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Optical spin-1 chain and its use as a quantum-computational wire
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Measurement-based quantum computing, a powerful alternative to the standard circuit model, proceeds using
only local adaptive measurements on a highly entangled resource state of many spins on a graph or lattice. Along
with the canonical cluster state, the valence-bond solid ground state on a chain of spin-1 particles, studied by
Affleck, Kennedy, Lieb, and Tasaki (AKLT), is such a resource state. We propose a simulation of this AKLT state
using linear optics, wherein we can make use of the high-fidelity projective measurements that are commonplace
in quantum-optical experiments, and describe how quantum logic gates can be performed on this chain. In our
proposed implementation, the spin-1 particles comprising the AKLT state are encoded on polarization biphotons:
three-level systems consisting of pairs of polarized photons in the same spatio-temporal mode. A logical qubit
encoded on the photonic AKLT state can be initialized, read out, and have an arbitrary single-qubit unitary applied
to it by performing projective measurements on the constituent biphotons. For MBQC, biphoton measurements
are required which cannot be deterministically performed using only linear optics and photodetection.
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I. INTRODUCTION

In recent years, a significant amount of research has been
dedicated to overcoming the practical hurdles posed by the full-
scale realization of quantum computers. Measurement-based
quantum computation (MBQC) [1] is an alternative model
to the standard circuit model [2] that significantly reduces
the requirements for quantum computation in a number of
architectures including linear optics [3,4]. In MBQC, the
computation proceeds by performing single-particle adaptive
measurements on a fixed multipartite entangled “resource”
state, which is defined on a set of quantum particles arranged
on a graph or lattice. The primary challenge for quantum
computation is then shifted from achieving controlled unitary
evolution, as in the standard circuit model, to preparing,
maintaining, and performing measurements on such a resource
state. The cluster state [1] serves as the canonical resource
state for MBQC, but recently there have been a few proposed
alternatives [5–11]. Among these, perhaps the most intriguing
are those that arise as the ground state of a “natural” spin-lattice
Hamiltonian with two-body nearest-neighbor interactions.
With such a Hamiltonian model, the resource state can
be created simply by cooling [12], rather than a complex
dynamical construction.

One such proposal [7,8] is based on the AKLT state, named
after Affleck, Kennedy, Lieb, and Tasaki [13]. The AKLT state
is defined on a one-dimensional (1D) chain of spin-1 particles
and is the ground state of a two-body, rotationally invariant,
nearest-neighbor antiferromagnet,

H AKLT =
N∑

i=1

�Si · �Si+1 + 1

3
(�Si · �Si+1)2 , (1)

where �Si is the spin-1 operator acting on the ith site. In
condensed-matter physics, the AKLT state (an example of
a valence-bond solid [13]) was put forward as a rigorous
example supporting Haldane’s conjecture [14,15] that 1D
Heisenberg chains with integer spins, as opposed to half-
integer spins, have a nonzero energy gap. Along with its role
in theoretical condensed-matter physics, the AKLT state has

served as a template for understanding quantum-information
processing using spin chains with a measurement-based
model. The mathematical methods in quantum-information
theory that were developed from generalizing the AKLT state,
such as finitely-correlated states [16], matrix product states
[17], and projected entangled-pair states (PEPS) [18], form
the basis for our theoretical description of MBQC and the
development of new resource states. The AKLT state with
open boundary conditions is a perfect qubit channel, with
maximal, infinite-ranged localizable entanglement [19]. In
fact, it is an even stronger resource than this, as it can serve as a
quantum-computational wire [20]. A quantum-computational
wire is a linear multipartite state (e.g., the ground state of a
spin chain) that can transmit a logical qubit along its length by
performing single-particle measurements, and in addition can
apply single-qubit unitaries to this logical qubit. Quantum-
computational wires can be used as basic components of a
quantum computer; by coupling multiple such wires together,
one can construct universal resources for MBQC [7,8].

In the condensed-matter systems normally associated with
strongly interacting spin chains, there is currently no way to
perform the high-fidelity adaptive measurements of individual
spins required for MBQC. However, considerable recent
progress in developing strongly interacting quantum-optical
and atomic systems on lattices with controllable interactions
may allow us to synthesize such an interaction in an archi-
tecture where such measurements are possible. Brennen and
Miyake [8] propose possibilities using neutral atoms with
controlled collisions in an optical lattice, or polar molecules
with dipole-dipole interaction in an optical lattice.

Here, we propose an experimental method for simulating an
AKLT state using single-photon linear optics, with biphotons
as the spin-1 particles, and detail its use as a quantum-
computational wire. This proposal takes advantage of the
high-fidelity projective measurements that are available in
single-photon experiments. Our proposal has many similarities
to the linear optical methods used to generate cluster states
[3,4], but also some key differences. First and foremost,
our optical AKLT state uses qutrits (three-level quantum
systems) rather than qubits. Higher-dimensional systems,
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like qutrits, have been shown to possess advantages in
quantum-information processing, for instance, in terms of
increased channel capacity [21] and increased security in
quantum bit commitment [22]. Biphotons, being qutrits, are
natural candidates for these applications, and recent work has
illustrated how these biphotons may be manipulated in linear
optics. Lanyon et al. [23] have experimentally demonstrated
how a given input biphoton may be transformed into an
arbitrary biphoton, and Lin [24] has shown how arbitrary
unitary operations may be applied to biphotons. We make
use of these recent capabilities for linear-optics manipulation
of biphotons for our proposal.

