σ−
2 + σ−

1 σ+
2 ). (1)

The first two terms represent the free Hamiltonian of the two
qubits, and the last term describes their interactions under
the rotating-wave approximation. The terms ω1 and ω2 are the
transition frequencies of the two qubits, respectively, g is the
coupling strength of the two qubits, and σz is the Pauli matrix,
that is, σz = |e〉〈e| − |g〉〈g|, σ+ = |e〉〈g|, and σ− = |g〉〈e|.

The state of this quantum system can be described by the
density operator ρ, which is obtained by tracing out the
environment. The dynamics of open quantum systems can
be described by quantum master equations. The most
general form of master equation for the density operator
is [16,17]

ρ̇ = − i

h̄
[H,ρ] + L(ρ), (2)

where H is the system Hamiltonian and L is a superopera-
tor defined by L(ρ) = �kγk(LkρL

†
k − 1

2L
†
kLkρ − 1

2ρL
†
kLk),

in which different k’s characterize different dissipative
channels.

In our system, the first qubit is assumed to be isolated
from the environment. The decoherence comes from the
spontaneous emission of the qubit 2 (the second qubit). This
situation is of relevance to a system consisting of nuclear and
electron spins in the aforementioned solid-state devices. The
dynamics of such a system takes

ρ̇ =− i

h̄
[H,ρ] + γ

(
σ−

2 ρσ+
2 − 1

2
σ+

2 σ−
2 ρ − 1

2
ρσ+

2 σ−
2

)
. (3)
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Here σ±
2 = I1 ⊗ σ±

2 . The second part of Eq. (3) describes the
dissipation of our system with γ as the decay rate.

Though the first qubit is assumed to be isolated from
the environment, it still loss coherence due to the coupling
to the second qubit. The decoherence process can be showed
by the decay of off-diagonal elements of the reduced density
matrix for the first qubit. In order to investigate this decoher-
ence, we calculate the evolution of system density operator ρ

and then trace out the second qubit to get the reduced matrix

ρ1 = Tr2(ρ) =
∑
k=e,g

2〈k|ρ|k〉2 =
(

ρee ρeg

ρge ρgg

)
. (4)

The diagonal elements are the populations in the excited and
ground states of the first qubit, and the off-diagonal elements
represent the coherence of the qubit 1.

III. QUANTUM-JUMP-BASED FEEDBACK CONTROL

Quantum feedback controls play an increasingly important
role in quantum information processing. They are widely
used to create and stabilize entanglement as well as combat
decoherence [5,6,8,10]. In our model, the second qubit is
used as an ancilla through which the feedback can affect the
dynamics of the first qubit; that is, by employing a feedback
control on the second qubit, we control the first qubit. The goal
is to suppress the decoherence of the first qubit and enhance
the entanglement between the two qubits by feedback control
on the second qubit [6].

Our feedback-control strategy is based on quantum-jump
detection. The master equation with feedback can be derived
from the general measurement theory [4]. In our article, Eq. (3)
is equivalent to

ρ(t + dt) =
∑

α=0,1

�α(T )ρ(t)�†
α(T ), (5)

with

�1(dt) =
√

γ dtσ−
2 , (6)

�0 = 1 −
(

i

h̄
H + 1

2
γ σ+

2 σ−
2

)
dt. (7)

When the measurement result is α = 1, a detection occurs,
which causes a finite evolution in the system via �1(dt). This is
called a quantum jump. Then the unnormalized density matrix
becomes ρ̃α=1 = σ−

2 ρ(t)σ+
2 dt . The feedback control is added

by giving ρ̃α=1 a finite unitary evolution, and then ρ̃α=1 become
ρ̃α=1 = Fσ2ρ(t)σ+

2 F †dt . In the limit that the feedback acts
immediately after a detection and in a very shot time (much
smaller than the time scale of the system’s evolution), the
master equation is Markovian:

ρ̇ = − i

h̄
[H,ρ] + γ

(
Fσ−

2 ρσ+
2 F † − 1

2
σ+

2 σ−
2 ρ − 1

2
ρσ+

2 σ−
2

)
.