The paper is structured as follows. In Sec. II, we review
the definition of the AKLT state and its description as a matrix
product state. In Sec. III, we present our proposal for an optical
implementation of the AKLT state, as well as the methods for
using this state as a quantum-computational wire. We conclude
with a discussion in Sec. IV.

II. THE AKLT STATE

We first review some of the basic properties of the AKLT
state. Consider a one-dimensional chain of spin-1 particles.
The AKLT state is a spin-1 antiferromagnet, and can be defined
by requiring that that the total spin of every neighboring
pair of particles is never J = 2. For an infinite chain the
Hamiltonian for which the AKLT state is the ground state
may be constructed simply as

H AKLT =
∑

i

P
(J=2)
i,i+1 , (2)

where the operators P
(J=2)
i,i+1 = 1

6 (�Si · �Si+1)2 + 1
2 (�Si · �Si+1) +

1
3 , are projections onto the total spin-2 subspace of spin-1

particles i and i + 1, where �S is the spin-1 vector operator
(Sx,Sy,Sz), and the summation index i goes over all integers.
This Hamiltonian is equivalent to that of Eq. (1) up to an
additive constant. As each P

(J=2)
i,i+1 operator is positive, a state

that is a zero eigenstate of each P
(J=2)
i,i+1 will also be a ground

state of H AKLT. The Hamiltonian H AKLT is frustration free
in the sense that there exists a state, the AKLT state, that
minimizes the energy of each P

(J=2)
i,i+1 term separately.

If we consider a finite N -particle chain with i running from
1 to N we find that the ground state is fourfold degenerate. In
this case, a unique state can be specified by appending spin-1/2
particles to the ends and adding the condition that the total spin
of the end spin-1/2 particle and its neighboring spin-1 particle
is 1/2. Specifically, a Hamiltonian with the N -particle version
of the AKLT state with attached spin-1/2 particles (which will
be referred to simply as the AKLT state in the rest of this paper)
as its ground state can be constructed analogously to above as
a positive sum of projections. In terms of spin operators this
Hamiltonian takes the form,

H AKLT
N = �s0 · �S1 + �SN · �sN+1 +

N∑
i=1

�Si · �Si+1 + 1

3
(�Si · �Si+1)2,

(3)

where �s is the spin-1/2 vector operator. The first two terms
are projections onto total spin 3/2, and each summand is a

...

...

FIG. 1. (Color online) Construction of the AKLT state from a line
of singlets. Ends of singlets are “projected” onto spin 1 creating an
entangled spin-1 chain.

projection onto total spin 2 (up to irrelevant additive constants
and positive multiplicative factors). The above Hamiltonian is
rotationally invariant and consists only of nearest-neighbor,
two-body interactions [13]. It was proved in [25] that the
Hamiltonian has a nonzero energy gap between the ground
state and the first excited state.

An explicit construction of the AKLT state is provided by
its description as a valence bond solid. In this description,
two “virtual” spin-1/2 particles are assigned to each spin-
1 particle. One is prepared in a spin singlet state with the
neighbor to the left, and the other in a spin singlet with the
neighbor to the right. The pair of virtual pairs at each site
are coupled to total spin 1. Specifically, consider a line of
spin-1/2 singlets |ψ−〉 = 1√

2
(|01〉 − |10〉), where |0〉 and |1〉

are spin-up and spin-down states, respectively, for the virtual
spin-1/2 particles. Neighboring singlets end on the sites where
the physical spin-1 particles will be located, as in Fig. 1(a).

The pairs of virtual spin-1/2 particles at each site are
projected onto the combined spin-1 subspace (the triplet) to
create an entangled spin-1 chain, which is the ground state of
Eq. (3), as in Fig. 1(b). This construction using singlets (which
have total spin 0) ensures that the total spin of any neighboring
spin-1 particles is not 2.

The AKLT state can then be expressed as

|V 〉 = ( ⊗N
k=1 Pkk̄

)|ψ−〉01|ψ−〉1̄2 · · · |ψ−〉N̄N+1 , (4)

where Pkk̄ is given by

Pkk̄ = |M1〉〈00| + |M0〉〈ψ+| + |M−1〉〈11| , (5)

and where |M1〉,|M−1〉,|M0〉 are spin-1 eigenstates of Sz (com-
ponent of spin in the z direction) and |ψ+〉 = 1√

2
(|01〉 + |10〉).

So the isometries Pkk̄ project onto the total spin-1 subspace of
a system of two spin-1/2 particles.

From this valence bond solid description, we may derive
the matrix product state description of the AKLT state [19],

|V 〉 =
∑

β1,...,βN

|β1〉 · · · |βN 〉1 ⊗ A[βN ] · · ·A[β1]|ψ−〉0,N+1,

(6)

where 1 is the 2 × 2 identity operator, |βi〉 form any basis of
the ith spin-1 system Hi , and the map A : Hi → sl2(C) (the
space of traceless 2 × 2 matrices) is the bijective linear map
satisfying

Piī(A[β]† ⊗ 1)|ψ−〉iī = |βi〉 . (7)
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For example, in the basis {|M−1〉,|M0〉,|M1〉} we obtain the
operators,

A[M1] = −
√

2|1〉〈0| = −
√

2σ−, (8)

A[M0] = |0〉〈0| − |1〉〈1| = σz, (9)

A[M−1] =
√

2|0〉〈1| =
√

2σ+. (10)

Note that the singlet has the property that 1 ⊗ A|ψ−〉 =
Ã ⊗ 1|ψ−〉 where A can be any 2 × 2 matrix and Ã = σyA

T σy

where σy is the Pauli Y matrix. This allows us to shift the A

operators from particle N + 1 to particle 0 depending on which
is more convenient.

A. The AKLT state as a quantum-computational wire

We now demonstrate how the AKLT state can be used
as a quantum-computational wire, first shown in [7] (where
a minor variation on the AKLT state was used). The way
in which information is transmitted along an AKLT state is
analogous to teleporting a qubit multiple times. If the right
measurements are performed on the AKLT state’s spin-1
particles, a teleporting measurement can be realized on its
underlying, virtual spin-1/2 particles. In Eq. (6) we have
written the states of the spin-1 particles (labeled 1 to N )
to the left of the spin-1/2 particles (labeled 0 and N + 1).
The state is in an entangled superposition with the operators
1 ⊗ A[βN ] · · · A[β1] acting on particles 0 and N + 1 in each
term. Performing measurements on every spin-1 particle in the
basis β will place the unmeasured spin-1/2 particles in a state
of the form,

1 ⊗ A[βN ] · · · A[β1]|ψ−〉0,N+1 , (11)

where the βi now label measurement outcomes. If each A[βi]
is unitary, the spin-1/2 particles will be maximally entangled.
It turns out that A[β] will be unitary if and only if |β〉 is a
zero eigenstate of spin along some physical axis. For instance,
writing the AKLT state in Eq. (6) in the basis { 1√

2
(|M−1〉 +

|M1〉),|M0〉, 1√
2
(|M−1〉 − |M1〉)}, which are zero eigenstates of

Sy,Sz,Sx , will yield a Pauli operator for each A, specifically,

A

[
1√
2

(|M−1〉 + |M1〉)
]

= iσy, (12)

A[M0] = σz, (13)

A

[
1√
2

(|M−1〉 − |M1〉)
]

= σx. (14)

The fact that particles 0 and N + 1 can be placed in a
maximally entangled state, which can subsequently be used for
teleportation, illustrates how the AKLT state has the capacity
to transmit a qubit along its length. An alternate interpretation
of Eq. (11) is that we may perform a measurement on particle
0 before measuring the spin-1 particles, and then the matrices
A[β] can be thought of as “acting on” particle N + 1. We will
elaborate on this idea for a linear optical implementation in
the following sections.

III. OPTICAL IMPLEMENTATION

We now show how to create an optical AKLT state
with linear optical methods using entangled photon pairs,

and subsequently use it as a quantum-computational wire.
Our proposed implementation encodes an AKLT state on
an entangled chain of polarization biphotons, which serve
as the spin-1 particles of the AKLT chain. Biphotons are
pairs of frequency degenerate photons occupying the same
spatio-temporal mode with a polarization degree of freedom.
Each biphoton is a three-level system, a qutrit, spanned by the
three states,

|HH 〉 := 1√
2
â
†2
H |vac〉 , (15)

|HV 〉 := â
†
H â

†
V |vac〉 , (16)

|V V 〉 := 1√
2
â
†2
V |vac〉 . (17)

Note that, in our notation, the state |HV 〉 is defined as a
symmetric state of two photons in the same spatio-temporal
mode. In this paper we will regard spin-1/2 states as
the horizontal and vertical polarization states of a single
photon,

|0〉 = â
†
H |vac〉 , |1〉 = â

†
V |vac〉 , (18)

and the spin-1 states as the symmetric biphoton states,

|M1〉 = |HH 〉 ,

|M0〉 = |HV 〉 , (19)

|M−1〉 = |V V 〉 ,

where â
†
H ,â

†
V are the creation operators for horizontally and

vertically polarized photons, respectively.

A. Creating a photonic AKLT state

We propose creating a photonic AKLT state following
the PEPS construction described in the previous section.
The method is illustrated in Fig. 2. In this construction, the
AKLT state is built from an underlying line of singlets to
which projections onto total spin 1 are applied at each site.
The singlets can be physically realized by generating a line
of type-II phase-matched parametric down-converted (PDC)
photon pairs [26] in polarization singlet configurations. The
necessary projections Pkk̄ can then be performed by passing
two photons, one from each neighboring singlet, through a
50:50 beam splitter so that they undergo Hong-Ou-Mandel
interference [27]. A well-known effect in quantum optics [28]
is that when two photons of an incoming antisymmetric singlet
state interfere on a 50:50 beam splitter, they will always emerge

FIG. 2. (Color online) An optical AKLT state with N = 2. A
postselection of ‘0’ counts at the photodetectors projects two photons,
one from each neighboring singlet, onto three-level biphotons. Po-
larization states are created via parametric down-conversion (PDC),
and the two photons are interfered on 50:50 beam splitters.
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TABLE I. Dependence of output on input photons. The cre-
ation operators a† and b† create photons in separate spatial
modes and the subscripts H,V,D,A,L,R denote horizontal, ver-
tical, diagonal, antidiagonal, left, and right circular polarizations,
respectively.

Input state (Bell state) State after beam splitter

(a†
V b

†
V + a

†
H b

†
H )|vac〉 (b†

Lb
†
R − a

†
La

†
R)|vac〉

(a†
V b

†
V − a

†
H b

†
H )|vac〉 (b†

Ab
†
D − a

†
Aa

†
D)|vac〉

(a†
V b

†
H + a

†
H b

†
V )|vac〉 (b†

H b
†
V − â

†
H â

†
V )|vac〉

(a†
H b

†
V − a

†
V b

†
H )|vac〉 (a†

H b
†
V − a

†
V b

†
H )|vac〉

in separate arms. Conversely, the outgoing photons of any
symmetric input state will always emerge together in the same
arm. Outputs for different beam splitter inputs are listed in
Table I. Thus by discarding outcomes in which photons emerge
in separate arms, one projects out the singlet and ensures
that both photons emerge as a biphoton. This is equivalent
to applying the operator Pkk to pairs of incoming polarized
photons.