(8)

Here F = eiHf and Hf = − 1
h̄
H ′

f tf . We see that the operator
Hf contains a relatively large operator H ′

f multiplied by a
very short time tf (Markovian assumption), but the product
represents a certain amount of evolution, so it is convenient to
discuss Hf instead of H ′

f and tf . Here Hf is a 2 × 2 Hermitian

operator which can be decomposed by Pauli matrices Hf =
Axσx + Ayσy + Azσz (Ax,Ay,andAz are real numbers). So we
have

F = I1 ⊗ ei �A·�σ = I1 ⊗
(

cos | �A| + i
sin | �A|

| �A|
�A · �σ

)
. (9)

Here �σ = (σx,σy,σz) and �A = (Ax,Ay,Az), representing the
amplitude of σx,σy , and σz controls.

In order to understand the physical meaning of feed-
back operator F , we rewrite it as F = I1 ⊗ e−i ω

2 �n·�σ where
�n = (sin θ cos φ,sin θ sin φ, cos θ ) and �σ = (σx,σy,σz). This
feedback operator is equivalent to a time evolution with
evolution operator F = I1 ⊗ eiHf , and it is clear that the
operator F rotates the Bloch vector of the second qubit with
the angle ω around the �n axis. The relationship between the
two forms of F are Ax = −ω

2 sin θ cos φ,Ay = −ω
2 sin θ sin φ,

and Az = −ω
2 cos θ , so an σx control (Ay = 0,Az = 0) means

rotating the Bloch vector with a certain amount of angle around
the x axis of Bloch sphere; so do the Ay and Az controls.
Different �A’s represent different feedback evolution; that is,
rotate the Bloch vector with a particular angle around a given
direction in the Bloch sphere. For simplicity, we discuss the
σx,σy,σz controls one by one in the following.

This control mechanism has the advantage of being simple
to apply in practice, since it does not need real-time state
estimation as the Bayesian feedback control does [18]. The
emission of the second qubit is measured by a photo detector,
whose signal provides the information to design the control F .
In this kind of monitoring, the absence of signal predominates
the dynamics and the control is triggered only after a detection
click (i.e., a quantum jump occurs).

IV. DECOHERENCE SUPPRESSION

Before investigating the influence of the feedback control,
we first analyze the evolution of our system without the control.
Assume that the two qubits are initially in the same pure
superposition state, for example, |ψ〉 = 1√

2
(|e〉1 + |g〉1) ⊗

1√
2
(|e〉2 + |g〉2). The corresponding density matrix is

ρ0 = |ψ〉〈ψ | = 1

4

⎛
⎜⎜⎜⎝

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

⎞
⎟⎟⎟⎠ . (10)

We assign the Planck constant h̄ to be 1, ω1 = ω2 = ω in
Eq. (1), and g/ω = 1,γ /ω = 0.5. After numerical calculation,
we get the evolution of the density matrix for the first qubit
without control. Since ρeg = ρ∗

ge,ρee + ρgg = 1, we discuss
only coherence |ρeg| and excited-state population ρee for
simplicity. The evolution of |ρeg| and ρee without the control
is depicted in Figs. 1(a) and 1(b) (dashed lines).

In Fig. 1(a), a fast decay of |ρeg| (dashed line) can be found.
This demonstrates that the first qubit lost coherence due to
the second qubit’s spontaneous emission and their interaction.
Meanwhile, the first qubit lost energy due to couplings with
the second qubit [Fig. 1(b) (dashed line)]. The results also
show that the populations in excited states decay away. This
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FIG. 1. (Color online) (a) Time evolution of |ρeg| with and
without control; t is in units of 1

ω
. The different curves correspond

to Ax = 1.2, Ay = Az = 0 (solid line) and Ax = Ay = Az = 0 = 0
(dashed line) for g/ω = 1,γ /ω = 0.5. The feedback-control strategy
results in an improvement in decoherence time. (b) Excited-state
population ρee evolution with and without control for the same
parameters as (a); the decay of excited-state population is slower
in the controlled scheme.

is because the first qubit exchanges energy with the second
qubit; see Eq. (1).