The required postselection can be performed in more
than one way. We could, for instance, postselect on one
arm of the beam splitter. In this case we would place our
detection apparatus on one arm and only regard the outcome
as successful if two photons are detected on that arm. In theory
this is equivalent to only accepting zero photons on the other
arm. Such a setup is illustrated in Fig. 2. In this case the
probability of successfully adding a biphoton to the chain is
3/8. We could double this probability by placing a detection
apparatus on each arm of the beam splitter. In this case the
only unsuccessful outcome is if one photon emerges on each
arm, which is equivalent to detection of the singlet state. The
probability of unsuccessful postselection at each projected
site is 1/4, and thus the probability of successfully adding
a biphoton to the chain is 3/4.

In terms of preparing a resource for MBQC, the latter
process has several advantages compared with the “fusion”
used to produce cluster states in linear optics [4]. First, the
success rate is higher: 3/4 here compared with 1/2 for fusion.
Second, a failure outcome corresponds to a projection onto
a singlet state which, according to the rule of entanglement
swapping,

23〈ψ−|(|ψ−〉12|ψ−〉34) = − 1
2 |ψ−〉14, (20)

removes two spin-1/2 particles (corresponding, in the suc-
cessful case, to a single spin-1 particle) from the chain but
entangles the next two particles, converting two singlet pairs
into one. Therefore, the failure outcome has no negative effect;
the chain simply does not grow. After successful postselec-
tion, the resulting entangled line of biphotons will exactly
encode the AKLT state. In the case where postselection is
performed on both arms of the beam splitter, the average
length of the chain (in terms of the number of spin-1 particles
produced), starting with N entangled photon pairs will be
3N/4 − 1. We now detail how such a state may be used as
a wire for MBQC. As we will show, the advantages in this
approach for preparing an AKLT state compared with the
cluster state are countered by more stringent requirements on

the measurements needed to manipulate quantum information
on the wire.

B. Quantum-computational wire operations

Using an AKLT state to encode and manipulate a qubit
relies on the ability to perform measurements on individual
spin-1 particles. This capability is a major challenge in
most atomic and condensed-matter systems. However, in
quantum optics, it is possible (and in fact straightforward)
to perform high-fidelity projective measurements on single
photons. Biphoton measurements are possible (although
nontrivial) in our linear optical implementation, as we will
discuss.

The logical qubit is encoded on the physical state of the
measured AKLT state. This qubit evolves as single-particle
projective measurements are performed on the state. A helpful
way of visualizing this is in terms of a correlation space [7]. The
correlation space is the space on which the matrices A[β] act
in the AKLT state’s matrix product state description. A mea-
surement on spin-1 particle i will collapse the superposition in
Eq. (6), and fix the matrix A[βi] according to the measurement
outcome βi . Thus, successively measuring particles 1 through
to N will fix a sequence of N matrices that act on the
correlation space. By choosing different measurement bases,
different operators can be applied to the correlation space. We
will briefly outline how a qubit can be initialized, read out, or
have an arbitrary qubit gate applied to it in this scheme.

1. Qubit initialization

There are two ways to initialize a correlation space qubit
in an AKLT state of finite length, both of which are accessible
with linear optical elements. One way is to perform a
measurement on the spin-1/2 particle labeled 0. For each term
in the summation of Eq. (6), we have particles 0 and N + 1
existing in a singlet state with a product of matrices acting on
particle N + 1. Note that the singlet is antisymmetric, and so
projecting the first qubit onto some state |s〉 will fix the state
of the other particle as |s⊥〉, the state orthogonal to |s〉. Hence,
if we perform a measurement on particle 0 of the AKLT
state and obtain an outcome of |s〉, we will initialize particle
N + 1 in the state |s⊥〉. This qubit, on which the matrices act,
we regard as residing in the correlation space as discussed
above. In our optical implementation, initializing the qubit
in the state |0〉 or X|0〉 may be achieved by measuring the
polarization of the end photon in the |H 〉,|V 〉 basis. This
measurement can easily be done by positioning a polarizing
beam splitter in the path of the end photon, and counting the
number of photons (1 or 0) appearing on each arm.

Alternatively, a qubit may be initialized in the correlation
space by measuring any spin-1 particle in a disentangling
basis where two of the three A[β] operators are rank-1 (this
is the maximum number of rank-1 operators possible in
any given basis). Initialization will occur when an outcome
corresponding to a rank-1 operator is obtained. For example,
if a measurement of the ith spin-1 particle is performed
in the basis {|HH 〉,|HV 〉,|V V 〉}, as illustrated in Fig. 3,
then an outcome of |HH 〉 (with corresponding operator
A[1] = −√

2|1〉〈0| = −√
2σ−) will disentangle two halves
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FIG. 3. (Color online) The basic biphoton analyzer, consisting of
a polarizing beam splitter (PBS) and photodetectors (PD). Performing
a measurement with the above device will initialize a qubit with
probability 2/3. The three distinguishable outcomes are as follows:
two photons arrive at V , two photons arrive at H , and one photon
arrives at each V and H . Only the last of these will not initialize a
qubit.

of the AKLT state, transforming it to∑
β1,...,βi−1

|β1〉 · · · |βi−1〉Ã[β1] · · · Ã[βi−1]|1〉0 ⊗ |HH 〉i

⊗
∑

βi+1,...,βN

|βi+1〉 · · · |βN 〉A[βN ] · · · A[βi+1]|1〉N+1. (21)

We have written the two spin-1/2 particles to the right of
the operators that act on them. Particles 0 through to i − 1
are completely disentangled from particles i + 1 through to
N + 1. We regard this operation as initializing two qubits in
the state |1〉 in two separate halves of the chain. An analogous
result will hold if an outcome of |V V 〉 is obtained (except
the qubit will be initialized in the state X|1〉). If an outcome
of |HV 〉 is obtained then we replace the matrix A[βi] with
a Z operator. While this Z operator is harmless (it may be
compensated for in subsequent operations), no qubit will be
initialized in this case. Hence, qubit preparation with this
method is nondeterministic. A repeat-until-success strategy
on successive particles may still be used to prepare a qubit,
with probability 2/3 for each attempt.

2. Readout of logical qubits

The procedure for logical qubit readout is analogous to
initialization. If every spin-1 particle has been measured, and
the correlation space evolution is complete, then the state of the
correlation space qubit will be encoded on the last unmeasured
spin-1/2 particle. Readout may then be performed on this
particle by direct measurement. A readout of the correlation
space qubit can also be achieved by performing measurements
on unmeasured spin-1 particles. For example, if the correla-
tion space is in the state A[βi] · · · A[β1]|0〉0 = α|0〉 + β|1〉
(so particles 0 through to i have been measured) then readout
in the computational basis may be performed by measuring
the next spin-1 particle in the basis {|HH 〉,|HV 〉,|V V 〉}. An
outcome of |HV 〉 does not correspond to a readout, but rather
performs a logical Z Pauli operator to the correlation space.
Note that the modulus of the α and β coefficients is unaffected
by this operation. On the other hand, the probabilities of
obtaining outcome |HH 〉 and |V V 〉 conditional on |HV 〉 not
being detected can be shown to be |α|2 and |β|2, respectively.
Thus, this type of readout faithfully preserves measurement
statistics. As the |HV 〉 outcome does not correspond to a

successful readout, this measurement scheme is nondetermin-
istic. A readout can be performed by repeatedly measuring
successive particles until a successful outcome (corresponding
to successful readout) is obtained.

3. Teleportation and unitary operations

We now illustrate how to choose a biphoton basis which
will apply a desired unitary operation to the correlation space
using the explicit examples of the “identity” operator as well
as the Z and X rotations. Keep in mind that we are just finding
a bases with such a property, and it should not be assumed
that performing a measurement in these bases is actually
possible using only linear optics (it is not). We will address
such problems in the next section. The basic idea of using the
AKLT state to perform arbitrary unitaries was first illustrated
in [7], however, the approach we present follows that of [8].

A set of matrices that is typically used to characterize the
AKLT state (in terms of its matrix product state description) are
the Pauli matrices X,Y,Z. The physical basis corresponding
to these matrices is the Bell basis excluding the singlet as can
be found by substituting into Eq. (7), and corresponds to the
biphoton basis {|HV 〉,|DA〉,|RL〉}. We refer to such a basis as
a spin-0 basis. We have explicitly written the elements of this
basis with the corresponding Pauli operators in Table II. When
a measurement is performed in this basis, one of the three Pauli
operators will be applied to the correlation space dependent
on the measurement outcome. We call this applying the
logical identity with Pauli “biproducts.” Biproduct operators
are harmless in the sense that they generate a finite group (the
Pauli group), and can be accommodated using the standard
techniques of a transforming Pauli frame used in measurement-
based quantum computation [1].

The bases required for performing Z and X rotations are
similar to the above spin-0 basis. First, consider the Z rotation,

Z(θ ) = e− iθ
2 |0〉〈0| + e

iθ
2 |1〉〈1|. (22)

The A[β] matrices that act on the correlation space are traceless
for any measurement basis. Thus, we should decompose Z(θ )

TABLE II. Measurement outcomes and their corresponding
correlation space operators. The first three outcomes correspond to
measurement in the “standard” basis, where every correlation space
operator is a Pauli operator. The next three outcomes form the basis
used for a Z rotation. The last three form the basis used for an
X rotation.

Measurement outcome Correlation operator

Identity |HV 〉 Z

|DA〉 X

|RL〉 XZ

Z rotation 1√
2
(|HH 〉 − e−iθ |V V 〉) XZ(θ )

1√
2
(|HH 〉 + e−iθ |V V 〉) ZXZ(θ )

|HV 〉 Z

X rotation 1√
2
(|DD〉 − e−iθ |AA〉) ZX(θ )

1√
2
(|DD〉 + e−iθ |AA〉) XZX(θ )

|DA〉 X
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(which is not, in general, traceless) into a product of a traceless
operator with some biproduct “error” operator. One example
of such a decomposition is

Z(θ ) = X(e
iθ
2 |0〉〈1| + e− iθ

2 |1〉〈0|). (23)

The Pauli X operator may be regarded as a biproduct operator.
The measurement outcome |β1〉 corresponding to A[β1] :=
e

iθ
2 |0〉〈1| + e− iθ

2 |1〉〈0| = XZ(θ ) can be found by substituting
into Eq. (7) to be

|β1〉 = 1√
2

(|HH 〉 − e−iθ |V V 〉). (24)

An alternative way of writing this state in terms of creation
and annihilation operators is as(
â
†2
H − e−iθ â

†2
V

)|vac〉 = (â†
H + e− iθ

2 â
†
V )(â†

H − e− iθ
2 â

†
V )|vac〉,

(25)

where the right-hand side clearly illustrates the fact that the
biphoton contains two orthogonal photons.