Now we add feedback control F to our system. The master
equation then becomes Eq. (8). Our system is initially in the
state ρ0, and other parameters remain unchanged.

We first analyze the σx control by choosing feedback
amplitude Ax = 0 ∼ π , Ay = Az = 0. Note that when Ay =
Az = 0, the feedback amplitude Ax influences the system’s
evolution with a period of π , which comes from the
term Fσ−

2 ρσ+
2 F † in Eq. (9). It can be analytically proved

that eiAxσx σ−ρ2σ
+e−iAxσx = ei(Ax+π)σx σ−ρ2σ

+e−i(Ax+π)σx and
eiAyσy σ−ρ2σ

+eiAyσy = ei(Ay+π)σy σ−ρ2σ
+ei(Ay+π)σy under any

Ax and Ay . Here ρ2 is the reduced density matrix of the second
qubit. The absolute value for the first qubit’s off-diagonal
density-matrix element evolves as shown in Fig. 2(a). The
figure indicates that for an appropriate feedback amplitude,
Ax ≈ 1.3 and Ax ≈ 1.9, the absolute value of off-diagonal
element can be evidently enhanced compared with the un-
controlled case (Ax = 0). This means the decoherence is
partially suppressed. The improvement of coherence caused
by feedback is shown explicitly in Fig. 1(a). We plot |ρeg|, rep-
resenting the coherence of the first qubit, as a function of time
with Ax = 1.2, Ay = Az = 0 (a selected controlled case). In
comparison with the uncontrolled case, a stronger oscillation
amplitude and longer dechoherence time appear. Meanwhile,
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FIG. 2. (Color online) The evolution of absolute value of the first
qubit’s off-diagonal element with different control parameters, for
g/ω = 1,γ /ω = 0.5, and t in the units of 1

ω
. (a) The σx control for

Ax = 0 ∼ π,Ay = Az = 0. (b) The σy control for Ay = 0 ∼ π,Ax =
Az = 0. (c) The σz control for Az = 0 ∼ π,Ax = Ay = 0. When the
feedback amplitude is chosen to be about 1.3 and 1.9 for both σx and
σy controls, the oscillation of the off-diagonal element is remarkably
enhanced. The σz control does not work in our model.

the ρee decays slowly compared to the uncontrolled case as
shown in Fig. 2(b).

Similarly, the σy control is also able to slow down the decay
of |ρeg|. We make Ay = 0 ∼ π,Ax = Az = 0. The numerical
results of |ρeg| are shown in Fig. 2(b). Unlike the σx and
σy controls, the σz control (Az = 0 ∼ π,Ax = Ay = 0) has no
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FIG. 3. (Color online) Polarization vector evolution in a Bloch
sphere for feedback amplitudes Ax = π

2 , Ax = Ay = 0 (solid line),
and Ay = Ax = Ay = 0 (dashed line). The parameters are g/ω = 1,
γ /ω = 0.5, and the initial state is |ψ〉 = 1√

2
(|e〉1 + |g〉1) ⊗ 1√

2
(|e〉2 +

|g〉2).

effect on the evolution of the system as shown in Fig. 2(c). This
is because eiAzσzσ−ρ2σ+e−iAzσz = ρ2 for any Az. The physics
behind this result is as follows: After emitting a photon, the
controlled qubit must stay in the ground state with the Bloch
vector pointing the bottom of the Bloch sphere, so the rotation
around the z axis does not change the Bloch vector; that is, the
state of the qubit remains unchanged.

The present results show that decoherence of the first qubit
can be suppressed by controlling its partner. The decoherence
source in our system is the spontaneous emission of the
second qubit: Once the detector detects a photon (i.e., a
quantum jump of the second qubit happens), the feedback
beam instantaneously acts on the second qubit, and then the
first qubit is impacted through the coupling of the second
qubit. The feedback-control scheme can reduce the destructive
effects of coherence and slow down the dissipation of energy.
The control effect is relevant to the coupling strength g. When
g is small, the first qubit is unlikely to be impacted by the
second qubit, so it is hard to prepare, measure, and control
the state of the first qubit. As the interaction gets stronger, the
effect of feedback control becomes more evident.