We find our other basis elements by doing a second
decomposition of Z(θ ) into traceless operators,

Z(θ ) = XZ(e
iθ
2 |0〉〈1| − e− iθ

2 |1〉〈0|). (26)

The biphoton |β2〉 corresponding to the operator A[β2] :=
e

iθ
2 |0〉〈1| − e− iθ

2 |1〉〈0| = ZXZ(θ ) is

|β2〉 = 1√
2

(|HH 〉 + e−iθ |V V 〉). (27)

Thus, a basis for performing Z(θ ) rotations with Pauli
biproducts can be chosen, where the third basis element is
specified by the first two. This basis is listed in Table II. The
first two measurement outcomes apply the Z(θ ) rotation with
X or ZX biproducts to the correlation space. The last outcome
does not apply a rotation at all, but only a harmless Z biproduct.
As described in [7], obtaining this “failure” outcome (which
occurs 1/3 of the time) is heralded, and the rotation gate can be
attempted again on the next spin-1 particle. The rotation can
then ultimately be achieved with arbitrarily high probability,
given enough attempts.

To perform an X rotation, the method is similar to that
of the Z rotation and is obtained by exchanging the logical
states |0〉 and |1〉 with the X eigenstates 1√

2
(|0〉 ± |1〉) in all

of the previous derivations. In terms of photons this simply
corresponds to replacing the H,V labels with the diagonal,
antidiagonal labels D,A. Note also that the error operators X

and Z which appear in the Z rotations are swapped. The basis
for performing X rotations is listed in Table II.

We now consider the form of the measurements used for
the identity operator, X and Z rotations (and in fact for any
unitary operator). These measurements must be performed in
a biphoton basis for which each element is a zero eigenstate
of spin along some axis; thus the notation “spin-0 basis.”
In any spin-0 basis, the matrices {A[β1],A[β2],A[β3]} are
equivalent to the three Pauli operators up to conjugation by
a unitary matrix. In order to restrict the biproduct operators to
a finite group, we restrict our spin-0 bases to those presented
in Table II, and using these an arbitrary single-qubit unitary
may be realized via an appropriate sequence of measurements.
To see this, first note that any single-qubit unitary can be

expressed as a product of three rotations Z(θ3)X(θ2)Z(θ1).
The X and Z rotations can be separately realized up to Pauli
biproducts by performing measurements in the bases listed in
Table II. If the outcome only induces a biproduct and not a
rotation, which occurs with probability 1/3 when the outcome
in the last row is obtained, the same measurement can be
repeated until a desired rotation outcome is obtained. All of
the biproducts, that depend on the measurement outcomes,
can be brought out the front of the rotations using the relations
XZ(θ ) = Z(−θ )X and ZX(θ ) = X(−θ )Z. Feed-forward of
measurement outcomes is required for this where, based
on the knowledge of previous measurement outcomes, the
measurement angle θ of subsequent measurements is changed
to either ±θi depending on what Pauli operator must be brought
through. In this procedure, the length of the computation is
inherently random, however, any single-qubit unitary can be
realized with sufficiently many measurements.

4. Spin-0 basis measurements with linear optics

The biphoton measurements described in the previous
section are challenging; as we now show, it is not possible
to perform complete measurements in a spin-0 basis for
biphotons using only linear optical methods. A spin-0 basis
corresponds, in our proposed implementation, to a basis
where each biphoton has zero polarization degree (i.e., each
biphoton contains two photons with orthogonal polarizations).
Each of the bases listed in Table II have this property. The
fact that such a measurement cannot be performed in linear
optics is closely related to the problem of performing Bell
measurements in linear optics [29]. In fact, we can place
upper bounds on biphoton detection using the bounds for
Bell measurements. Consider the standard Innsbruck detection
scheme [30], illustrated in Fig. 4.

We have already listed the action of the 50:50 beam splitter
on incoming Bell states, encoded on separate beam splitter
arms, in Table I. When either of the three symmetric Bell
states are input, an output consisting of a zero polarization
degree biphoton superposed in both arms is obtained. When a
singlet is input, the photons emerge in separate beam splitter
arms.

Let us assume that a linear optical measuring device is
placed on each output arm of the beam splitter. An incoming
singlet is heralded by a single photon count on each arm of
the beam splitter. This will occur with probability 1/4 for
maximally mixed input. If the measuring device that we placed

FIG. 4. (Color online) The standard Innsbruck scheme for Bell
measurements. If the biphotons could be detected with in a zero
polarization degree basis, then deterministic Bell measurements
would be possible.
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on each output arm of the beam splitter could deterministically
distinguish between the three zero polarization degree bipho-
tons corresponding to the three symmetric Bell states, then we
could deterministically perform a Bell measurement. However,
the no-go theorem for Bell measurements [29] says that it is
impossible to perform a measurement that distinguishes Bell
states with certainty using linear optics alone, even allowing
the use of feed-forward and auxiliary photons (note, however,
success probabilities may be improved arbitrarily at the cost
of more auxiliary input photons, e.g., in the KLM protocol
[26]). Hence we cannot distinguish between three orthogonal
zero polarization biphotons using feed-forward and auxilliary
photons because if we could, we could also distinguish Bell
states deterministically.