For the case discussed in Fig. 1, the first qubit is dissipative.
We found that when the control parameters are chosen as
Ax = π

2 ,Ay = Az = 0, or Ay = π
2 ,Ax = Ay = 0 with the

two qubits initially being prepared in the same states, the
decoherence dynamics turns to be the phase-damping type.
The population in the ground state and excited state do
not change, while the off-diagonal elements evolves in the
same way as in the uncontrolled case. We show this in a
Bloch sphere [19] in Fig. 3. Here the reduced density matrix
of the first qubit can be written by ρ1 = 1

2 (I + �P · �σ ). We
can get the polarization vector components Px = Tr(σxρ1),
Py = Tr(σyρ1), and Pz = Tr(σzρ1).

V. ENTANGLEMENT CONTROL

Quantum feedback control has been recently used to
improve the creation of steady-state entanglement in open

quantum systems. A highly entangled states of two qubits in
a cavity can be produced with an appropriate selection of the
feedback Hamiltonian and detection strategy [6,20]. We show
that the quantum-jump-based feedback scheme can produce
and improve entanglement in our model. We choose the
concurrence [21] as a measure of entanglement. For a mixed
state represented by the density matrix ρ, the “spin-flipped”
density operator reads

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy), (11)

where the ∗ denotes complex conjugate of ρ in the bases of
{|gg〉,|ge〉,|eg〉,|ee〉} and σy is the usual Pauli matrix. The
concurrence of the density matrix ρ is defined as

C(ρ) = max (
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4,0), (12)

where λi are eigenvalues of matrix ρρ̃ and sorted in de-
creasing order λ1 > λ2 > λ3 > λ4. The range of concur-
rence is from 0 to 1, and C = 1 represents the maximum
entanglement.

In the absence of the spontaneous emission (i.e., γ = 0),
the system evolves without dissipation. We find that for the
system initially in a separable state except for |ψ〉 = |e〉1|e〉2

or |ψ〉 = |g〉1|g〉2 (the eigenstates of system Hamiltonian H ),
an entangled state can be generated due to the interaction
between the two qubits. The amount of entanglement depends
on the initial states of the system and the coupling strength
g, but when the spontaneous emission effect is taken into
account, the performance of entanglement preparation get
worse considerably.

Now we investigate if our feedback-control strategy can
improve the entanglement preparation with the effect of
spontaneous emission of the second qubit. The master equation
with control is Eq. (8). The effect of feedback control lies in
different choices for the feedback parameters Ax,Ay, and Az,
the coupling strength g, and different initial states. Here we
present two typical results with two different states.

Our first choice is the initial state |ψ〉 = |g〉1|e〉2 with
σy control for Ay = 0 ∼ π , Ax = 0, and Az = 0. The con-
currence evolution is plotted as a function of time and
feedback amplitude Ay in Figs. 4(a) and 4(b) denotes the
concurrence evolution with a selected feedback amplitude
compared with the uncontrolled case. We see that entangled
states can be generated with any feedback parameters, but
they decrease with time because of the dissipative effect.
When an appropriate feedback amplitude A = 0.5π is chosen,
the concurrence amplitude is remarkably enhanced, and the
entanglement lasts for a long time. For the system initially
in the state |ψ〉 = |e〉1|e〉2 with σy control, the dynamics
of the concurrence is shown in Fig. 5(a). Note that in
this case if there is no spontaneous effect, this is a steady
state of the system, and the density matrix elements do
not change with time. Figure 5(a) demonstrates that the
dissipation and feedback can produce entanglement. We show
this explicitly in Fig. 5(b) by choosing feedback amplitude
Ay = 1.2. We can see that for a proper feedback amplitude,
after an entanglement death, a larger amount entanglement is
regenerated.

These results show that the feedback-control strategy can
be used to prepare and protect entanglement in our model. The
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FIG. 4. (Color online) (a) Conccurence as a function of time
and Ay . The system is initially in the state |ψ〉 = |g〉1|e〉2, for the
parameters g/ω = 1,γ /ω = 0.5. (b) A controlled evolution for Ay =
0.5π, Ax = Az = 0 vs. the uncontrolled case. The entanglement is
improved by choosing an appropriate feedback; t is in units of 1

ω
for

(a) and (b).

effect of entanglement control strongly depends on the initial
state. For a certain initial state, we found that the σx control
and σy control have similars effect but that the σz control does
not work.