Also note a simpler version of the no-go theorem where
no feed-forward or auxiliary photons are used. In this case the
probability of obtaining a Bell state outcome given maximally
mixed input cannot exceed 1/2. If we have a biphoton analyzer
that projects onto a zero polarization degree biphoton with
probability 1/3 then we can saturate this probability by placing
it on one of the outgoing arms of the beam splitter in Fig. 4. We
will then have a probability of 1/4 of projecting onto a singlet
and a probability of 1/3 × 3/4 = 1/4 of detecting a biphoton
corresponding to a Bell state, giving the total probability of
projecting onto a Bell state of 1/2. The basic polarization
analyzer illustrated in Fig. 3 saturates the probability of zero
polarization degree biphoton detection. Coincidence detection
at the two detectors projects onto a zero polarization degree
biphoton, and this happens with a probability of 1/3 for
maximally mixed input. The illustrated setup projects onto
the |HV 〉 biphoton, however, with the addition of wave plates
this biphoton can be changed arbitrarily to any biphoton of
zero polarization degree. Hence, we can project onto any
of the biphotons in Table II and thus any of the correlation
space operators A[β] in the second column of Table II can be
realized. However, using this measurement to apply unitaries
to the correlation space is nondeterministic. An undesirable
measurement outcome, corresponding to a double count at
either of the photodetectors, will apply a rank-1 operator to the
correlation space, collapsing the state of the correlation space
qubit. The probability of obtaining a zero polarization degree
photon is 1/3 for each measurement, thus the probability of
successful state transfer along the AKLT state diminishes by
a factor of 1/3 for each measured spin-1 particle.

Despite the nonexistence of a simple, deterministic linear
optical scheme for performing these measurements, one could
investigate the use of techniques from linear-optical quantum
computing [26] to use ancilla photons and single-photon
measurement to induce the nonlinearity needed for such
measurements. The success of such schemes in performing
Bell state analysis with linear optics [31] suggest that similar
schemes may exist for spin-0 basis measurements of biphotons.

Finally, we note that MBQC schemes with single photons in
general have very stringent requirements on the measurements;
current photodetectors are not yet able to meet the efficiency
thresholds for fault-tolerant MBQC with optics including
cluster-state schemes. Potentially, in the development of novel
detection methods with ultrahigh efficiency (e.g., based on the
high-efficiency transfer of optical quantum information into
atomic or solid-state devices required for quantum repeaters),
the nonlinear measurements required for MBQC using an
optical AKLT state may indeed be possible.

IV. CONCLUSION

We have shown how an AKLT state may be realized in linear
optics, and how elementary MBQC operations, including state
preparation, measurement, and unitary logic gates, can be
performed using this AKLT state as a resource. The method
we use to construct the AKLT state is inspired by its VBS
construction: starting with a line of photon pairs in polarization
singlet states, we apply projections onto total spin-1 by
interfering pairs of photons, one from each neighboring
singlet, on a 50:50 beam splitter and then postselect. The
AKLT state will then be encoded on an entangled line of
biphotons. The success probability of adding a single spin-1
particle to the photonic AKLT state can be 3/4. We also
showed how wire operations may be applied via measurement
using basic polarization analyzer made of photodetectors
and polarizing beam splitters, including initialization, read-
out, and the application of arbitrary single-qubit unitary
operators.

Our proposal demonstrates how MBQC may be performed
on a state from condensed-matter physics that is different from
the cluster state, and which leads to different requirements.
Compared with a cluster state, the optical AKLT state is
significantly simpler to create; however, its capacity for
quantum computation in linear optics is more restrictive
due to limitations of biphoton detection in linear optics.
As biphotons cannot be measured in an arbitrary basis, one
cannot deterministically perform the measurements required
to implement unitary gates. An arbitrary single-qubit unitary
can only be applied nondeterministically with linear optics.
These issues highlight the restrictive nature of biphoton
measurement, and motivate the development of techniques
for biphoton measurement within a linear optical setting.

ACKNOWLEDGMENTS

We thank Andrew Doherty, Rainer Kaltenbaek, Anthony
Laing, Jonathan Lavoie, Jeremy O’Brien, Geoff Pryde, Kevin
Resch, Terry Rudolph, Howard Wiseman, and Bei Zeng
for discussions. S.D.B. acknowledges the support of the
Australian Research Council.

[1] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188
(2001).

[2] M. A. Nielsen and I. L. Chuang, Quantum Information
and Quantum Computation (Cambridge University Press,
Cambridge, 2000).

[3] M. A. Nielsen, Phys. Rev. Lett. 93, 040503 (2004).
[4] D. E. Browne and T. Rudolph, Phys. Rev. Lett. 95, 010501

(2005).
[5] S. D. Bartlett and T. Rudolph, Phys. Rev. A 74, 040302(R)

(2006); T. Griffin and S. D. Bartlett, ibid. 78, 062306 (2008).

012328-7

http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.93.040503
http://dx.doi.org/10.1103/PhysRevLett.95.010501
http://dx.doi.org/10.1103/PhysRevLett.95.010501
http://dx.doi.org/10.1103/PhysRevA.74.040302
http://dx.doi.org/10.1103/PhysRevA.74.040302
http://dx.doi.org/10.1103/PhysRevA.78.062306


ANDREW S. DARMAWAN AND STEPHEN D. BARTLETT PHYSICAL REVIEW A 82, 012328 (2010)

[6] D. Gross and J. Eisert, Phys. Rev. Lett. 98, 220503 (2007).
[7] D. Gross, J. Eisert, N. Schuch, and D. Perez-Garcia, Phys. Rev.