Before closing this section, we note that although the model
in Eq. (1) does not describe the hyperfine interaction (i.e., the
interaction between nuclear and electron spins), we can
simulate Hamiltonian Eq. (1) in nuclear-electron spin systems
by recent technology [22–28]. On the other hand, by using
the hyperfine interaction Hamiltonian, we can obtain results
similar to that with the Hamiltonian Eq. (1), as follows. The
Hamiltonian that describes hyperfine interactions is H (t) =
ωI (t)Iz + ωs(t)Sz + ωIS(t)2IzSz + ωI

rf (t)Ix + ωs
rf (t)Sx. The

Hamiltonian for the dipole-dipole coupling in the interaction
frame of the rf irradiation averages over a rotor period to [29]
H̃IS = (AZ+BY+) + (CZ− + DY−), where A,B,C, and D

are parameters [28], Z± = IzSz ∓ IySy , and Y± = IySz ±
IzSy. In the widely used double cross polarization, the system
Hamiltonian may be described by H̄IS = κ[cos(α)Z− +
sin(α)Y−] [28]. By this Hamiltonian [instead of the Hamilto-
nian (1)], we numerically simulate the evolution of the nuclear
spin and the entanglement between these spins; the results are
presented in Figs. 6 and 7. The results show that in a nuclear-
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FIG. 5. (Color online) (a) Concurrence as a function of time
and Ay . The system is initially in the state |ψ〉 = |e〉1|e〉2, for the
parameters g/ω = 1, γ /ω = 0.5. (b) The controlled concurrence
evolution for Ay = 1.2, Ax = Az = 0 vs. the uncontrolled case; t

is in units of 1
ω

for (a) and (b).

electron spin system, the feedback-control scheme presented
here is also available, and the results are similar to those with
the Hamiltonian Eq. (1). The decoherence of electron spins in
solids comes mainly from the inhomogeneity of the magnetic
field. From the other point of view, this inhomogeneity
induced decoherence can be described by atom-environment
couplings [30]. Reference [31] shows that in the itinerant
electrons model, after an appropriate transformation, the spin
decoherence can be described by a boson-fermion Hamiltonian
that would lead to the decoherence model chosen in this article.
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FIG. 6. (Color online) Off-diagonal element of the reduced
density matrix for the nuclear spin vs. time with σy control. The
parameters chosen are g/ω = 1,γ /ω = 1,κ = 1, and α = π

4 .
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FIG. 7. (Color online) Concurrence as a function of time and
Ay. The system is initially in the state |ψ〉 = |e〉1|e〉2, for g/ω =
1,γ /ω = 1,κ = 1, and α = π

4 .

Therefore, the decoherence model presented here can be
used to describe alternatively the decoherence of electrons
in solids. On the other hand, the master equation can describe
a wide range of decoherence in physical systems, so choosing
such a model to study the feedback control is interesting on
its own.

VI. CONCLUSION AND REMARKS

In this article, we studied the effect of quantum-jump-based
feedback control on a system consisting of two qubits, where
only one of them was subject to decoherence. By numerical
simulation, we found that it is possible to suppress decoherence
of the first qubit by a local control on the second qubit.
We observed that the decoherence time of the first qubit
is increased remarkably. The control scheme can also used
to protect the entanglement between the two qubits. These
features can be understood as the feedback control changing
the dissipative dynamics of the system through the quantum-
jump operators. We note that Hamiltonian Eq. (1) does not
describe the hyperfine interaction. However, by the recent
technology, we can simulate Hamiltonian Eq. (1) in nuclear-
electron spin systems; in this sense, the scheme presented
here is available for nuclear-electron spin systems. On the
other hand, by using the hyperfine interaction Hamiltonian,
our further simulations show that we can obtain results similar
to that for Hamiltonian Eq. (1).
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