A 76, 052315 (2007).
[8] G. K. Brennen and A. Miyake, Phys. Rev. Lett. 101, 010502

(2008).
[9] A. C. Doherty and S. D. Bartlett, Phys. Rev. Lett. 103, 020506

(2009).
[10] X. Chen, B. Zeng, Z. C. Gu, B. Yoshida, and I. L. Chuang, Phys.

Rev. Lett. 102, 220501 (2009).
[11] S. D. Barrett, S. D. Bartlett, A. C. Doherty, D. Jennings, and

T. Rudolph, Phys. Rev. A 80, 062328 (2009).
[12] D. Jennings, A. Dragan, S. D. Barrett, S. D. Bartlett, and

T. Rudolph, Phys. Rev. A 80, 032328 (2009).
[13] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev.

Lett. 59, 799 (1987).
[14] F. D. M. Haldane, Phys. Lett. A 93, 464 (1983).
[15] F. D. M. Haldane, Phys. Rev. Lett. 50, 1153 (1983).
[16] M. Fannes, B. Nachtergaele, and R. F. Werner, Commun. Math.

Phys. 144, 443 (1992).
[17] D. Perez-Garcia, F. Verstraete, M. M. Wolf, and J. I. Cirac,

Quantum Inf. Comput. 7, 401 (2007).
[18] D. Perez-Garcia, F. Verstraete, J. I. Cirac, and M. M. Wolf,

Quantum Inf. Comput. 8, 0650 (2008).
[19] F. Verstraete, M. Popp, and J. I. Cirac, Phys. Rev. Lett. 92,

027901 (2004).

[20] D. Gross and J. Eisert, e-print arXiv:0810.2542.
[21] M. Fujiwara, M. Takeoka, J. Mizuno, and M. Sasaki, Phys. Rev.

Lett. 90, 167906 (2003).
[22] N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J.

Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, Phys. Rev.
Lett. 93, 053601 (2004).

[23] B. P. Lanyon, T. J. Weinhold, N. K. Langford, J. L. O’Brien,
K. J. Resch, A. Gilchrist, and A. G. White, Phys. Rev. Lett. 100,
060504 (2008).

[24] Q. Lin and B. He, Phys. Rev. A 80, 062312 (2009).
[25] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Commun.

Math. Phys. 115, 477 (1988).
[26] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P.

Dowling, and G. J. Milburn, Rev. Mod. Phys. 79, 135
(2007).

[27] C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044
(1987).

[28] K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, Phys.
Rev. Lett. 76, 4656 (1996).

[29] N. Lütkenhaus, J. Calsamiglia, and K.-A. Suominen, Phys. Rev.
A 59, 3295 (1999).

[30] H. Weinfurter, Europhys. Lett. 25, 559 (1994).
[31] N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch,

A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, Phys.
Rev. Lett. 95, 210504 (2005).

012328-8

http://dx.doi.org/10.1103/PhysRevLett.98.220503
http://dx.doi.org/10.1103/PhysRevA.76.052315
http://dx.doi.org/10.1103/PhysRevA.76.052315
http://dx.doi.org/10.1103/PhysRevLett.101.010502
http://dx.doi.org/10.1103/PhysRevLett.101.010502
http://dx.doi.org/10.1103/PhysRevLett.103.020506
http://dx.doi.org/10.1103/PhysRevLett.103.020506
http://dx.doi.org/10.1103/PhysRevLett.102.220501
http://dx.doi.org/10.1103/PhysRevLett.102.220501
http://dx.doi.org/10.1103/PhysRevA.80.062328
http://dx.doi.org/10.1103/PhysRevA.80.032328
http://dx.doi.org/10.1103/PhysRevLett.59.799
http://dx.doi.org/10.1103/PhysRevLett.59.799
http://dx.doi.org/10.1016/0375-9601(83)90631-X
http://dx.doi.org/10.1103/PhysRevLett.50.1153
http://dx.doi.org/10.1007/BF02099178
http://dx.doi.org/10.1007/BF02099178
http://dx.doi.org/10.1103/PhysRevLett.92.027901
http://dx.doi.org/10.1103/PhysRevLett.92.027901
http://arXiv.org/abs/arXiv:0810.2542
http://dx.doi.org/10.1103/PhysRevLett.90.167906
http://dx.doi.org/10.1103/PhysRevLett.90.167906
http://dx.doi.org/10.1103/PhysRevLett.93.053601
http://dx.doi.org/10.1103/PhysRevLett.93.053601
http://dx.doi.org/10.1103/PhysRevLett.100.060504
http://dx.doi.org/10.1103/PhysRevLett.100.060504
http://dx.doi.org/10.1103/PhysRevA.80.062312
http://dx.doi.org/10.1007/BF01218021
http://dx.doi.org/10.1007/BF01218021
http://dx.doi.org/10.1103/RevModPhys.79.135
http://dx.doi.org/10.1103/RevModPhys.79.135
http://dx.doi.org/10.1103/PhysRevLett.59.2044
http://dx.doi.org/10.1103/PhysRevLett.59.2044
http://dx.doi.org/10.1103/PhysRevLett.76.4656
http://dx.doi.org/10.1103/PhysRevLett.76.4656
http://dx.doi.org/10.1103/PhysRevA.59.3295
http://dx.doi.org/10.1103/PhysRevA.59.3295
http://dx.doi.org/10.1209/0295-5075/25/8/001
http://dx.doi.org/10.1103/PhysRevLett.95.210504
http://dx.doi.org/10.1103/PhysRevLett.95.210504

